Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  *
      7  * The following code is based on the description in RFC 3174.
      8  * http://www.ietf.org/rfc/rfc3174.txt
      9  */
     10 
     11 #include "SkTypes.h"
     12 #include "SkSHA1.h"
     13 #include <string.h>
     14 
     15 /** SHA1 basic transformation. Transforms state based on block. */
     16 static void transform(uint32_t state[5], const uint8_t block[64]);
     17 
     18 /** Encodes input into output (5 big endian 32 bit values). */
     19 static void encode(uint8_t output[20], const uint32_t input[5]);
     20 
     21 /** Encodes input into output (big endian 64 bit value). */
     22 static void encode(uint8_t output[8], const uint64_t input);
     23 
     24 SkSHA1::SkSHA1() : byteCount(0) {
     25     // These are magic numbers from the specification. The first four are the same as MD5.
     26     this->state[0] = 0x67452301;
     27     this->state[1] = 0xefcdab89;
     28     this->state[2] = 0x98badcfe;
     29     this->state[3] = 0x10325476;
     30     this->state[4] = 0xc3d2e1f0;
     31 }
     32 
     33 void SkSHA1::update(const uint8_t* input, size_t inputLength) {
     34     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
     35     unsigned int bufferAvailable = 64 - bufferIndex;
     36 
     37     unsigned int inputIndex;
     38     if (inputLength >= bufferAvailable) {
     39         if (bufferIndex) {
     40             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
     41             transform(this->state, this->buffer);
     42             inputIndex = bufferAvailable;
     43         } else {
     44             inputIndex = 0;
     45         }
     46 
     47         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
     48             transform(this->state, &input[inputIndex]);
     49         }
     50 
     51         bufferIndex = 0;
     52     } else {
     53         inputIndex = 0;
     54     }
     55 
     56     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
     57 
     58     this->byteCount += inputLength;
     59 }
     60 
     61 void SkSHA1::finish(Digest& digest) {
     62     // Get the number of bits before padding.
     63     uint8_t bits[8];
     64     encode(bits, this->byteCount << 3);
     65 
     66     // Pad out to 56 mod 64.
     67     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
     68     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
     69     static uint8_t PADDING[64] = {
     70         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     71            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     72            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     73            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     74     };
     75     this->update(PADDING, paddingLength);
     76 
     77     // Append length (length before padding, will cause final update).
     78     this->update(bits, 8);
     79 
     80     // Write out digest.
     81     encode(digest.data, this->state);
     82 
     83 #if defined(SK_SHA1_CLEAR_DATA)
     84     // Clear state.
     85     memset(this, 0, sizeof(*this));
     86 #endif
     87 }
     88 
     89 struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
     90     return (B & C) | ((~B) & D);
     91     //return D ^ (B & (C ^ D));
     92     //return (B & C) ^ ((~B) & D);
     93     //return (B & C) + ((~B) & D);
     94     //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2
     95     //return vec_sel(D, C, B); //PPC
     96 }};
     97 
     98 struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
     99     return B ^ C ^ D;
    100 }};
    101 
    102 struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
    103     return (B & C) | (B & D) | (C & D);
    104     //return (B & C) | (D & (B | C));
    105     //return (B & C) | (D & (B ^ C));
    106     //return (B & C) + (D & (B ^ C));
    107     //return (B & C) ^ (B & D) ^ (C & D);
    108 }};
    109 
    110 /** Rotates x left n bits. */
    111 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
    112     return (x << n) | (x >> (32 - n));
    113 }
    114 
    115 template <typename T>
    116 static inline void operation(T operation,
    117                              uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E,
    118                              uint32_t w, uint32_t k) {
    119     E += rotate_left(A, 5) + operation(B, C, D) + w + k;
    120     B = rotate_left(B, 30);
    121 }
    122 
    123 static void transform(uint32_t state[5], const uint8_t block[64]) {
    124     uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4];
    125 
    126     // Round constants defined in SHA-1.
    127     static const uint32_t K[] = {
    128         0x5A827999, //sqrt(2) * 2^30
    129         0x6ED9EBA1, //sqrt(3) * 2^30
    130         0x8F1BBCDC, //sqrt(5) * 2^30
    131         0xCA62C1D6, //sqrt(10) * 2^30
    132     };
    133 
    134     uint32_t W[80];
    135 
    136     // Initialize the array W.
    137     size_t i = 0;
    138     for (size_t j = 0; i < 16; ++i, j += 4) {
    139         W[i] = (((uint32_t)block[j  ]) << 24) |
    140                (((uint32_t)block[j+1]) << 16) |
    141                (((uint32_t)block[j+2]) <<  8) |
    142                (((uint32_t)block[j+3])      );
    143     }
    144     for (; i < 80; ++i) {
    145        W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
    146        //The following is equivelent and speeds up SSE implementations, but slows non-SSE.
    147        //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2);
    148     }
    149 
    150     // Round 1
    151     operation(F1(), A, B, C, D, E, W[ 0], K[0]);
    152     operation(F1(), E, A, B, C, D, W[ 1], K[0]);
    153     operation(F1(), D, E, A, B, C, W[ 2], K[0]);
    154     operation(F1(), C, D, E, A, B, W[ 3], K[0]);
    155     operation(F1(), B, C, D, E, A, W[ 4], K[0]);
    156     operation(F1(), A, B, C, D, E, W[ 5], K[0]);
    157     operation(F1(), E, A, B, C, D, W[ 6], K[0]);
    158     operation(F1(), D, E, A, B, C, W[ 7], K[0]);
    159     operation(F1(), C, D, E, A, B, W[ 8], K[0]);
    160     operation(F1(), B, C, D, E, A, W[ 9], K[0]);
    161     operation(F1(), A, B, C, D, E, W[10], K[0]);
    162     operation(F1(), E, A, B, C, D, W[11], K[0]);
    163     operation(F1(), D, E, A, B, C, W[12], K[0]);
    164     operation(F1(), C, D, E, A, B, W[13], K[0]);
    165     operation(F1(), B, C, D, E, A, W[14], K[0]);
    166     operation(F1(), A, B, C, D, E, W[15], K[0]);
    167     operation(F1(), E, A, B, C, D, W[16], K[0]);
    168     operation(F1(), D, E, A, B, C, W[17], K[0]);
    169     operation(F1(), C, D, E, A, B, W[18], K[0]);
    170     operation(F1(), B, C, D, E, A, W[19], K[0]);
    171 
    172     // Round 2
    173     operation(F2(), A, B, C, D, E, W[20], K[1]);
    174     operation(F2(), E, A, B, C, D, W[21], K[1]);
    175     operation(F2(), D, E, A, B, C, W[22], K[1]);
    176     operation(F2(), C, D, E, A, B, W[23], K[1]);
    177     operation(F2(), B, C, D, E, A, W[24], K[1]);
    178     operation(F2(), A, B, C, D, E, W[25], K[1]);
    179     operation(F2(), E, A, B, C, D, W[26], K[1]);
    180     operation(F2(), D, E, A, B, C, W[27], K[1]);
    181     operation(F2(), C, D, E, A, B, W[28], K[1]);
    182     operation(F2(), B, C, D, E, A, W[29], K[1]);
    183     operation(F2(), A, B, C, D, E, W[30], K[1]);
    184     operation(F2(), E, A, B, C, D, W[31], K[1]);
    185     operation(F2(), D, E, A, B, C, W[32], K[1]);
    186     operation(F2(), C, D, E, A, B, W[33], K[1]);
    187     operation(F2(), B, C, D, E, A, W[34], K[1]);
    188     operation(F2(), A, B, C, D, E, W[35], K[1]);
    189     operation(F2(), E, A, B, C, D, W[36], K[1]);
    190     operation(F2(), D, E, A, B, C, W[37], K[1]);
    191     operation(F2(), C, D, E, A, B, W[38], K[1]);
    192     operation(F2(), B, C, D, E, A, W[39], K[1]);
    193 
    194     // Round 3
    195     operation(F3(), A, B, C, D, E, W[40], K[2]);
    196     operation(F3(), E, A, B, C, D, W[41], K[2]);
    197     operation(F3(), D, E, A, B, C, W[42], K[2]);
    198     operation(F3(), C, D, E, A, B, W[43], K[2]);
    199     operation(F3(), B, C, D, E, A, W[44], K[2]);
    200     operation(F3(), A, B, C, D, E, W[45], K[2]);
    201     operation(F3(), E, A, B, C, D, W[46], K[2]);
    202     operation(F3(), D, E, A, B, C, W[47], K[2]);
    203     operation(F3(), C, D, E, A, B, W[48], K[2]);
    204     operation(F3(), B, C, D, E, A, W[49], K[2]);
    205     operation(F3(), A, B, C, D, E, W[50], K[2]);
    206     operation(F3(), E, A, B, C, D, W[51], K[2]);
    207     operation(F3(), D, E, A, B, C, W[52], K[2]);
    208     operation(F3(), C, D, E, A, B, W[53], K[2]);
    209     operation(F3(), B, C, D, E, A, W[54], K[2]);
    210     operation(F3(), A, B, C, D, E, W[55], K[2]);
    211     operation(F3(), E, A, B, C, D, W[56], K[2]);
    212     operation(F3(), D, E, A, B, C, W[57], K[2]);
    213     operation(F3(), C, D, E, A, B, W[58], K[2]);
    214     operation(F3(), B, C, D, E, A, W[59], K[2]);
    215 
    216     // Round 4
    217     operation(F2(), A, B, C, D, E, W[60], K[3]);
    218     operation(F2(), E, A, B, C, D, W[61], K[3]);
    219     operation(F2(), D, E, A, B, C, W[62], K[3]);
    220     operation(F2(), C, D, E, A, B, W[63], K[3]);
    221     operation(F2(), B, C, D, E, A, W[64], K[3]);
    222     operation(F2(), A, B, C, D, E, W[65], K[3]);
    223     operation(F2(), E, A, B, C, D, W[66], K[3]);
    224     operation(F2(), D, E, A, B, C, W[67], K[3]);
    225     operation(F2(), C, D, E, A, B, W[68], K[3]);
    226     operation(F2(), B, C, D, E, A, W[69], K[3]);
    227     operation(F2(), A, B, C, D, E, W[70], K[3]);
    228     operation(F2(), E, A, B, C, D, W[71], K[3]);
    229     operation(F2(), D, E, A, B, C, W[72], K[3]);
    230     operation(F2(), C, D, E, A, B, W[73], K[3]);
    231     operation(F2(), B, C, D, E, A, W[74], K[3]);
    232     operation(F2(), A, B, C, D, E, W[75], K[3]);
    233     operation(F2(), E, A, B, C, D, W[76], K[3]);
    234     operation(F2(), D, E, A, B, C, W[77], K[3]);
    235     operation(F2(), C, D, E, A, B, W[78], K[3]);
    236     operation(F2(), B, C, D, E, A, W[79], K[3]);
    237 
    238     state[0] += A;
    239     state[1] += B;
    240     state[2] += C;
    241     state[3] += D;
    242     state[4] += E;
    243 
    244 #if defined(SK_SHA1_CLEAR_DATA)
    245     // Clear sensitive information.
    246     memset(W, 0, sizeof(W));
    247 #endif
    248 }
    249 
    250 static void encode(uint8_t output[20], const uint32_t input[5]) {
    251     for (size_t i = 0, j = 0; i < 5; i++, j += 4) {
    252         output[j  ] = (uint8_t)((input[i] >> 24) & 0xff);
    253         output[j+1] = (uint8_t)((input[i] >> 16) & 0xff);
    254         output[j+2] = (uint8_t)((input[i] >>  8) & 0xff);
    255         output[j+3] = (uint8_t)((input[i]      ) & 0xff);
    256     }
    257 }
    258 
    259 static void encode(uint8_t output[8], const uint64_t input) {
    260     output[0] = (uint8_t)((input >> 56) & 0xff);
    261     output[1] = (uint8_t)((input >> 48) & 0xff);
    262     output[2] = (uint8_t)((input >> 40) & 0xff);
    263     output[3] = (uint8_t)((input >> 32) & 0xff);
    264     output[4] = (uint8_t)((input >> 24) & 0xff);
    265     output[5] = (uint8_t)((input >> 16) & 0xff);
    266     output[6] = (uint8_t)((input >>  8) & 0xff);
    267     output[7] = (uint8_t)((input      ) & 0xff);
    268 }
    269