1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/Support/PatternMatch.h" 18 #include "llvm/Target/TargetLibraryInfo.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 23 /// expression. If so, decompose it, returning some value X, such that Val is 24 /// X*Scale+Offset. 25 /// 26 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 27 uint64_t &Offset) { 28 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 29 Offset = CI->getZExtValue(); 30 Scale = 0; 31 return ConstantInt::get(Val->getType(), 0); 32 } 33 34 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 35 // Cannot look past anything that might overflow. 36 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 37 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 38 Scale = 1; 39 Offset = 0; 40 return Val; 41 } 42 43 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 44 if (I->getOpcode() == Instruction::Shl) { 45 // This is a value scaled by '1 << the shift amt'. 46 Scale = UINT64_C(1) << RHS->getZExtValue(); 47 Offset = 0; 48 return I->getOperand(0); 49 } 50 51 if (I->getOpcode() == Instruction::Mul) { 52 // This value is scaled by 'RHS'. 53 Scale = RHS->getZExtValue(); 54 Offset = 0; 55 return I->getOperand(0); 56 } 57 58 if (I->getOpcode() == Instruction::Add) { 59 // We have X+C. Check to see if we really have (X*C2)+C1, 60 // where C1 is divisible by C2. 61 unsigned SubScale; 62 Value *SubVal = 63 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 64 Offset += RHS->getZExtValue(); 65 Scale = SubScale; 66 return SubVal; 67 } 68 } 69 } 70 71 // Otherwise, we can't look past this. 72 Scale = 1; 73 Offset = 0; 74 return Val; 75 } 76 77 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 78 /// try to eliminate the cast by moving the type information into the alloc. 79 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 80 AllocaInst &AI) { 81 // This requires DataLayout to get the alloca alignment and size information. 82 if (!TD) return 0; 83 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; 93 94 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return 0; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; 102 103 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return 0; 106 107 // If the allocation has multiple uses, only promote it if we're not 108 // shrinking the amount of memory being allocated. 109 uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy); 110 uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy); 111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0; 112 113 // See if we can satisfy the modulus by pulling a scale out of the array 114 // size argument. 115 unsigned ArraySizeScale; 116 uint64_t ArrayOffset; 117 Value *NumElements = // See if the array size is a decomposable linear expr. 118 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 119 120 // If we can now satisfy the modulus, by using a non-1 scale, we really can 121 // do the xform. 122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; 124 125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 126 Value *Amt = 0; 127 if (Scale == 1) { 128 Amt = NumElements; 129 } else { 130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 131 // Insert before the alloca, not before the cast. 132 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 133 } 134 135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 137 Offset, true); 138 Amt = AllocaBuilder.CreateAdd(Amt, Off); 139 } 140 141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 142 New->setAlignment(AI.getAlignment()); 143 New->takeName(&AI); 144 145 // If the allocation has multiple real uses, insert a cast and change all 146 // things that used it to use the new cast. This will also hack on CI, but it 147 // will die soon. 148 if (!AI.hasOneUse()) { 149 // New is the allocation instruction, pointer typed. AI is the original 150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 152 ReplaceInstUsesWith(AI, NewCast); 153 } 154 return ReplaceInstUsesWith(CI, New); 155 } 156 157 /// EvaluateInDifferentType - Given an expression that 158 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 159 /// insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with TD info. 165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 166 C = ConstantFoldConstantExpression(CE, TD, TLI); 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = 0; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 216 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 217 } 218 Res = NPN; 219 break; 220 } 221 default: 222 // TODO: Can handle more cases here. 223 llvm_unreachable("Unreachable!"); 224 } 225 226 Res->takeName(I); 227 return InsertNewInstWith(Res, *I); 228 } 229 230 231 /// This function is a wrapper around CastInst::isEliminableCastPair. It 232 /// simply extracts arguments and returns what that function returns. 233 static Instruction::CastOps 234 isEliminableCastPair( 235 const CastInst *CI, ///< The first cast instruction 236 unsigned opcode, ///< The opcode of the second cast instruction 237 Type *DstTy, ///< The target type for the second cast instruction 238 DataLayout *TD ///< The target data for pointer size 239 ) { 240 241 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 242 Type *MidTy = CI->getType(); // B from above 243 244 // Get the opcodes of the two Cast instructions 245 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 246 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 247 Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ? 248 TD->getIntPtrType(SrcTy) : 0; 249 Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ? 250 TD->getIntPtrType(MidTy) : 0; 251 Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ? 252 TD->getIntPtrType(DstTy) : 0; 253 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 254 DstTy, SrcIntPtrTy, MidIntPtrTy, 255 DstIntPtrTy); 256 257 // We don't want to form an inttoptr or ptrtoint that converts to an integer 258 // type that differs from the pointer size. 259 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 260 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 261 Res = 0; 262 263 return Instruction::CastOps(Res); 264 } 265 266 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 267 /// results in any code being generated and is interesting to optimize out. If 268 /// the cast can be eliminated by some other simple transformation, we prefer 269 /// to do the simplification first. 270 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 271 Type *Ty) { 272 // Noop casts and casts of constants should be eliminated trivially. 273 if (V->getType() == Ty || isa<Constant>(V)) return false; 274 275 // If this is another cast that can be eliminated, we prefer to have it 276 // eliminated. 277 if (const CastInst *CI = dyn_cast<CastInst>(V)) 278 if (isEliminableCastPair(CI, opc, Ty, TD)) 279 return false; 280 281 // If this is a vector sext from a compare, then we don't want to break the 282 // idiom where each element of the extended vector is either zero or all ones. 283 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 284 return false; 285 286 return true; 287 } 288 289 290 /// @brief Implement the transforms common to all CastInst visitors. 291 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 292 Value *Src = CI.getOperand(0); 293 294 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 295 // eliminate it now. 296 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 297 if (Instruction::CastOps opc = 298 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { 299 // The first cast (CSrc) is eliminable so we need to fix up or replace 300 // the second cast (CI). CSrc will then have a good chance of being dead. 301 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 302 } 303 } 304 305 // If we are casting a select then fold the cast into the select 306 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 307 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 308 return NV; 309 310 // If we are casting a PHI then fold the cast into the PHI 311 if (isa<PHINode>(Src)) { 312 // We don't do this if this would create a PHI node with an illegal type if 313 // it is currently legal. 314 if (!Src->getType()->isIntegerTy() || 315 !CI.getType()->isIntegerTy() || 316 ShouldChangeType(CI.getType(), Src->getType())) 317 if (Instruction *NV = FoldOpIntoPhi(CI)) 318 return NV; 319 } 320 321 return 0; 322 } 323 324 /// CanEvaluateTruncated - Return true if we can evaluate the specified 325 /// expression tree as type Ty instead of its larger type, and arrive with the 326 /// same value. This is used by code that tries to eliminate truncates. 327 /// 328 /// Ty will always be a type smaller than V. We should return true if trunc(V) 329 /// can be computed by computing V in the smaller type. If V is an instruction, 330 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 331 /// makes sense if x and y can be efficiently truncated. 332 /// 333 /// This function works on both vectors and scalars. 334 /// 335 static bool CanEvaluateTruncated(Value *V, Type *Ty) { 336 // We can always evaluate constants in another type. 337 if (isa<Constant>(V)) 338 return true; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) return false; 342 343 Type *OrigTy = V->getType(); 344 345 // If this is an extension from the dest type, we can eliminate it, even if it 346 // has multiple uses. 347 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 348 I->getOperand(0)->getType() == Ty) 349 return true; 350 351 // We can't extend or shrink something that has multiple uses: doing so would 352 // require duplicating the instruction in general, which isn't profitable. 353 if (!I->hasOneUse()) return false; 354 355 unsigned Opc = I->getOpcode(); 356 switch (Opc) { 357 case Instruction::Add: 358 case Instruction::Sub: 359 case Instruction::Mul: 360 case Instruction::And: 361 case Instruction::Or: 362 case Instruction::Xor: 363 // These operators can all arbitrarily be extended or truncated. 364 return CanEvaluateTruncated(I->getOperand(0), Ty) && 365 CanEvaluateTruncated(I->getOperand(1), Ty); 366 367 case Instruction::UDiv: 368 case Instruction::URem: { 369 // UDiv and URem can be truncated if all the truncated bits are zero. 370 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 371 uint32_t BitWidth = Ty->getScalarSizeInBits(); 372 if (BitWidth < OrigBitWidth) { 373 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 374 if (MaskedValueIsZero(I->getOperand(0), Mask) && 375 MaskedValueIsZero(I->getOperand(1), Mask)) { 376 return CanEvaluateTruncated(I->getOperand(0), Ty) && 377 CanEvaluateTruncated(I->getOperand(1), Ty); 378 } 379 } 380 break; 381 } 382 case Instruction::Shl: 383 // If we are truncating the result of this SHL, and if it's a shift of a 384 // constant amount, we can always perform a SHL in a smaller type. 385 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 386 uint32_t BitWidth = Ty->getScalarSizeInBits(); 387 if (CI->getLimitedValue(BitWidth) < BitWidth) 388 return CanEvaluateTruncated(I->getOperand(0), Ty); 389 } 390 break; 391 case Instruction::LShr: 392 // If this is a truncate of a logical shr, we can truncate it to a smaller 393 // lshr iff we know that the bits we would otherwise be shifting in are 394 // already zeros. 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 396 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 397 uint32_t BitWidth = Ty->getScalarSizeInBits(); 398 if (MaskedValueIsZero(I->getOperand(0), 399 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 400 CI->getLimitedValue(BitWidth) < BitWidth) { 401 return CanEvaluateTruncated(I->getOperand(0), Ty); 402 } 403 } 404 break; 405 case Instruction::Trunc: 406 // trunc(trunc(x)) -> trunc(x) 407 return true; 408 case Instruction::ZExt: 409 case Instruction::SExt: 410 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 411 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 412 return true; 413 case Instruction::Select: { 414 SelectInst *SI = cast<SelectInst>(I); 415 return CanEvaluateTruncated(SI->getTrueValue(), Ty) && 416 CanEvaluateTruncated(SI->getFalseValue(), Ty); 417 } 418 case Instruction::PHI: { 419 // We can change a phi if we can change all operands. Note that we never 420 // get into trouble with cyclic PHIs here because we only consider 421 // instructions with a single use. 422 PHINode *PN = cast<PHINode>(I); 423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 424 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) 425 return false; 426 return true; 427 } 428 default: 429 // TODO: Can handle more cases here. 430 break; 431 } 432 433 return false; 434 } 435 436 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 437 if (Instruction *Result = commonCastTransforms(CI)) 438 return Result; 439 440 // See if we can simplify any instructions used by the input whose sole 441 // purpose is to compute bits we don't care about. 442 if (SimplifyDemandedInstructionBits(CI)) 443 return &CI; 444 445 Value *Src = CI.getOperand(0); 446 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 447 448 // Attempt to truncate the entire input expression tree to the destination 449 // type. Only do this if the dest type is a simple type, don't convert the 450 // expression tree to something weird like i93 unless the source is also 451 // strange. 452 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 453 CanEvaluateTruncated(Src, DestTy)) { 454 455 // If this cast is a truncate, evaluting in a different type always 456 // eliminates the cast, so it is always a win. 457 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 458 " to avoid cast: " << CI << '\n'); 459 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 460 assert(Res->getType() == DestTy); 461 return ReplaceInstUsesWith(CI, Res); 462 } 463 464 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 465 if (DestTy->getScalarSizeInBits() == 1) { 466 Constant *One = ConstantInt::get(Src->getType(), 1); 467 Src = Builder->CreateAnd(Src, One); 468 Value *Zero = Constant::getNullValue(Src->getType()); 469 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 470 } 471 472 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 473 Value *A = 0; ConstantInt *Cst = 0; 474 if (Src->hasOneUse() && 475 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 476 // We have three types to worry about here, the type of A, the source of 477 // the truncate (MidSize), and the destination of the truncate. We know that 478 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 479 // between ASize and ResultSize. 480 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 481 482 // If the shift amount is larger than the size of A, then the result is 483 // known to be zero because all the input bits got shifted out. 484 if (Cst->getZExtValue() >= ASize) 485 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 486 487 // Since we're doing an lshr and a zero extend, and know that the shift 488 // amount is smaller than ASize, it is always safe to do the shift in A's 489 // type, then zero extend or truncate to the result. 490 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 491 Shift->takeName(Src); 492 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 493 } 494 495 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 496 // type isn't non-native. 497 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 498 ShouldChangeType(Src->getType(), CI.getType()) && 499 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 500 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 501 return BinaryOperator::CreateAnd(NewTrunc, 502 ConstantExpr::getTrunc(Cst, CI.getType())); 503 } 504 505 return 0; 506 } 507 508 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 509 /// in order to eliminate the icmp. 510 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 511 bool DoXform) { 512 // If we are just checking for a icmp eq of a single bit and zext'ing it 513 // to an integer, then shift the bit to the appropriate place and then 514 // cast to integer to avoid the comparison. 515 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 516 const APInt &Op1CV = Op1C->getValue(); 517 518 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 519 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 520 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 521 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 522 if (!DoXform) return ICI; 523 524 Value *In = ICI->getOperand(0); 525 Value *Sh = ConstantInt::get(In->getType(), 526 In->getType()->getScalarSizeInBits()-1); 527 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 528 if (In->getType() != CI.getType()) 529 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 530 531 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 532 Constant *One = ConstantInt::get(In->getType(), 1); 533 In = Builder->CreateXor(In, One, In->getName()+".not"); 534 } 535 536 return ReplaceInstUsesWith(CI, In); 537 } 538 539 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 540 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 541 // zext (X == 1) to i32 --> X iff X has only the low bit set. 542 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 543 // zext (X != 0) to i32 --> X iff X has only the low bit set. 544 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 545 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 546 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 547 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 548 // This only works for EQ and NE 549 ICI->isEquality()) { 550 // If Op1C some other power of two, convert: 551 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 552 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 553 ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne); 554 555 APInt KnownZeroMask(~KnownZero); 556 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 557 if (!DoXform) return ICI; 558 559 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 560 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 561 // (X&4) == 2 --> false 562 // (X&4) != 2 --> true 563 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 564 isNE); 565 Res = ConstantExpr::getZExt(Res, CI.getType()); 566 return ReplaceInstUsesWith(CI, Res); 567 } 568 569 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 570 Value *In = ICI->getOperand(0); 571 if (ShiftAmt) { 572 // Perform a logical shr by shiftamt. 573 // Insert the shift to put the result in the low bit. 574 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 575 In->getName()+".lobit"); 576 } 577 578 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 579 Constant *One = ConstantInt::get(In->getType(), 1); 580 In = Builder->CreateXor(In, One); 581 } 582 583 if (CI.getType() == In->getType()) 584 return ReplaceInstUsesWith(CI, In); 585 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 586 } 587 } 588 } 589 590 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 591 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 592 // may lead to additional simplifications. 593 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 594 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 595 uint32_t BitWidth = ITy->getBitWidth(); 596 Value *LHS = ICI->getOperand(0); 597 Value *RHS = ICI->getOperand(1); 598 599 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 600 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 601 ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS); 602 ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS); 603 604 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 605 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 606 APInt UnknownBit = ~KnownBits; 607 if (UnknownBit.countPopulation() == 1) { 608 if (!DoXform) return ICI; 609 610 Value *Result = Builder->CreateXor(LHS, RHS); 611 612 // Mask off any bits that are set and won't be shifted away. 613 if (KnownOneLHS.uge(UnknownBit)) 614 Result = Builder->CreateAnd(Result, 615 ConstantInt::get(ITy, UnknownBit)); 616 617 // Shift the bit we're testing down to the lsb. 618 Result = Builder->CreateLShr( 619 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 620 621 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 622 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 623 Result->takeName(ICI); 624 return ReplaceInstUsesWith(CI, Result); 625 } 626 } 627 } 628 } 629 630 return 0; 631 } 632 633 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 634 /// specified wider type and produce the same low bits. If not, return false. 635 /// 636 /// If this function returns true, it can also return a non-zero number of bits 637 /// (in BitsToClear) which indicates that the value it computes is correct for 638 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 639 /// out. For example, to promote something like: 640 /// 641 /// %B = trunc i64 %A to i32 642 /// %C = lshr i32 %B, 8 643 /// %E = zext i32 %C to i64 644 /// 645 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 646 /// set to 8 to indicate that the promoted value needs to have bits 24-31 647 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 648 /// clear the top bits anyway, doing this has no extra cost. 649 /// 650 /// This function works on both vectors and scalars. 651 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { 652 BitsToClear = 0; 653 if (isa<Constant>(V)) 654 return true; 655 656 Instruction *I = dyn_cast<Instruction>(V); 657 if (!I) return false; 658 659 // If the input is a truncate from the destination type, we can trivially 660 // eliminate it. 661 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 662 return true; 663 664 // We can't extend or shrink something that has multiple uses: doing so would 665 // require duplicating the instruction in general, which isn't profitable. 666 if (!I->hasOneUse()) return false; 667 668 unsigned Opc = I->getOpcode(), Tmp; 669 switch (Opc) { 670 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 671 case Instruction::SExt: // zext(sext(x)) -> sext(x). 672 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 673 return true; 674 case Instruction::And: 675 case Instruction::Or: 676 case Instruction::Xor: 677 case Instruction::Add: 678 case Instruction::Sub: 679 case Instruction::Mul: 680 case Instruction::Shl: 681 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || 682 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) 683 return false; 684 // These can all be promoted if neither operand has 'bits to clear'. 685 if (BitsToClear == 0 && Tmp == 0) 686 return true; 687 688 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 689 // other side, BitsToClear is ok. 690 if (Tmp == 0 && 691 (Opc == Instruction::And || Opc == Instruction::Or || 692 Opc == Instruction::Xor)) { 693 // We use MaskedValueIsZero here for generality, but the case we care 694 // about the most is constant RHS. 695 unsigned VSize = V->getType()->getScalarSizeInBits(); 696 if (MaskedValueIsZero(I->getOperand(1), 697 APInt::getHighBitsSet(VSize, BitsToClear))) 698 return true; 699 } 700 701 // Otherwise, we don't know how to analyze this BitsToClear case yet. 702 return false; 703 704 case Instruction::LShr: 705 // We can promote lshr(x, cst) if we can promote x. This requires the 706 // ultimate 'and' to clear out the high zero bits we're clearing out though. 707 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 708 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 709 return false; 710 BitsToClear += Amt->getZExtValue(); 711 if (BitsToClear > V->getType()->getScalarSizeInBits()) 712 BitsToClear = V->getType()->getScalarSizeInBits(); 713 return true; 714 } 715 // Cannot promote variable LSHR. 716 return false; 717 case Instruction::Select: 718 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || 719 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || 720 // TODO: If important, we could handle the case when the BitsToClear are 721 // known zero in the disagreeing side. 722 Tmp != BitsToClear) 723 return false; 724 return true; 725 726 case Instruction::PHI: { 727 // We can change a phi if we can change all operands. Note that we never 728 // get into trouble with cyclic PHIs here because we only consider 729 // instructions with a single use. 730 PHINode *PN = cast<PHINode>(I); 731 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) 732 return false; 733 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 734 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || 735 // TODO: If important, we could handle the case when the BitsToClear 736 // are known zero in the disagreeing input. 737 Tmp != BitsToClear) 738 return false; 739 return true; 740 } 741 default: 742 // TODO: Can handle more cases here. 743 return false; 744 } 745 } 746 747 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 748 // If this zero extend is only used by a truncate, let the truncate be 749 // eliminated before we try to optimize this zext. 750 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 751 return 0; 752 753 // If one of the common conversion will work, do it. 754 if (Instruction *Result = commonCastTransforms(CI)) 755 return Result; 756 757 // See if we can simplify any instructions used by the input whose sole 758 // purpose is to compute bits we don't care about. 759 if (SimplifyDemandedInstructionBits(CI)) 760 return &CI; 761 762 Value *Src = CI.getOperand(0); 763 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 764 765 // Attempt to extend the entire input expression tree to the destination 766 // type. Only do this if the dest type is a simple type, don't convert the 767 // expression tree to something weird like i93 unless the source is also 768 // strange. 769 unsigned BitsToClear; 770 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 771 CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 772 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 773 "Unreasonable BitsToClear"); 774 775 // Okay, we can transform this! Insert the new expression now. 776 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 777 " to avoid zero extend: " << CI); 778 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 779 assert(Res->getType() == DestTy); 780 781 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 782 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 783 784 // If the high bits are already filled with zeros, just replace this 785 // cast with the result. 786 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, 787 DestBitSize-SrcBitsKept))) 788 return ReplaceInstUsesWith(CI, Res); 789 790 // We need to emit an AND to clear the high bits. 791 Constant *C = ConstantInt::get(Res->getType(), 792 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 793 return BinaryOperator::CreateAnd(Res, C); 794 } 795 796 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 797 // types and if the sizes are just right we can convert this into a logical 798 // 'and' which will be much cheaper than the pair of casts. 799 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 800 // TODO: Subsume this into EvaluateInDifferentType. 801 802 // Get the sizes of the types involved. We know that the intermediate type 803 // will be smaller than A or C, but don't know the relation between A and C. 804 Value *A = CSrc->getOperand(0); 805 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 806 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 807 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 808 // If we're actually extending zero bits, then if 809 // SrcSize < DstSize: zext(a & mask) 810 // SrcSize == DstSize: a & mask 811 // SrcSize > DstSize: trunc(a) & mask 812 if (SrcSize < DstSize) { 813 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 814 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 815 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 816 return new ZExtInst(And, CI.getType()); 817 } 818 819 if (SrcSize == DstSize) { 820 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 821 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 822 AndValue)); 823 } 824 if (SrcSize > DstSize) { 825 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 826 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 827 return BinaryOperator::CreateAnd(Trunc, 828 ConstantInt::get(Trunc->getType(), 829 AndValue)); 830 } 831 } 832 833 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 834 return transformZExtICmp(ICI, CI); 835 836 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 837 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 838 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 839 // of the (zext icmp) will be transformed. 840 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 841 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 842 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 843 (transformZExtICmp(LHS, CI, false) || 844 transformZExtICmp(RHS, CI, false))) { 845 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 846 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 847 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 848 } 849 } 850 851 // zext(trunc(t) & C) -> (t & zext(C)). 852 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) 853 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 854 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { 855 Value *TI0 = TI->getOperand(0); 856 if (TI0->getType() == CI.getType()) 857 return 858 BinaryOperator::CreateAnd(TI0, 859 ConstantExpr::getZExt(C, CI.getType())); 860 } 861 862 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). 863 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) 864 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 865 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) 866 if (And->getOpcode() == Instruction::And && And->hasOneUse() && 867 And->getOperand(1) == C) 868 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { 869 Value *TI0 = TI->getOperand(0); 870 if (TI0->getType() == CI.getType()) { 871 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 872 Value *NewAnd = Builder->CreateAnd(TI0, ZC); 873 return BinaryOperator::CreateXor(NewAnd, ZC); 874 } 875 } 876 877 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 878 Value *X; 879 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) && 880 match(SrcI, m_Not(m_Value(X))) && 881 (!X->hasOneUse() || !isa<CmpInst>(X))) { 882 Value *New = Builder->CreateZExt(X, CI.getType()); 883 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 884 } 885 886 return 0; 887 } 888 889 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 890 /// in order to eliminate the icmp. 891 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 892 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 893 ICmpInst::Predicate Pred = ICI->getPredicate(); 894 895 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 896 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 897 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 898 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) || 899 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 900 901 Value *Sh = ConstantInt::get(Op0->getType(), 902 Op0->getType()->getScalarSizeInBits()-1); 903 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 904 if (In->getType() != CI.getType()) 905 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 906 907 if (Pred == ICmpInst::ICMP_SGT) 908 In = Builder->CreateNot(In, In->getName()+".not"); 909 return ReplaceInstUsesWith(CI, In); 910 } 911 912 // If we know that only one bit of the LHS of the icmp can be set and we 913 // have an equality comparison with zero or a power of 2, we can transform 914 // the icmp and sext into bitwise/integer operations. 915 if (ICI->hasOneUse() && 916 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 917 unsigned BitWidth = Op1C->getType()->getBitWidth(); 918 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 919 ComputeMaskedBits(Op0, KnownZero, KnownOne); 920 921 APInt KnownZeroMask(~KnownZero); 922 if (KnownZeroMask.isPowerOf2()) { 923 Value *In = ICI->getOperand(0); 924 925 // If the icmp tests for a known zero bit we can constant fold it. 926 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 927 Value *V = Pred == ICmpInst::ICMP_NE ? 928 ConstantInt::getAllOnesValue(CI.getType()) : 929 ConstantInt::getNullValue(CI.getType()); 930 return ReplaceInstUsesWith(CI, V); 931 } 932 933 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 934 // sext ((x & 2^n) == 0) -> (x >> n) - 1 935 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 936 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 937 // Perform a right shift to place the desired bit in the LSB. 938 if (ShiftAmt) 939 In = Builder->CreateLShr(In, 940 ConstantInt::get(In->getType(), ShiftAmt)); 941 942 // At this point "In" is either 1 or 0. Subtract 1 to turn 943 // {1, 0} -> {0, -1}. 944 In = Builder->CreateAdd(In, 945 ConstantInt::getAllOnesValue(In->getType()), 946 "sext"); 947 } else { 948 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 949 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 950 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 951 // Perform a left shift to place the desired bit in the MSB. 952 if (ShiftAmt) 953 In = Builder->CreateShl(In, 954 ConstantInt::get(In->getType(), ShiftAmt)); 955 956 // Distribute the bit over the whole bit width. 957 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 958 BitWidth - 1), "sext"); 959 } 960 961 if (CI.getType() == In->getType()) 962 return ReplaceInstUsesWith(CI, In); 963 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 964 } 965 } 966 } 967 968 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed. 969 if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { 970 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) && 971 Op0->getType() == CI.getType()) { 972 Type *EltTy = VTy->getElementType(); 973 974 // splat the shift constant to a constant vector. 975 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1); 976 Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit"); 977 return ReplaceInstUsesWith(CI, In); 978 } 979 } 980 981 return 0; 982 } 983 984 /// CanEvaluateSExtd - Return true if we can take the specified value 985 /// and return it as type Ty without inserting any new casts and without 986 /// changing the value of the common low bits. This is used by code that tries 987 /// to promote integer operations to a wider types will allow us to eliminate 988 /// the extension. 989 /// 990 /// This function works on both vectors and scalars. 991 /// 992 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 993 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 994 "Can't sign extend type to a smaller type"); 995 // If this is a constant, it can be trivially promoted. 996 if (isa<Constant>(V)) 997 return true; 998 999 Instruction *I = dyn_cast<Instruction>(V); 1000 if (!I) return false; 1001 1002 // If this is a truncate from the dest type, we can trivially eliminate it. 1003 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1004 return true; 1005 1006 // We can't extend or shrink something that has multiple uses: doing so would 1007 // require duplicating the instruction in general, which isn't profitable. 1008 if (!I->hasOneUse()) return false; 1009 1010 switch (I->getOpcode()) { 1011 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1012 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1013 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1014 return true; 1015 case Instruction::And: 1016 case Instruction::Or: 1017 case Instruction::Xor: 1018 case Instruction::Add: 1019 case Instruction::Sub: 1020 case Instruction::Mul: 1021 // These operators can all arbitrarily be extended if their inputs can. 1022 return CanEvaluateSExtd(I->getOperand(0), Ty) && 1023 CanEvaluateSExtd(I->getOperand(1), Ty); 1024 1025 //case Instruction::Shl: TODO 1026 //case Instruction::LShr: TODO 1027 1028 case Instruction::Select: 1029 return CanEvaluateSExtd(I->getOperand(1), Ty) && 1030 CanEvaluateSExtd(I->getOperand(2), Ty); 1031 1032 case Instruction::PHI: { 1033 // We can change a phi if we can change all operands. Note that we never 1034 // get into trouble with cyclic PHIs here because we only consider 1035 // instructions with a single use. 1036 PHINode *PN = cast<PHINode>(I); 1037 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1038 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; 1039 return true; 1040 } 1041 default: 1042 // TODO: Can handle more cases here. 1043 break; 1044 } 1045 1046 return false; 1047 } 1048 1049 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1050 // If this sign extend is only used by a truncate, let the truncate be 1051 // eliminated before we try to optimize this sext. 1052 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 1053 return 0; 1054 1055 if (Instruction *I = commonCastTransforms(CI)) 1056 return I; 1057 1058 // See if we can simplify any instructions used by the input whose sole 1059 // purpose is to compute bits we don't care about. 1060 if (SimplifyDemandedInstructionBits(CI)) 1061 return &CI; 1062 1063 Value *Src = CI.getOperand(0); 1064 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1065 1066 // Attempt to extend the entire input expression tree to the destination 1067 // type. Only do this if the dest type is a simple type, don't convert the 1068 // expression tree to something weird like i93 unless the source is also 1069 // strange. 1070 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1071 CanEvaluateSExtd(Src, DestTy)) { 1072 // Okay, we can transform this! Insert the new expression now. 1073 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1074 " to avoid sign extend: " << CI); 1075 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1076 assert(Res->getType() == DestTy); 1077 1078 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1079 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1080 1081 // If the high bits are already filled with sign bit, just replace this 1082 // cast with the result. 1083 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) 1084 return ReplaceInstUsesWith(CI, Res); 1085 1086 // We need to emit a shl + ashr to do the sign extend. 1087 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1088 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1089 ShAmt); 1090 } 1091 1092 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1093 // into shifts. 1094 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1095 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1096 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1097 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1098 1099 // We need to emit a shl + ashr to do the sign extend. 1100 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1101 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1102 return BinaryOperator::CreateAShr(Res, ShAmt); 1103 } 1104 1105 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1106 return transformSExtICmp(ICI, CI); 1107 1108 // If the input is a shl/ashr pair of a same constant, then this is a sign 1109 // extension from a smaller value. If we could trust arbitrary bitwidth 1110 // integers, we could turn this into a truncate to the smaller bit and then 1111 // use a sext for the whole extension. Since we don't, look deeper and check 1112 // for a truncate. If the source and dest are the same type, eliminate the 1113 // trunc and extend and just do shifts. For example, turn: 1114 // %a = trunc i32 %i to i8 1115 // %b = shl i8 %a, 6 1116 // %c = ashr i8 %b, 6 1117 // %d = sext i8 %c to i32 1118 // into: 1119 // %a = shl i32 %i, 30 1120 // %d = ashr i32 %a, 30 1121 Value *A = 0; 1122 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1123 ConstantInt *BA = 0, *CA = 0; 1124 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1125 m_ConstantInt(CA))) && 1126 BA == CA && A->getType() == CI.getType()) { 1127 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1128 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1129 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1130 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1131 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1132 return BinaryOperator::CreateAShr(A, ShAmtV); 1133 } 1134 1135 return 0; 1136 } 1137 1138 1139 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 1140 /// in the specified FP type without changing its value. 1141 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1142 bool losesInfo; 1143 APFloat F = CFP->getValueAPF(); 1144 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1145 if (!losesInfo) 1146 return ConstantFP::get(CFP->getContext(), F); 1147 return 0; 1148 } 1149 1150 /// LookThroughFPExtensions - If this is an fp extension instruction, look 1151 /// through it until we get the source value. 1152 static Value *LookThroughFPExtensions(Value *V) { 1153 if (Instruction *I = dyn_cast<Instruction>(V)) 1154 if (I->getOpcode() == Instruction::FPExt) 1155 return LookThroughFPExtensions(I->getOperand(0)); 1156 1157 // If this value is a constant, return the constant in the smallest FP type 1158 // that can accurately represent it. This allows us to turn 1159 // (float)((double)X+2.0) into x+2.0f. 1160 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1161 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1162 return V; // No constant folding of this. 1163 // See if the value can be truncated to half and then reextended. 1164 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf)) 1165 return V; 1166 // See if the value can be truncated to float and then reextended. 1167 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 1168 return V; 1169 if (CFP->getType()->isDoubleTy()) 1170 return V; // Won't shrink. 1171 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 1172 return V; 1173 // Don't try to shrink to various long double types. 1174 } 1175 1176 return V; 1177 } 1178 1179 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1180 if (Instruction *I = commonCastTransforms(CI)) 1181 return I; 1182 1183 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are 1184 // smaller than the destination type, we can eliminate the truncate by doing 1185 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well 1186 // as many builtins (sqrt, etc). 1187 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1188 if (OpI && OpI->hasOneUse()) { 1189 switch (OpI->getOpcode()) { 1190 default: break; 1191 case Instruction::FAdd: 1192 case Instruction::FSub: 1193 case Instruction::FMul: 1194 case Instruction::FDiv: 1195 case Instruction::FRem: 1196 Type *SrcTy = OpI->getType(); 1197 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); 1198 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); 1199 if (LHSTrunc->getType() != SrcTy && 1200 RHSTrunc->getType() != SrcTy) { 1201 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1202 // If the source types were both smaller than the destination type of 1203 // the cast, do this xform. 1204 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && 1205 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { 1206 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); 1207 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); 1208 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); 1209 } 1210 } 1211 break; 1212 } 1213 1214 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1215 if (BinaryOperator::isFNeg(OpI)) { 1216 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1217 CI.getType()); 1218 return BinaryOperator::CreateFNeg(InnerTrunc); 1219 } 1220 } 1221 1222 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1223 if (II) { 1224 switch (II->getIntrinsicID()) { 1225 default: break; 1226 case Intrinsic::fabs: { 1227 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1228 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1229 CI.getType()); 1230 Type *IntrinsicType[] = { CI.getType() }; 1231 Function *Overload = 1232 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(), 1233 II->getIntrinsicID(), IntrinsicType); 1234 1235 Value *Args[] = { InnerTrunc }; 1236 return CallInst::Create(Overload, Args, II->getName()); 1237 } 1238 } 1239 } 1240 1241 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) 1242 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); 1243 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && 1244 Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) && 1245 Call->getNumArgOperands() == 1 && 1246 Call->hasOneUse()) { 1247 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); 1248 if (Arg && Arg->getOpcode() == Instruction::FPExt && 1249 CI.getType()->isFloatTy() && 1250 Call->getType()->isDoubleTy() && 1251 Arg->getType()->isDoubleTy() && 1252 Arg->getOperand(0)->getType()->isFloatTy()) { 1253 Function *Callee = Call->getCalledFunction(); 1254 Module *M = CI.getParent()->getParent()->getParent(); 1255 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", 1256 Callee->getAttributes(), 1257 Builder->getFloatTy(), 1258 Builder->getFloatTy(), 1259 NULL); 1260 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), 1261 "sqrtfcall"); 1262 ret->setAttributes(Callee->getAttributes()); 1263 1264 1265 // Remove the old Call. With -fmath-errno, it won't get marked readnone. 1266 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); 1267 EraseInstFromFunction(*Call); 1268 return ret; 1269 } 1270 } 1271 1272 return 0; 1273 } 1274 1275 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1276 return commonCastTransforms(CI); 1277 } 1278 1279 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1280 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1281 if (OpI == 0) 1282 return commonCastTransforms(FI); 1283 1284 // fptoui(uitofp(X)) --> X 1285 // fptoui(sitofp(X)) --> X 1286 // This is safe if the intermediate type has enough bits in its mantissa to 1287 // accurately represent all values of X. For example, do not do this with 1288 // i64->float->i64. This is also safe for sitofp case, because any negative 1289 // 'X' value would cause an undefined result for the fptoui. 1290 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1291 OpI->getOperand(0)->getType() == FI.getType() && 1292 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ 1293 OpI->getType()->getFPMantissaWidth()) 1294 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1295 1296 return commonCastTransforms(FI); 1297 } 1298 1299 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1300 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1301 if (OpI == 0) 1302 return commonCastTransforms(FI); 1303 1304 // fptosi(sitofp(X)) --> X 1305 // fptosi(uitofp(X)) --> X 1306 // This is safe if the intermediate type has enough bits in its mantissa to 1307 // accurately represent all values of X. For example, do not do this with 1308 // i64->float->i64. This is also safe for sitofp case, because any negative 1309 // 'X' value would cause an undefined result for the fptoui. 1310 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1311 OpI->getOperand(0)->getType() == FI.getType() && 1312 (int)FI.getType()->getScalarSizeInBits() <= 1313 OpI->getType()->getFPMantissaWidth()) 1314 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1315 1316 return commonCastTransforms(FI); 1317 } 1318 1319 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1320 return commonCastTransforms(CI); 1321 } 1322 1323 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1324 return commonCastTransforms(CI); 1325 } 1326 1327 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1328 // If the source integer type is not the intptr_t type for this target, do a 1329 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1330 // cast to be exposed to other transforms. 1331 if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() != 1332 TD->getPointerSizeInBits()) { 1333 Type *Ty = TD->getIntPtrType(CI.getContext()); 1334 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1335 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1336 1337 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1338 return new IntToPtrInst(P, CI.getType()); 1339 } 1340 1341 if (Instruction *I = commonCastTransforms(CI)) 1342 return I; 1343 1344 return 0; 1345 } 1346 1347 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1348 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1349 Value *Src = CI.getOperand(0); 1350 1351 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1352 // If casting the result of a getelementptr instruction with no offset, turn 1353 // this into a cast of the original pointer! 1354 if (GEP->hasAllZeroIndices()) { 1355 // Changing the cast operand is usually not a good idea but it is safe 1356 // here because the pointer operand is being replaced with another 1357 // pointer operand so the opcode doesn't need to change. 1358 Worklist.Add(GEP); 1359 CI.setOperand(0, GEP->getOperand(0)); 1360 return &CI; 1361 } 1362 1363 // If the GEP has a single use, and the base pointer is a bitcast, and the 1364 // GEP computes a constant offset, see if we can convert these three 1365 // instructions into fewer. This typically happens with unions and other 1366 // non-type-safe code. 1367 APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0); 1368 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) && 1369 GEP->accumulateConstantOffset(*TD, Offset)) { 1370 // Get the base pointer input of the bitcast, and the type it points to. 1371 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); 1372 Type *GEPIdxTy = 1373 cast<PointerType>(OrigBase->getType())->getElementType(); 1374 SmallVector<Value*, 8> NewIndices; 1375 if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) { 1376 // If we were able to index down into an element, create the GEP 1377 // and bitcast the result. This eliminates one bitcast, potentially 1378 // two. 1379 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? 1380 Builder->CreateInBoundsGEP(OrigBase, NewIndices) : 1381 Builder->CreateGEP(OrigBase, NewIndices); 1382 NGEP->takeName(GEP); 1383 1384 if (isa<BitCastInst>(CI)) 1385 return new BitCastInst(NGEP, CI.getType()); 1386 assert(isa<PtrToIntInst>(CI)); 1387 return new PtrToIntInst(NGEP, CI.getType()); 1388 } 1389 } 1390 } 1391 1392 return commonCastTransforms(CI); 1393 } 1394 1395 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1396 // If the destination integer type is not the intptr_t type for this target, 1397 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1398 // to be exposed to other transforms. 1399 if (TD && CI.getType()->getScalarSizeInBits() != TD->getPointerSizeInBits()) { 1400 Type *Ty = TD->getIntPtrType(CI.getContext()); 1401 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1402 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1403 1404 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), Ty); 1405 return CastInst::CreateIntegerCast(P, CI.getType(), /*isSigned=*/false); 1406 } 1407 1408 return commonPointerCastTransforms(CI); 1409 } 1410 1411 /// OptimizeVectorResize - This input value (which is known to have vector type) 1412 /// is being zero extended or truncated to the specified vector type. Try to 1413 /// replace it with a shuffle (and vector/vector bitcast) if possible. 1414 /// 1415 /// The source and destination vector types may have different element types. 1416 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 1417 InstCombiner &IC) { 1418 // We can only do this optimization if the output is a multiple of the input 1419 // element size, or the input is a multiple of the output element size. 1420 // Convert the input type to have the same element type as the output. 1421 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1422 1423 if (SrcTy->getElementType() != DestTy->getElementType()) { 1424 // The input types don't need to be identical, but for now they must be the 1425 // same size. There is no specific reason we couldn't handle things like 1426 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1427 // there yet. 1428 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1429 DestTy->getElementType()->getPrimitiveSizeInBits()) 1430 return 0; 1431 1432 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1433 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1434 } 1435 1436 // Now that the element types match, get the shuffle mask and RHS of the 1437 // shuffle to use, which depends on whether we're increasing or decreasing the 1438 // size of the input. 1439 SmallVector<uint32_t, 16> ShuffleMask; 1440 Value *V2; 1441 1442 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1443 // If we're shrinking the number of elements, just shuffle in the low 1444 // elements from the input and use undef as the second shuffle input. 1445 V2 = UndefValue::get(SrcTy); 1446 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1447 ShuffleMask.push_back(i); 1448 1449 } else { 1450 // If we're increasing the number of elements, shuffle in all of the 1451 // elements from InVal and fill the rest of the result elements with zeros 1452 // from a constant zero. 1453 V2 = Constant::getNullValue(SrcTy); 1454 unsigned SrcElts = SrcTy->getNumElements(); 1455 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1456 ShuffleMask.push_back(i); 1457 1458 // The excess elements reference the first element of the zero input. 1459 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1460 ShuffleMask.push_back(SrcElts); 1461 } 1462 1463 return new ShuffleVectorInst(InVal, V2, 1464 ConstantDataVector::get(V2->getContext(), 1465 ShuffleMask)); 1466 } 1467 1468 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1469 return Value % Ty->getPrimitiveSizeInBits() == 0; 1470 } 1471 1472 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1473 return Value / Ty->getPrimitiveSizeInBits(); 1474 } 1475 1476 /// CollectInsertionElements - V is a value which is inserted into a vector of 1477 /// VecEltTy. Look through the value to see if we can decompose it into 1478 /// insertions into the vector. See the example in the comment for 1479 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1480 /// The type of V is always a non-zero multiple of VecEltTy's size. 1481 /// 1482 /// This returns false if the pattern can't be matched or true if it can, 1483 /// filling in Elements with the elements found here. 1484 static bool CollectInsertionElements(Value *V, unsigned ElementIndex, 1485 SmallVectorImpl<Value*> &Elements, 1486 Type *VecEltTy) { 1487 // Undef values never contribute useful bits to the result. 1488 if (isa<UndefValue>(V)) return true; 1489 1490 // If we got down to a value of the right type, we win, try inserting into the 1491 // right element. 1492 if (V->getType() == VecEltTy) { 1493 // Inserting null doesn't actually insert any elements. 1494 if (Constant *C = dyn_cast<Constant>(V)) 1495 if (C->isNullValue()) 1496 return true; 1497 1498 // Fail if multiple elements are inserted into this slot. 1499 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) 1500 return false; 1501 1502 Elements[ElementIndex] = V; 1503 return true; 1504 } 1505 1506 if (Constant *C = dyn_cast<Constant>(V)) { 1507 // Figure out the # elements this provides, and bitcast it or slice it up 1508 // as required. 1509 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1510 VecEltTy); 1511 // If the constant is the size of a vector element, we just need to bitcast 1512 // it to the right type so it gets properly inserted. 1513 if (NumElts == 1) 1514 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1515 ElementIndex, Elements, VecEltTy); 1516 1517 // Okay, this is a constant that covers multiple elements. Slice it up into 1518 // pieces and insert each element-sized piece into the vector. 1519 if (!isa<IntegerType>(C->getType())) 1520 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1521 C->getType()->getPrimitiveSizeInBits())); 1522 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1523 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1524 1525 for (unsigned i = 0; i != NumElts; ++i) { 1526 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1527 i*ElementSize)); 1528 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1529 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy)) 1530 return false; 1531 } 1532 return true; 1533 } 1534 1535 if (!V->hasOneUse()) return false; 1536 1537 Instruction *I = dyn_cast<Instruction>(V); 1538 if (I == 0) return false; 1539 switch (I->getOpcode()) { 1540 default: return false; // Unhandled case. 1541 case Instruction::BitCast: 1542 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1543 Elements, VecEltTy); 1544 case Instruction::ZExt: 1545 if (!isMultipleOfTypeSize( 1546 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1547 VecEltTy)) 1548 return false; 1549 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1550 Elements, VecEltTy); 1551 case Instruction::Or: 1552 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1553 Elements, VecEltTy) && 1554 CollectInsertionElements(I->getOperand(1), ElementIndex, 1555 Elements, VecEltTy); 1556 case Instruction::Shl: { 1557 // Must be shifting by a constant that is a multiple of the element size. 1558 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1559 if (CI == 0) return false; 1560 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; 1561 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); 1562 1563 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, 1564 Elements, VecEltTy); 1565 } 1566 1567 } 1568 } 1569 1570 1571 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 1572 /// may be doing shifts and ors to assemble the elements of the vector manually. 1573 /// Try to rip the code out and replace it with insertelements. This is to 1574 /// optimize code like this: 1575 /// 1576 /// %tmp37 = bitcast float %inc to i32 1577 /// %tmp38 = zext i32 %tmp37 to i64 1578 /// %tmp31 = bitcast float %inc5 to i32 1579 /// %tmp32 = zext i32 %tmp31 to i64 1580 /// %tmp33 = shl i64 %tmp32, 32 1581 /// %ins35 = or i64 %tmp33, %tmp38 1582 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1583 /// 1584 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1585 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 1586 InstCombiner &IC) { 1587 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1588 Value *IntInput = CI.getOperand(0); 1589 1590 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1591 if (!CollectInsertionElements(IntInput, 0, Elements, 1592 DestVecTy->getElementType())) 1593 return 0; 1594 1595 // If we succeeded, we know that all of the element are specified by Elements 1596 // or are zero if Elements has a null entry. Recast this as a set of 1597 // insertions. 1598 Value *Result = Constant::getNullValue(CI.getType()); 1599 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1600 if (Elements[i] == 0) continue; // Unset element. 1601 1602 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1603 IC.Builder->getInt32(i)); 1604 } 1605 1606 return Result; 1607 } 1608 1609 1610 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 1611 /// bitcast. The various long double bitcasts can't get in here. 1612 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ 1613 Value *Src = CI.getOperand(0); 1614 Type *DestTy = CI.getType(); 1615 1616 // If this is a bitcast from int to float, check to see if the int is an 1617 // extraction from a vector. 1618 Value *VecInput = 0; 1619 // bitcast(trunc(bitcast(somevector))) 1620 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1621 isa<VectorType>(VecInput->getType())) { 1622 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1623 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1624 1625 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 1626 // If the element type of the vector doesn't match the result type, 1627 // bitcast it to be a vector type we can extract from. 1628 if (VecTy->getElementType() != DestTy) { 1629 VecTy = VectorType::get(DestTy, 1630 VecTy->getPrimitiveSizeInBits() / DestWidth); 1631 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1632 } 1633 1634 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0)); 1635 } 1636 } 1637 1638 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1639 ConstantInt *ShAmt = 0; 1640 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1641 m_ConstantInt(ShAmt)))) && 1642 isa<VectorType>(VecInput->getType())) { 1643 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1644 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1645 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 1646 ShAmt->getZExtValue() % DestWidth == 0) { 1647 // If the element type of the vector doesn't match the result type, 1648 // bitcast it to be a vector type we can extract from. 1649 if (VecTy->getElementType() != DestTy) { 1650 VecTy = VectorType::get(DestTy, 1651 VecTy->getPrimitiveSizeInBits() / DestWidth); 1652 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1653 } 1654 1655 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 1656 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1657 } 1658 } 1659 return 0; 1660 } 1661 1662 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1663 // If the operands are integer typed then apply the integer transforms, 1664 // otherwise just apply the common ones. 1665 Value *Src = CI.getOperand(0); 1666 Type *SrcTy = Src->getType(); 1667 Type *DestTy = CI.getType(); 1668 1669 // Get rid of casts from one type to the same type. These are useless and can 1670 // be replaced by the operand. 1671 if (DestTy == Src->getType()) 1672 return ReplaceInstUsesWith(CI, Src); 1673 1674 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1675 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1676 Type *DstElTy = DstPTy->getElementType(); 1677 Type *SrcElTy = SrcPTy->getElementType(); 1678 1679 // If the address spaces don't match, don't eliminate the bitcast, which is 1680 // required for changing types. 1681 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) 1682 return 0; 1683 1684 // If we are casting a alloca to a pointer to a type of the same 1685 // size, rewrite the allocation instruction to allocate the "right" type. 1686 // There is no need to modify malloc calls because it is their bitcast that 1687 // needs to be cleaned up. 1688 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1689 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1690 return V; 1691 1692 // If the source and destination are pointers, and this cast is equivalent 1693 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1694 // This can enhance SROA and other transforms that want type-safe pointers. 1695 Constant *ZeroUInt = 1696 Constant::getNullValue(Type::getInt32Ty(CI.getContext())); 1697 unsigned NumZeros = 0; 1698 while (SrcElTy != DstElTy && 1699 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1700 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1701 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); 1702 ++NumZeros; 1703 } 1704 1705 // If we found a path from the src to dest, create the getelementptr now. 1706 if (SrcElTy == DstElTy) { 1707 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); 1708 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1709 } 1710 } 1711 1712 // Try to optimize int -> float bitcasts. 1713 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1714 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) 1715 return I; 1716 1717 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1718 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1719 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1720 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1721 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1722 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1723 } 1724 1725 if (isa<IntegerType>(SrcTy)) { 1726 // If this is a cast from an integer to vector, check to see if the input 1727 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1728 // the casts with a shuffle and (potentially) a bitcast. 1729 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1730 CastInst *SrcCast = cast<CastInst>(Src); 1731 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1732 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1733 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 1734 cast<VectorType>(DestTy), *this)) 1735 return I; 1736 } 1737 1738 // If the input is an 'or' instruction, we may be doing shifts and ors to 1739 // assemble the elements of the vector manually. Try to rip the code out 1740 // and replace it with insertelements. 1741 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 1742 return ReplaceInstUsesWith(CI, V); 1743 } 1744 } 1745 1746 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1747 if (SrcVTy->getNumElements() == 1) { 1748 // If our destination is not a vector, then make this a straight 1749 // scalar-scalar cast. 1750 if (!DestTy->isVectorTy()) { 1751 Value *Elem = 1752 Builder->CreateExtractElement(Src, 1753 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1754 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1755 } 1756 1757 // Otherwise, see if our source is an insert. If so, then use the scalar 1758 // component directly. 1759 if (InsertElementInst *IEI = 1760 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1761 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1762 DestTy); 1763 } 1764 } 1765 1766 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1767 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1768 // a bitcast to a vector with the same # elts. 1769 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1770 cast<VectorType>(DestTy)->getNumElements() == 1771 SVI->getType()->getNumElements() && 1772 SVI->getType()->getNumElements() == 1773 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { 1774 BitCastInst *Tmp; 1775 // If either of the operands is a cast from CI.getType(), then 1776 // evaluating the shuffle in the casted destination's type will allow 1777 // us to eliminate at least one cast. 1778 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1779 Tmp->getOperand(0)->getType() == DestTy) || 1780 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1781 Tmp->getOperand(0)->getType() == DestTy)) { 1782 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1783 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1784 // Return a new shuffle vector. Use the same element ID's, as we 1785 // know the vector types match #elts. 1786 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1787 } 1788 } 1789 } 1790 1791 if (SrcTy->isPointerTy()) 1792 return commonPointerCastTransforms(CI); 1793 return commonCastTransforms(CI); 1794 } 1795