Home | History | Annotate | Download | only in Disassembler
      1 /*===-- X86DisassemblerDecoderCommon.h - Disassembler decoder -----*- C -*-===*
      2  *
      3  *                     The LLVM Compiler Infrastructure
      4  *
      5  * This file is distributed under the University of Illinois Open Source
      6  * License. See LICENSE.TXT for details.
      7  *
      8  *===----------------------------------------------------------------------===*
      9  *
     10  * This file is part of the X86 Disassembler.
     11  * It contains common definitions used by both the disassembler and the table
     12  *  generator.
     13  * Documentation for the disassembler can be found in X86Disassembler.h.
     14  *
     15  *===----------------------------------------------------------------------===*/
     16 
     17 /*
     18  * This header file provides those definitions that need to be shared between
     19  * the decoder and the table generator in a C-friendly manner.
     20  */
     21 
     22 #ifndef X86DISASSEMBLERDECODERCOMMON_H
     23 #define X86DISASSEMBLERDECODERCOMMON_H
     24 
     25 #include "llvm/Support/DataTypes.h"
     26 
     27 #define INSTRUCTIONS_SYM  x86DisassemblerInstrSpecifiers
     28 #define CONTEXTS_SYM      x86DisassemblerContexts
     29 #define ONEBYTE_SYM       x86DisassemblerOneByteOpcodes
     30 #define TWOBYTE_SYM       x86DisassemblerTwoByteOpcodes
     31 #define THREEBYTE38_SYM   x86DisassemblerThreeByte38Opcodes
     32 #define THREEBYTE3A_SYM   x86DisassemblerThreeByte3AOpcodes
     33 #define THREEBYTEA6_SYM   x86DisassemblerThreeByteA6Opcodes
     34 #define THREEBYTEA7_SYM   x86DisassemblerThreeByteA7Opcodes
     35 
     36 #define INSTRUCTIONS_STR  "x86DisassemblerInstrSpecifiers"
     37 #define CONTEXTS_STR      "x86DisassemblerContexts"
     38 #define ONEBYTE_STR       "x86DisassemblerOneByteOpcodes"
     39 #define TWOBYTE_STR       "x86DisassemblerTwoByteOpcodes"
     40 #define THREEBYTE38_STR   "x86DisassemblerThreeByte38Opcodes"
     41 #define THREEBYTE3A_STR   "x86DisassemblerThreeByte3AOpcodes"
     42 #define THREEBYTEA6_STR   "x86DisassemblerThreeByteA6Opcodes"
     43 #define THREEBYTEA7_STR   "x86DisassemblerThreeByteA7Opcodes"
     44 
     45 /*
     46  * Attributes of an instruction that must be known before the opcode can be
     47  * processed correctly.  Most of these indicate the presence of particular
     48  * prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
     49  */
     50 #define ATTRIBUTE_BITS          \
     51   ENUM_ENTRY(ATTR_NONE,   0x00) \
     52   ENUM_ENTRY(ATTR_64BIT,  0x01) \
     53   ENUM_ENTRY(ATTR_XS,     0x02) \
     54   ENUM_ENTRY(ATTR_XD,     0x04) \
     55   ENUM_ENTRY(ATTR_REXW,   0x08) \
     56   ENUM_ENTRY(ATTR_OPSIZE, 0x10) \
     57   ENUM_ENTRY(ATTR_ADSIZE, 0x20) \
     58   ENUM_ENTRY(ATTR_VEX,    0x40) \
     59   ENUM_ENTRY(ATTR_VEXL,   0x80)
     60 
     61 #define ENUM_ENTRY(n, v) n = v,
     62 enum attributeBits {
     63   ATTRIBUTE_BITS
     64   ATTR_max
     65 };
     66 #undef ENUM_ENTRY
     67 
     68 /*
     69  * Combinations of the above attributes that are relevant to instruction
     70  * decode.  Although other combinations are possible, they can be reduced to
     71  * these without affecting the ultimately decoded instruction.
     72  */
     73 
     74 /*           Class name           Rank  Rationale for rank assignment         */
     75 #define INSTRUCTION_CONTEXTS                                                   \
     76   ENUM_ENTRY(IC,                    0,  "says nothing about the instruction")  \
     77   ENUM_ENTRY(IC_64BIT,              1,  "says the instruction applies in "     \
     78                                         "64-bit mode but no more")             \
     79   ENUM_ENTRY(IC_OPSIZE,             3,  "requires an OPSIZE prefix, so "       \
     80                                         "operands change width")               \
     81   ENUM_ENTRY(IC_ADSIZE,             3,  "requires an ADSIZE prefix, so "       \
     82                                         "operands change width")               \
     83   ENUM_ENTRY(IC_XD,                 2,  "may say something about the opcode "  \
     84                                         "but not the operands")                \
     85   ENUM_ENTRY(IC_XS,                 2,  "may say something about the opcode "  \
     86                                         "but not the operands")                \
     87   ENUM_ENTRY(IC_XD_OPSIZE,          3,  "requires an OPSIZE prefix, so "       \
     88                                         "operands change width")               \
     89   ENUM_ENTRY(IC_XS_OPSIZE,          3,  "requires an OPSIZE prefix, so "       \
     90                                         "operands change width")               \
     91   ENUM_ENTRY(IC_64BIT_REXW,         4,  "requires a REX.W prefix, so operands "\
     92                                         "change width; overrides IC_OPSIZE")   \
     93   ENUM_ENTRY(IC_64BIT_OPSIZE,       3,  "Just as meaningful as IC_OPSIZE")     \
     94   ENUM_ENTRY(IC_64BIT_ADSIZE,       3,  "Just as meaningful as IC_ADSIZE")     \
     95   ENUM_ENTRY(IC_64BIT_XD,           5,  "XD instructions are SSE; REX.W is "   \
     96                                         "secondary")                           \
     97   ENUM_ENTRY(IC_64BIT_XS,           5,  "Just as meaningful as IC_64BIT_XD")   \
     98   ENUM_ENTRY(IC_64BIT_XD_OPSIZE,    3,  "Just as meaningful as IC_XD_OPSIZE")  \
     99   ENUM_ENTRY(IC_64BIT_XS_OPSIZE,    3,  "Just as meaningful as IC_XS_OPSIZE")  \
    100   ENUM_ENTRY(IC_64BIT_REXW_XS,      6,  "OPSIZE could mean a different "       \
    101                                         "opcode")                              \
    102   ENUM_ENTRY(IC_64BIT_REXW_XD,      6,  "Just as meaningful as "               \
    103                                         "IC_64BIT_REXW_XS")                    \
    104   ENUM_ENTRY(IC_64BIT_REXW_OPSIZE,  7,  "The Dynamic Duo!  Prefer over all "   \
    105                                         "else because this changes most "      \
    106                                         "operands' meaning")                   \
    107   ENUM_ENTRY(IC_VEX,                1,  "requires a VEX prefix")               \
    108   ENUM_ENTRY(IC_VEX_XS,             2,  "requires VEX and the XS prefix")      \
    109   ENUM_ENTRY(IC_VEX_XD,             2,  "requires VEX and the XD prefix")      \
    110   ENUM_ENTRY(IC_VEX_OPSIZE,         2,  "requires VEX and the OpSize prefix")  \
    111   ENUM_ENTRY(IC_VEX_W,              3,  "requires VEX and the W prefix")       \
    112   ENUM_ENTRY(IC_VEX_W_XS,           4,  "requires VEX, W, and XS prefix")      \
    113   ENUM_ENTRY(IC_VEX_W_XD,           4,  "requires VEX, W, and XD prefix")      \
    114   ENUM_ENTRY(IC_VEX_W_OPSIZE,       4,  "requires VEX, W, and OpSize")         \
    115   ENUM_ENTRY(IC_VEX_L,              3,  "requires VEX and the L prefix")       \
    116   ENUM_ENTRY(IC_VEX_L_XS,           4,  "requires VEX and the L and XS prefix")\
    117   ENUM_ENTRY(IC_VEX_L_XD,           4,  "requires VEX and the L and XD prefix")\
    118   ENUM_ENTRY(IC_VEX_L_OPSIZE,       4,  "requires VEX, L, and OpSize")         \
    119   ENUM_ENTRY(IC_VEX_L_W_OPSIZE,     5,  "requires VEX, L, W and OpSize")
    120 
    121 
    122 #define ENUM_ENTRY(n, r, d) n,
    123 typedef enum {
    124   INSTRUCTION_CONTEXTS
    125   IC_max
    126 } InstructionContext;
    127 #undef ENUM_ENTRY
    128 
    129 /*
    130  * Opcode types, which determine which decode table to use, both in the Intel
    131  * manual and also for the decoder.
    132  */
    133 typedef enum {
    134   ONEBYTE       = 0,
    135   TWOBYTE       = 1,
    136   THREEBYTE_38  = 2,
    137   THREEBYTE_3A  = 3,
    138   THREEBYTE_A6  = 4,
    139   THREEBYTE_A7  = 5
    140 } OpcodeType;
    141 
    142 /*
    143  * The following structs are used for the hierarchical decode table.  After
    144  * determining the instruction's class (i.e., which IC_* constant applies to
    145  * it), the decoder reads the opcode.  Some instructions require specific
    146  * values of the ModR/M byte, so the ModR/M byte indexes into the final table.
    147  *
    148  * If a ModR/M byte is not required, "required" is left unset, and the values
    149  * for each instructionID are identical.
    150  */
    151 
    152 typedef uint16_t InstrUID;
    153 
    154 /*
    155  * ModRMDecisionType - describes the type of ModR/M decision, allowing the
    156  * consumer to determine the number of entries in it.
    157  *
    158  * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
    159  *                  instruction is the same.
    160  * MODRM_SPLITRM  - If the ModR/M byte is between 0x00 and 0xbf, the opcode
    161  *                  corresponds to one instruction; otherwise, it corresponds to
    162  *                  a different instruction.
    163  * MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte
    164  *                  divided by 8 is used to select instruction; otherwise, each
    165  *                  value of the ModR/M byte could correspond to a different
    166  *                  instruction.
    167  * MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This
    168                     corresponds to instructions that use reg field as opcode
    169  * MODRM_FULL     - Potentially, each value of the ModR/M byte could correspond
    170  *                  to a different instruction.
    171  */
    172 
    173 #define MODRMTYPES            \
    174   ENUM_ENTRY(MODRM_ONEENTRY)  \
    175   ENUM_ENTRY(MODRM_SPLITRM)   \
    176   ENUM_ENTRY(MODRM_SPLITMISC)  \
    177   ENUM_ENTRY(MODRM_SPLITREG)  \
    178   ENUM_ENTRY(MODRM_FULL)
    179 
    180 #define ENUM_ENTRY(n) n,
    181 typedef enum {
    182   MODRMTYPES
    183   MODRM_max
    184 } ModRMDecisionType;
    185 #undef ENUM_ENTRY
    186 
    187 /*
    188  * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which
    189  *  instruction each possible value of the ModR/M byte corresponds to.  Once
    190  *  this information is known, we have narrowed down to a single instruction.
    191  */
    192 struct ModRMDecision {
    193   uint8_t     modrm_type;
    194 
    195   /* The macro below must be defined wherever this file is included. */
    196   INSTRUCTION_IDS
    197 };
    198 
    199 /*
    200  * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at
    201  *   given a particular opcode.
    202  */
    203 struct OpcodeDecision {
    204   struct ModRMDecision modRMDecisions[256];
    205 };
    206 
    207 /*
    208  * ContextDecision - Specifies which opcode->instruction tables to look at given
    209  *   a particular context (set of attributes).  Since there are many possible
    210  *   contexts, the decoder first uses CONTEXTS_SYM to determine which context
    211  *   applies given a specific set of attributes.  Hence there are only IC_max
    212  *   entries in this table, rather than 2^(ATTR_max).
    213  */
    214 struct ContextDecision {
    215   struct OpcodeDecision opcodeDecisions[IC_max];
    216 };
    217 
    218 /*
    219  * Physical encodings of instruction operands.
    220  */
    221 
    222 #define ENCODINGS                                                              \
    223   ENUM_ENTRY(ENCODING_NONE,   "")                                              \
    224   ENUM_ENTRY(ENCODING_REG,    "Register operand in ModR/M byte.")              \
    225   ENUM_ENTRY(ENCODING_RM,     "R/M operand in ModR/M byte.")                   \
    226   ENUM_ENTRY(ENCODING_VVVV,   "Register operand in VEX.vvvv byte.")            \
    227   ENUM_ENTRY(ENCODING_CB,     "1-byte code offset (possible new CS value)")    \
    228   ENUM_ENTRY(ENCODING_CW,     "2-byte")                                        \
    229   ENUM_ENTRY(ENCODING_CD,     "4-byte")                                        \
    230   ENUM_ENTRY(ENCODING_CP,     "6-byte")                                        \
    231   ENUM_ENTRY(ENCODING_CO,     "8-byte")                                        \
    232   ENUM_ENTRY(ENCODING_CT,     "10-byte")                                       \
    233   ENUM_ENTRY(ENCODING_IB,     "1-byte immediate")                              \
    234   ENUM_ENTRY(ENCODING_IW,     "2-byte")                                        \
    235   ENUM_ENTRY(ENCODING_ID,     "4-byte")                                        \
    236   ENUM_ENTRY(ENCODING_IO,     "8-byte")                                        \
    237   ENUM_ENTRY(ENCODING_RB,     "(AL..DIL, R8L..R15L) Register code added to "   \
    238                               "the opcode byte")                               \
    239   ENUM_ENTRY(ENCODING_RW,     "(AX..DI, R8W..R15W)")                           \
    240   ENUM_ENTRY(ENCODING_RD,     "(EAX..EDI, R8D..R15D)")                         \
    241   ENUM_ENTRY(ENCODING_RO,     "(RAX..RDI, R8..R15)")                           \
    242   ENUM_ENTRY(ENCODING_I,      "Position on floating-point stack added to the " \
    243                               "opcode byte")                                   \
    244                                                                                \
    245   ENUM_ENTRY(ENCODING_Iv,     "Immediate of operand size")                     \
    246   ENUM_ENTRY(ENCODING_Ia,     "Immediate of address size")                     \
    247   ENUM_ENTRY(ENCODING_Rv,     "Register code of operand size added to the "    \
    248                               "opcode byte")                                   \
    249   ENUM_ENTRY(ENCODING_DUP,    "Duplicate of another operand; ID is encoded "   \
    250                               "in type")
    251 
    252 #define ENUM_ENTRY(n, d) n,
    253   typedef enum {
    254     ENCODINGS
    255     ENCODING_max
    256   } OperandEncoding;
    257 #undef ENUM_ENTRY
    258 
    259 /*
    260  * Semantic interpretations of instruction operands.
    261  */
    262 
    263 #define TYPES                                                                  \
    264   ENUM_ENTRY(TYPE_NONE,       "")                                              \
    265   ENUM_ENTRY(TYPE_REL8,       "1-byte immediate address")                      \
    266   ENUM_ENTRY(TYPE_REL16,      "2-byte")                                        \
    267   ENUM_ENTRY(TYPE_REL32,      "4-byte")                                        \
    268   ENUM_ENTRY(TYPE_REL64,      "8-byte")                                        \
    269   ENUM_ENTRY(TYPE_PTR1616,    "2+2-byte segment+offset address")               \
    270   ENUM_ENTRY(TYPE_PTR1632,    "2+4-byte")                                      \
    271   ENUM_ENTRY(TYPE_PTR1664,    "2+8-byte")                                      \
    272   ENUM_ENTRY(TYPE_R8,         "1-byte register operand")                       \
    273   ENUM_ENTRY(TYPE_R16,        "2-byte")                                        \
    274   ENUM_ENTRY(TYPE_R32,        "4-byte")                                        \
    275   ENUM_ENTRY(TYPE_R64,        "8-byte")                                        \
    276   ENUM_ENTRY(TYPE_IMM8,       "1-byte immediate operand")                      \
    277   ENUM_ENTRY(TYPE_IMM16,      "2-byte")                                        \
    278   ENUM_ENTRY(TYPE_IMM32,      "4-byte")                                        \
    279   ENUM_ENTRY(TYPE_IMM64,      "8-byte")                                        \
    280   ENUM_ENTRY(TYPE_IMM3,       "1-byte immediate operand between 0 and 7")      \
    281   ENUM_ENTRY(TYPE_IMM5,       "1-byte immediate operand between 0 and 31")     \
    282   ENUM_ENTRY(TYPE_RM8,        "1-byte register or memory operand")             \
    283   ENUM_ENTRY(TYPE_RM16,       "2-byte")                                        \
    284   ENUM_ENTRY(TYPE_RM32,       "4-byte")                                        \
    285   ENUM_ENTRY(TYPE_RM64,       "8-byte")                                        \
    286   ENUM_ENTRY(TYPE_M,          "Memory operand")                                \
    287   ENUM_ENTRY(TYPE_M8,         "1-byte")                                        \
    288   ENUM_ENTRY(TYPE_M16,        "2-byte")                                        \
    289   ENUM_ENTRY(TYPE_M32,        "4-byte")                                        \
    290   ENUM_ENTRY(TYPE_M64,        "8-byte")                                        \
    291   ENUM_ENTRY(TYPE_LEA,        "Effective address")                             \
    292   ENUM_ENTRY(TYPE_M128,       "16-byte (SSE/SSE2)")                            \
    293   ENUM_ENTRY(TYPE_M256,       "256-byte (AVX)")                                \
    294   ENUM_ENTRY(TYPE_M1616,      "2+2-byte segment+offset address")               \
    295   ENUM_ENTRY(TYPE_M1632,      "2+4-byte")                                      \
    296   ENUM_ENTRY(TYPE_M1664,      "2+8-byte")                                      \
    297   ENUM_ENTRY(TYPE_M16_32,     "2+4-byte two-part memory operand (LIDT, LGDT)") \
    298   ENUM_ENTRY(TYPE_M16_16,     "2+2-byte (BOUND)")                              \
    299   ENUM_ENTRY(TYPE_M32_32,     "4+4-byte (BOUND)")                              \
    300   ENUM_ENTRY(TYPE_M16_64,     "2+8-byte (LIDT, LGDT)")                         \
    301   ENUM_ENTRY(TYPE_MOFFS8,     "1-byte memory offset (relative to segment "     \
    302                               "base)")                                         \
    303   ENUM_ENTRY(TYPE_MOFFS16,    "2-byte")                                        \
    304   ENUM_ENTRY(TYPE_MOFFS32,    "4-byte")                                        \
    305   ENUM_ENTRY(TYPE_MOFFS64,    "8-byte")                                        \
    306   ENUM_ENTRY(TYPE_SREG,       "Byte with single bit set: 0 = ES, 1 = CS, "     \
    307                               "2 = SS, 3 = DS, 4 = FS, 5 = GS")                \
    308   ENUM_ENTRY(TYPE_M32FP,      "32-bit IEE754 memory floating-point operand")   \
    309   ENUM_ENTRY(TYPE_M64FP,      "64-bit")                                        \
    310   ENUM_ENTRY(TYPE_M80FP,      "80-bit extended")                               \
    311   ENUM_ENTRY(TYPE_M16INT,     "2-byte memory integer operand for use in "      \
    312                               "floating-point instructions")                   \
    313   ENUM_ENTRY(TYPE_M32INT,     "4-byte")                                        \
    314   ENUM_ENTRY(TYPE_M64INT,     "8-byte")                                        \
    315   ENUM_ENTRY(TYPE_ST,         "Position on the floating-point stack")          \
    316   ENUM_ENTRY(TYPE_MM,         "MMX register operand")                          \
    317   ENUM_ENTRY(TYPE_MM32,       "4-byte MMX register or memory operand")         \
    318   ENUM_ENTRY(TYPE_MM64,       "8-byte")                                        \
    319   ENUM_ENTRY(TYPE_XMM,        "XMM register operand")                          \
    320   ENUM_ENTRY(TYPE_XMM32,      "4-byte XMM register or memory operand")         \
    321   ENUM_ENTRY(TYPE_XMM64,      "8-byte")                                        \
    322   ENUM_ENTRY(TYPE_XMM128,     "16-byte")                                       \
    323   ENUM_ENTRY(TYPE_XMM256,     "32-byte")                                       \
    324   ENUM_ENTRY(TYPE_XMM0,       "Implicit use of XMM0")                          \
    325   ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand")                      \
    326   ENUM_ENTRY(TYPE_DEBUGREG,   "Debug register operand")                        \
    327   ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand")                      \
    328                                                                                \
    329   ENUM_ENTRY(TYPE_Mv,         "Memory operand of operand size")                \
    330   ENUM_ENTRY(TYPE_Rv,         "Register operand of operand size")              \
    331   ENUM_ENTRY(TYPE_IMMv,       "Immediate operand of operand size")             \
    332   ENUM_ENTRY(TYPE_RELv,       "Immediate address of operand size")             \
    333   ENUM_ENTRY(TYPE_DUP0,       "Duplicate of operand 0")                        \
    334   ENUM_ENTRY(TYPE_DUP1,       "operand 1")                                     \
    335   ENUM_ENTRY(TYPE_DUP2,       "operand 2")                                     \
    336   ENUM_ENTRY(TYPE_DUP3,       "operand 3")                                     \
    337   ENUM_ENTRY(TYPE_DUP4,       "operand 4")                                     \
    338   ENUM_ENTRY(TYPE_M512,       "512-bit FPU/MMX/XMM/MXCSR state")
    339 
    340 #define ENUM_ENTRY(n, d) n,
    341 typedef enum {
    342   TYPES
    343   TYPE_max
    344 } OperandType;
    345 #undef ENUM_ENTRY
    346 
    347 /*
    348  * OperandSpecifier - The specification for how to extract and interpret one
    349  *   operand.
    350  */
    351 struct OperandSpecifier {
    352   uint8_t encoding;
    353   uint8_t type;
    354 };
    355 
    356 /*
    357  * Indicates where the opcode modifier (if any) is to be found.  Extended
    358  * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
    359  */
    360 
    361 #define MODIFIER_TYPES        \
    362   ENUM_ENTRY(MODIFIER_NONE)   \
    363   ENUM_ENTRY(MODIFIER_OPCODE) \
    364   ENUM_ENTRY(MODIFIER_MODRM)
    365 
    366 #define ENUM_ENTRY(n) n,
    367 typedef enum {
    368   MODIFIER_TYPES
    369   MODIFIER_max
    370 } ModifierType;
    371 #undef ENUM_ENTRY
    372 
    373 #define X86_MAX_OPERANDS 5
    374 
    375 /*
    376  * The specification for how to extract and interpret a full instruction and
    377  * its operands.
    378  */
    379 struct InstructionSpecifier {
    380   uint8_t modifierType;
    381   uint8_t modifierBase;
    382 
    383   /* The macro below must be defined wherever this file is included. */
    384   INSTRUCTION_SPECIFIER_FIELDS
    385 };
    386 
    387 /*
    388  * Decoding mode for the Intel disassembler.  16-bit, 32-bit, and 64-bit mode
    389  * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
    390  * respectively.
    391  */
    392 typedef enum {
    393   MODE_16BIT,
    394   MODE_32BIT,
    395   MODE_64BIT
    396 } DisassemblerMode;
    397 
    398 #endif
    399