Home | History | Annotate | Download | only in Utils
      1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MapValue function, which is shared by various parts of
     11 // the lib/Transforms/Utils library.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/ValueMapper.h"
     16 #include "llvm/IR/Constants.h"
     17 #include "llvm/IR/Function.h"
     18 #include "llvm/IR/InlineAsm.h"
     19 #include "llvm/IR/Instructions.h"
     20 #include "llvm/IR/Metadata.h"
     21 using namespace llvm;
     22 
     23 // Out of line method to get vtable etc for class.
     24 void ValueMapTypeRemapper::anchor() {}
     25 
     26 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
     27                       ValueMapTypeRemapper *TypeMapper) {
     28   ValueToValueMapTy::iterator I = VM.find(V);
     29 
     30   // If the value already exists in the map, use it.
     31   if (I != VM.end() && I->second) return I->second;
     32 
     33   // Global values do not need to be seeded into the VM if they
     34   // are using the identity mapping.
     35   if (isa<GlobalValue>(V) || isa<MDString>(V))
     36     return VM[V] = const_cast<Value*>(V);
     37 
     38   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
     39     // Inline asm may need *type* remapping.
     40     FunctionType *NewTy = IA->getFunctionType();
     41     if (TypeMapper) {
     42       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
     43 
     44       if (NewTy != IA->getFunctionType())
     45         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
     46                            IA->hasSideEffects(), IA->isAlignStack());
     47     }
     48 
     49     return VM[V] = const_cast<Value*>(V);
     50   }
     51 
     52 
     53   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
     54     // If this is a module-level metadata and we know that nothing at the module
     55     // level is changing, then use an identity mapping.
     56     if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
     57       return VM[V] = const_cast<Value*>(V);
     58 
     59     // Create a dummy node in case we have a metadata cycle.
     60     MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>());
     61     VM[V] = Dummy;
     62 
     63     // Check all operands to see if any need to be remapped.
     64     for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
     65       Value *OP = MD->getOperand(i);
     66       if (OP == 0) continue;
     67       Value *Mapped_OP = MapValue(OP, VM, Flags, TypeMapper);
     68       // Use identity map if Mapped_Op is null and we can ignore missing
     69       // entries.
     70       if (Mapped_OP == OP ||
     71           (Mapped_OP == 0 && (Flags & RF_IgnoreMissingEntries)))
     72         continue;
     73 
     74       // Ok, at least one operand needs remapping.
     75       SmallVector<Value*, 4> Elts;
     76       Elts.reserve(MD->getNumOperands());
     77       for (i = 0; i != e; ++i) {
     78         Value *Op = MD->getOperand(i);
     79         if (Op == 0)
     80           Elts.push_back(0);
     81         else {
     82           Value *Mapped_Op = MapValue(Op, VM, Flags, TypeMapper);
     83           // Use identity map if Mapped_Op is null and we can ignore missing
     84           // entries.
     85           if (Mapped_Op == 0 && (Flags & RF_IgnoreMissingEntries))
     86             Mapped_Op = Op;
     87           Elts.push_back(Mapped_Op);
     88         }
     89       }
     90       MDNode *NewMD = MDNode::get(V->getContext(), Elts);
     91       Dummy->replaceAllUsesWith(NewMD);
     92       VM[V] = NewMD;
     93       MDNode::deleteTemporary(Dummy);
     94       return NewMD;
     95     }
     96 
     97     VM[V] = const_cast<Value*>(V);
     98     MDNode::deleteTemporary(Dummy);
     99 
    100     // No operands needed remapping.  Use an identity mapping.
    101     return const_cast<Value*>(V);
    102   }
    103 
    104   // Okay, this either must be a constant (which may or may not be mappable) or
    105   // is something that is not in the mapping table.
    106   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
    107   if (C == 0)
    108     return 0;
    109 
    110   if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
    111     Function *F =
    112       cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper));
    113     BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
    114                                                        Flags, TypeMapper));
    115     return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
    116   }
    117 
    118   // Otherwise, we have some other constant to remap.  Start by checking to see
    119   // if all operands have an identity remapping.
    120   unsigned OpNo = 0, NumOperands = C->getNumOperands();
    121   Value *Mapped = 0;
    122   for (; OpNo != NumOperands; ++OpNo) {
    123     Value *Op = C->getOperand(OpNo);
    124     Mapped = MapValue(Op, VM, Flags, TypeMapper);
    125     if (Mapped != C) break;
    126   }
    127 
    128   // See if the type mapper wants to remap the type as well.
    129   Type *NewTy = C->getType();
    130   if (TypeMapper)
    131     NewTy = TypeMapper->remapType(NewTy);
    132 
    133   // If the result type and all operands match up, then just insert an identity
    134   // mapping.
    135   if (OpNo == NumOperands && NewTy == C->getType())
    136     return VM[V] = C;
    137 
    138   // Okay, we need to create a new constant.  We've already processed some or
    139   // all of the operands, set them all up now.
    140   SmallVector<Constant*, 8> Ops;
    141   Ops.reserve(NumOperands);
    142   for (unsigned j = 0; j != OpNo; ++j)
    143     Ops.push_back(cast<Constant>(C->getOperand(j)));
    144 
    145   // If one of the operands mismatch, push it and the other mapped operands.
    146   if (OpNo != NumOperands) {
    147     Ops.push_back(cast<Constant>(Mapped));
    148 
    149     // Map the rest of the operands that aren't processed yet.
    150     for (++OpNo; OpNo != NumOperands; ++OpNo)
    151       Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
    152                              Flags, TypeMapper));
    153   }
    154 
    155   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    156     return VM[V] = CE->getWithOperands(Ops, NewTy);
    157   if (isa<ConstantArray>(C))
    158     return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
    159   if (isa<ConstantStruct>(C))
    160     return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
    161   if (isa<ConstantVector>(C))
    162     return VM[V] = ConstantVector::get(Ops);
    163   // If this is a no-operand constant, it must be because the type was remapped.
    164   if (isa<UndefValue>(C))
    165     return VM[V] = UndefValue::get(NewTy);
    166   if (isa<ConstantAggregateZero>(C))
    167     return VM[V] = ConstantAggregateZero::get(NewTy);
    168   assert(isa<ConstantPointerNull>(C));
    169   return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
    170 }
    171 
    172 /// RemapInstruction - Convert the instruction operands from referencing the
    173 /// current values into those specified by VMap.
    174 ///
    175 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
    176                             RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){
    177   // Remap operands.
    178   for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
    179     Value *V = MapValue(*op, VMap, Flags, TypeMapper);
    180     // If we aren't ignoring missing entries, assert that something happened.
    181     if (V != 0)
    182       *op = V;
    183     else
    184       assert((Flags & RF_IgnoreMissingEntries) &&
    185              "Referenced value not in value map!");
    186   }
    187 
    188   // Remap phi nodes' incoming blocks.
    189   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    190     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    191       Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
    192       // If we aren't ignoring missing entries, assert that something happened.
    193       if (V != 0)
    194         PN->setIncomingBlock(i, cast<BasicBlock>(V));
    195       else
    196         assert((Flags & RF_IgnoreMissingEntries) &&
    197                "Referenced block not in value map!");
    198     }
    199   }
    200 
    201   // Remap attached metadata.
    202   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    203   I->getAllMetadata(MDs);
    204   for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
    205        MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
    206     MDNode *Old = MI->second;
    207     MDNode *New = MapValue(Old, VMap, Flags, TypeMapper);
    208     if (New != Old)
    209       I->setMetadata(MI->first, New);
    210   }
    211 
    212   // If the instruction's type is being remapped, do so now.
    213   if (TypeMapper)
    214     I->mutateType(TypeMapper->remapType(I->getType()));
    215 }
    216