Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "arm/lithium-gap-resolver-arm.h"
     31 #include "arm/lithium-codegen-arm.h"
     32 
     33 namespace v8 {
     34 namespace internal {
     35 
     36 static const Register kSavedValueRegister = { 9 };
     37 
     38 LGapResolver::LGapResolver(LCodeGen* owner)
     39     : cgen_(owner), moves_(32), root_index_(0), in_cycle_(false),
     40       saved_destination_(NULL) { }
     41 
     42 
     43 void LGapResolver::Resolve(LParallelMove* parallel_move) {
     44   ASSERT(moves_.is_empty());
     45   // Build up a worklist of moves.
     46   BuildInitialMoveList(parallel_move);
     47 
     48   for (int i = 0; i < moves_.length(); ++i) {
     49     LMoveOperands move = moves_[i];
     50     // Skip constants to perform them last.  They don't block other moves
     51     // and skipping such moves with register destinations keeps those
     52     // registers free for the whole algorithm.
     53     if (!move.IsEliminated() && !move.source()->IsConstantOperand()) {
     54       root_index_ = i;  // Any cycle is found when by reaching this move again.
     55       PerformMove(i);
     56       if (in_cycle_) {
     57         RestoreValue();
     58       }
     59     }
     60   }
     61 
     62   // Perform the moves with constant sources.
     63   for (int i = 0; i < moves_.length(); ++i) {
     64     if (!moves_[i].IsEliminated()) {
     65       ASSERT(moves_[i].source()->IsConstantOperand());
     66       EmitMove(i);
     67     }
     68   }
     69 
     70   moves_.Rewind(0);
     71 }
     72 
     73 
     74 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) {
     75   // Perform a linear sweep of the moves to add them to the initial list of
     76   // moves to perform, ignoring any move that is redundant (the source is
     77   // the same as the destination, the destination is ignored and
     78   // unallocated, or the move was already eliminated).
     79   const ZoneList<LMoveOperands>* moves = parallel_move->move_operands();
     80   for (int i = 0; i < moves->length(); ++i) {
     81     LMoveOperands move = moves->at(i);
     82     if (!move.IsRedundant()) moves_.Add(move);
     83   }
     84   Verify();
     85 }
     86 
     87 
     88 void LGapResolver::PerformMove(int index) {
     89   // Each call to this function performs a move and deletes it from the move
     90   // graph.  We first recursively perform any move blocking this one.  We
     91   // mark a move as "pending" on entry to PerformMove in order to detect
     92   // cycles in the move graph.
     93 
     94   // We can only find a cycle, when doing a depth-first traversal of moves,
     95   // be encountering the starting move again. So by spilling the source of
     96   // the starting move, we break the cycle.  All moves are then unblocked,
     97   // and the starting move is completed by writing the spilled value to
     98   // its destination.  All other moves from the spilled source have been
     99   // completed prior to breaking the cycle.
    100   // An additional complication is that moves to MemOperands with large
    101   // offsets (more than 1K or 4K) require us to spill this spilled value to
    102   // the stack, to free up the register.
    103   ASSERT(!moves_[index].IsPending());
    104   ASSERT(!moves_[index].IsRedundant());
    105 
    106   // Clear this move's destination to indicate a pending move.  The actual
    107   // destination is saved in a stack allocated local.  Multiple moves can
    108   // be pending because this function is recursive.
    109   ASSERT(moves_[index].source() != NULL);  // Or else it will look eliminated.
    110   LOperand* destination = moves_[index].destination();
    111   moves_[index].set_destination(NULL);
    112 
    113   // Perform a depth-first traversal of the move graph to resolve
    114   // dependencies.  Any unperformed, unpending move with a source the same
    115   // as this one's destination blocks this one so recursively perform all
    116   // such moves.
    117   for (int i = 0; i < moves_.length(); ++i) {
    118     LMoveOperands other_move = moves_[i];
    119     if (other_move.Blocks(destination) && !other_move.IsPending()) {
    120       PerformMove(i);
    121       // If there is a blocking, pending move it must be moves_[root_index_]
    122       // and all other moves with the same source as moves_[root_index_] are
    123       // sucessfully executed (because they are cycle-free) by this loop.
    124     }
    125   }
    126 
    127   // We are about to resolve this move and don't need it marked as
    128   // pending, so restore its destination.
    129   moves_[index].set_destination(destination);
    130 
    131   // The move may be blocked on a pending move, which must be the starting move.
    132   // In this case, we have a cycle, and we save the source of this move to
    133   // a scratch register to break it.
    134   LMoveOperands other_move = moves_[root_index_];
    135   if (other_move.Blocks(destination)) {
    136     ASSERT(other_move.IsPending());
    137     BreakCycle(index);
    138     return;
    139   }
    140 
    141   // This move is no longer blocked.
    142   EmitMove(index);
    143 }
    144 
    145 
    146 void LGapResolver::Verify() {
    147 #ifdef ENABLE_SLOW_ASSERTS
    148   // No operand should be the destination for more than one move.
    149   for (int i = 0; i < moves_.length(); ++i) {
    150     LOperand* destination = moves_[i].destination();
    151     for (int j = i + 1; j < moves_.length(); ++j) {
    152       SLOW_ASSERT(!destination->Equals(moves_[j].destination()));
    153     }
    154   }
    155 #endif
    156 }
    157 
    158 #define __ ACCESS_MASM(cgen_->masm())
    159 
    160 void LGapResolver::BreakCycle(int index) {
    161   // We save in a register the value that should end up in the source of
    162   // moves_[root_index].  After performing all moves in the tree rooted
    163   // in that move, we save the value to that source.
    164   ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source()));
    165   ASSERT(!in_cycle_);
    166   in_cycle_ = true;
    167   LOperand* source = moves_[index].source();
    168   saved_destination_ = moves_[index].destination();
    169   if (source->IsRegister()) {
    170     __ mov(kSavedValueRegister, cgen_->ToRegister(source));
    171   } else if (source->IsStackSlot()) {
    172     __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source));
    173   } else if (source->IsDoubleRegister()) {
    174     __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source));
    175   } else if (source->IsDoubleStackSlot()) {
    176     __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source));
    177   } else {
    178     UNREACHABLE();
    179   }
    180   // This move will be done by restoring the saved value to the destination.
    181   moves_[index].Eliminate();
    182 }
    183 
    184 
    185 void LGapResolver::RestoreValue() {
    186   ASSERT(in_cycle_);
    187   ASSERT(saved_destination_ != NULL);
    188 
    189   // Spilled value is in kSavedValueRegister or kSavedDoubleValueRegister.
    190   if (saved_destination_->IsRegister()) {
    191     __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister);
    192   } else if (saved_destination_->IsStackSlot()) {
    193     __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_));
    194   } else if (saved_destination_->IsDoubleRegister()) {
    195     __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg);
    196   } else if (saved_destination_->IsDoubleStackSlot()) {
    197     __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_));
    198   } else {
    199     UNREACHABLE();
    200   }
    201 
    202   in_cycle_ = false;
    203   saved_destination_ = NULL;
    204 }
    205 
    206 
    207 void LGapResolver::EmitMove(int index) {
    208   LOperand* source = moves_[index].source();
    209   LOperand* destination = moves_[index].destination();
    210 
    211   // Dispatch on the source and destination operand kinds.  Not all
    212   // combinations are possible.
    213 
    214   if (source->IsRegister()) {
    215     Register source_register = cgen_->ToRegister(source);
    216     if (destination->IsRegister()) {
    217       __ mov(cgen_->ToRegister(destination), source_register);
    218     } else {
    219       ASSERT(destination->IsStackSlot());
    220       __ str(source_register, cgen_->ToMemOperand(destination));
    221     }
    222 
    223   } else if (source->IsStackSlot()) {
    224     MemOperand source_operand = cgen_->ToMemOperand(source);
    225     if (destination->IsRegister()) {
    226       __ ldr(cgen_->ToRegister(destination), source_operand);
    227     } else {
    228       ASSERT(destination->IsStackSlot());
    229       MemOperand destination_operand = cgen_->ToMemOperand(destination);
    230       if (in_cycle_) {
    231         if (!destination_operand.OffsetIsUint12Encodable()) {
    232           // ip is overwritten while saving the value to the destination.
    233           // Therefore we can't use ip.  It is OK if the read from the source
    234           // destroys ip, since that happens before the value is read.
    235           __ vldr(kScratchDoubleReg.low(), source_operand);
    236           __ vstr(kScratchDoubleReg.low(), destination_operand);
    237         } else {
    238           __ ldr(ip, source_operand);
    239           __ str(ip, destination_operand);
    240         }
    241       } else {
    242         __ ldr(kSavedValueRegister, source_operand);
    243         __ str(kSavedValueRegister, destination_operand);
    244       }
    245     }
    246 
    247   } else if (source->IsConstantOperand()) {
    248     LConstantOperand* constant_source = LConstantOperand::cast(source);
    249     if (destination->IsRegister()) {
    250       Register dst = cgen_->ToRegister(destination);
    251       if (cgen_->IsInteger32(constant_source)) {
    252         __ mov(dst, Operand(cgen_->ToInteger32(constant_source)));
    253       } else {
    254         __ LoadObject(dst, cgen_->ToHandle(constant_source));
    255       }
    256     } else {
    257       ASSERT(destination->IsStackSlot());
    258       ASSERT(!in_cycle_);  // Constant moves happen after all cycles are gone.
    259       if (cgen_->IsInteger32(constant_source)) {
    260         __ mov(kSavedValueRegister,
    261                Operand(cgen_->ToInteger32(constant_source)));
    262       } else {
    263         __ LoadObject(kSavedValueRegister,
    264                       cgen_->ToHandle(constant_source));
    265       }
    266       __ str(kSavedValueRegister, cgen_->ToMemOperand(destination));
    267     }
    268 
    269   } else if (source->IsDoubleRegister()) {
    270     DoubleRegister source_register = cgen_->ToDoubleRegister(source);
    271     if (destination->IsDoubleRegister()) {
    272       __ vmov(cgen_->ToDoubleRegister(destination), source_register);
    273     } else {
    274       ASSERT(destination->IsDoubleStackSlot());
    275       __ vstr(source_register, cgen_->ToMemOperand(destination));
    276     }
    277 
    278   } else if (source->IsDoubleStackSlot()) {
    279     MemOperand source_operand = cgen_->ToMemOperand(source);
    280     if (destination->IsDoubleRegister()) {
    281       __ vldr(cgen_->ToDoubleRegister(destination), source_operand);
    282     } else {
    283       ASSERT(destination->IsDoubleStackSlot());
    284       MemOperand destination_operand = cgen_->ToMemOperand(destination);
    285       if (in_cycle_) {
    286         // kSavedDoubleValueRegister was used to break the cycle,
    287         // but kSavedValueRegister is free.
    288         MemOperand source_high_operand =
    289             cgen_->ToHighMemOperand(source);
    290         MemOperand destination_high_operand =
    291             cgen_->ToHighMemOperand(destination);
    292         __ ldr(kSavedValueRegister, source_operand);
    293         __ str(kSavedValueRegister, destination_operand);
    294         __ ldr(kSavedValueRegister, source_high_operand);
    295         __ str(kSavedValueRegister, destination_high_operand);
    296       } else {
    297         __ vldr(kScratchDoubleReg, source_operand);
    298         __ vstr(kScratchDoubleReg, destination_operand);
    299       }
    300     }
    301   } else {
    302     UNREACHABLE();
    303   }
    304 
    305   moves_[index].Eliminate();
    306 }
    307 
    308 
    309 #undef __
    310 
    311 } }  // namespace v8::internal
    312