Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <stdarg.h>
     29 #include <math.h>
     30 
     31 #include "globals.h"
     32 #include "utils.h"
     33 #include "strtod.h"
     34 #include "bignum.h"
     35 #include "cached-powers.h"
     36 #include "double.h"
     37 
     38 namespace v8 {
     39 namespace internal {
     40 
     41 // 2^53 = 9007199254740992.
     42 // Any integer with at most 15 decimal digits will hence fit into a double
     43 // (which has a 53bit significand) without loss of precision.
     44 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
     45 // 2^64 = 18446744073709551616 > 10^19
     46 static const int kMaxUint64DecimalDigits = 19;
     47 
     48 // Max double: 1.7976931348623157 x 10^308
     49 // Min non-zero double: 4.9406564584124654 x 10^-324
     50 // Any x >= 10^309 is interpreted as +infinity.
     51 // Any x <= 10^-324 is interpreted as 0.
     52 // Note that 2.5e-324 (despite being smaller than the min double) will be read
     53 // as non-zero (equal to the min non-zero double).
     54 static const int kMaxDecimalPower = 309;
     55 static const int kMinDecimalPower = -324;
     56 
     57 // 2^64 = 18446744073709551616
     58 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
     59 
     60 
     61 static const double exact_powers_of_ten[] = {
     62   1.0,  // 10^0
     63   10.0,
     64   100.0,
     65   1000.0,
     66   10000.0,
     67   100000.0,
     68   1000000.0,
     69   10000000.0,
     70   100000000.0,
     71   1000000000.0,
     72   10000000000.0,  // 10^10
     73   100000000000.0,
     74   1000000000000.0,
     75   10000000000000.0,
     76   100000000000000.0,
     77   1000000000000000.0,
     78   10000000000000000.0,
     79   100000000000000000.0,
     80   1000000000000000000.0,
     81   10000000000000000000.0,
     82   100000000000000000000.0,  // 10^20
     83   1000000000000000000000.0,
     84   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
     85   10000000000000000000000.0
     86 };
     87 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
     88 
     89 // Maximum number of significant digits in the decimal representation.
     90 // In fact the value is 772 (see conversions.cc), but to give us some margin
     91 // we round up to 780.
     92 static const int kMaxSignificantDecimalDigits = 780;
     93 
     94 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
     95   for (int i = 0; i < buffer.length(); i++) {
     96     if (buffer[i] != '0') {
     97       return buffer.SubVector(i, buffer.length());
     98     }
     99   }
    100   return Vector<const char>(buffer.start(), 0);
    101 }
    102 
    103 
    104 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
    105   for (int i = buffer.length() - 1; i >= 0; --i) {
    106     if (buffer[i] != '0') {
    107       return buffer.SubVector(0, i + 1);
    108     }
    109   }
    110   return Vector<const char>(buffer.start(), 0);
    111 }
    112 
    113 
    114 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
    115                                        int exponent,
    116                                        char* significant_buffer,
    117                                        int* significant_exponent) {
    118   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
    119     significant_buffer[i] = buffer[i];
    120   }
    121   // The input buffer has been trimmed. Therefore the last digit must be
    122   // different from '0'.
    123   ASSERT(buffer[buffer.length() - 1] != '0');
    124   // Set the last digit to be non-zero. This is sufficient to guarantee
    125   // correct rounding.
    126   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
    127   *significant_exponent =
    128       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
    129 }
    130 
    131 // Reads digits from the buffer and converts them to a uint64.
    132 // Reads in as many digits as fit into a uint64.
    133 // When the string starts with "1844674407370955161" no further digit is read.
    134 // Since 2^64 = 18446744073709551616 it would still be possible read another
    135 // digit if it was less or equal than 6, but this would complicate the code.
    136 static uint64_t ReadUint64(Vector<const char> buffer,
    137                            int* number_of_read_digits) {
    138   uint64_t result = 0;
    139   int i = 0;
    140   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
    141     int digit = buffer[i++] - '0';
    142     ASSERT(0 <= digit && digit <= 9);
    143     result = 10 * result + digit;
    144   }
    145   *number_of_read_digits = i;
    146   return result;
    147 }
    148 
    149 
    150 // Reads a DiyFp from the buffer.
    151 // The returned DiyFp is not necessarily normalized.
    152 // If remaining_decimals is zero then the returned DiyFp is accurate.
    153 // Otherwise it has been rounded and has error of at most 1/2 ulp.
    154 static void ReadDiyFp(Vector<const char> buffer,
    155                       DiyFp* result,
    156                       int* remaining_decimals) {
    157   int read_digits;
    158   uint64_t significand = ReadUint64(buffer, &read_digits);
    159   if (buffer.length() == read_digits) {
    160     *result = DiyFp(significand, 0);
    161     *remaining_decimals = 0;
    162   } else {
    163     // Round the significand.
    164     if (buffer[read_digits] >= '5') {
    165       significand++;
    166     }
    167     // Compute the binary exponent.
    168     int exponent = 0;
    169     *result = DiyFp(significand, exponent);
    170     *remaining_decimals = buffer.length() - read_digits;
    171   }
    172 }
    173 
    174 
    175 static bool DoubleStrtod(Vector<const char> trimmed,
    176                          int exponent,
    177                          double* result) {
    178 #if (defined(V8_TARGET_ARCH_IA32) || defined(USE_SIMULATOR)) \
    179     && !defined(_MSC_VER)
    180   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
    181   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
    182   // result is not accurate.
    183   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
    184   // therefore accurate.
    185   // Note that the ARM and MIPS simulators are compiled for 32bits. They
    186   // therefore exhibit the same problem.
    187   return false;
    188 #endif
    189   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
    190     int read_digits;
    191     // The trimmed input fits into a double.
    192     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
    193     // can compute the result-double simply by multiplying (resp. dividing) the
    194     // two numbers.
    195     // This is possible because IEEE guarantees that floating-point operations
    196     // return the best possible approximation.
    197     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
    198       // 10^-exponent fits into a double.
    199       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    200       ASSERT(read_digits == trimmed.length());
    201       *result /= exact_powers_of_ten[-exponent];
    202       return true;
    203     }
    204     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
    205       // 10^exponent fits into a double.
    206       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    207       ASSERT(read_digits == trimmed.length());
    208       *result *= exact_powers_of_ten[exponent];
    209       return true;
    210     }
    211     int remaining_digits =
    212         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
    213     if ((0 <= exponent) &&
    214         (exponent - remaining_digits < kExactPowersOfTenSize)) {
    215       // The trimmed string was short and we can multiply it with
    216       // 10^remaining_digits. As a result the remaining exponent now fits
    217       // into a double too.
    218       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    219       ASSERT(read_digits == trimmed.length());
    220       *result *= exact_powers_of_ten[remaining_digits];
    221       *result *= exact_powers_of_ten[exponent - remaining_digits];
    222       return true;
    223     }
    224   }
    225   return false;
    226 }
    227 
    228 
    229 // Returns 10^exponent as an exact DiyFp.
    230 // The given exponent must be in the range [1; kDecimalExponentDistance[.
    231 static DiyFp AdjustmentPowerOfTen(int exponent) {
    232   ASSERT(0 < exponent);
    233   ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
    234   // Simply hardcode the remaining powers for the given decimal exponent
    235   // distance.
    236   ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
    237   switch (exponent) {
    238     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
    239     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
    240     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
    241     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
    242     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
    243     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
    244     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
    245     default:
    246       UNREACHABLE();
    247       return DiyFp(0, 0);
    248   }
    249 }
    250 
    251 
    252 // If the function returns true then the result is the correct double.
    253 // Otherwise it is either the correct double or the double that is just below
    254 // the correct double.
    255 static bool DiyFpStrtod(Vector<const char> buffer,
    256                         int exponent,
    257                         double* result) {
    258   DiyFp input;
    259   int remaining_decimals;
    260   ReadDiyFp(buffer, &input, &remaining_decimals);
    261   // Since we may have dropped some digits the input is not accurate.
    262   // If remaining_decimals is different than 0 than the error is at most
    263   // .5 ulp (unit in the last place).
    264   // We don't want to deal with fractions and therefore keep a common
    265   // denominator.
    266   const int kDenominatorLog = 3;
    267   const int kDenominator = 1 << kDenominatorLog;
    268   // Move the remaining decimals into the exponent.
    269   exponent += remaining_decimals;
    270   int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
    271 
    272   int old_e = input.e();
    273   input.Normalize();
    274   error <<= old_e - input.e();
    275 
    276   ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
    277   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
    278     *result = 0.0;
    279     return true;
    280   }
    281   DiyFp cached_power;
    282   int cached_decimal_exponent;
    283   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
    284                                                      &cached_power,
    285                                                      &cached_decimal_exponent);
    286 
    287   if (cached_decimal_exponent != exponent) {
    288     int adjustment_exponent = exponent - cached_decimal_exponent;
    289     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
    290     input.Multiply(adjustment_power);
    291     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
    292       // The product of input with the adjustment power fits into a 64 bit
    293       // integer.
    294       ASSERT(DiyFp::kSignificandSize == 64);
    295     } else {
    296       // The adjustment power is exact. There is hence only an error of 0.5.
    297       error += kDenominator / 2;
    298     }
    299   }
    300 
    301   input.Multiply(cached_power);
    302   // The error introduced by a multiplication of a*b equals
    303   //   error_a + error_b + error_a*error_b/2^64 + 0.5
    304   // Substituting a with 'input' and b with 'cached_power' we have
    305   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
    306   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
    307   int error_b = kDenominator / 2;
    308   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
    309   int fixed_error = kDenominator / 2;
    310   error += error_b + error_ab + fixed_error;
    311 
    312   old_e = input.e();
    313   input.Normalize();
    314   error <<= old_e - input.e();
    315 
    316   // See if the double's significand changes if we add/subtract the error.
    317   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
    318   int effective_significand_size =
    319       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
    320   int precision_digits_count =
    321       DiyFp::kSignificandSize - effective_significand_size;
    322   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
    323     // This can only happen for very small denormals. In this case the
    324     // half-way multiplied by the denominator exceeds the range of an uint64.
    325     // Simply shift everything to the right.
    326     int shift_amount = (precision_digits_count + kDenominatorLog) -
    327         DiyFp::kSignificandSize + 1;
    328     input.set_f(input.f() >> shift_amount);
    329     input.set_e(input.e() + shift_amount);
    330     // We add 1 for the lost precision of error, and kDenominator for
    331     // the lost precision of input.f().
    332     error = (error >> shift_amount) + 1 + kDenominator;
    333     precision_digits_count -= shift_amount;
    334   }
    335   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
    336   ASSERT(DiyFp::kSignificandSize == 64);
    337   ASSERT(precision_digits_count < 64);
    338   uint64_t one64 = 1;
    339   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
    340   uint64_t precision_bits = input.f() & precision_bits_mask;
    341   uint64_t half_way = one64 << (precision_digits_count - 1);
    342   precision_bits *= kDenominator;
    343   half_way *= kDenominator;
    344   DiyFp rounded_input(input.f() >> precision_digits_count,
    345                       input.e() + precision_digits_count);
    346   if (precision_bits >= half_way + error) {
    347     rounded_input.set_f(rounded_input.f() + 1);
    348   }
    349   // If the last_bits are too close to the half-way case than we are too
    350   // inaccurate and round down. In this case we return false so that we can
    351   // fall back to a more precise algorithm.
    352 
    353   *result = Double(rounded_input).value();
    354   if (half_way - error < precision_bits && precision_bits < half_way + error) {
    355     // Too imprecise. The caller will have to fall back to a slower version.
    356     // However the returned number is guaranteed to be either the correct
    357     // double, or the next-lower double.
    358     return false;
    359   } else {
    360     return true;
    361   }
    362 }
    363 
    364 
    365 // Returns the correct double for the buffer*10^exponent.
    366 // The variable guess should be a close guess that is either the correct double
    367 // or its lower neighbor (the nearest double less than the correct one).
    368 // Preconditions:
    369 //   buffer.length() + exponent <= kMaxDecimalPower + 1
    370 //   buffer.length() + exponent > kMinDecimalPower
    371 //   buffer.length() <= kMaxDecimalSignificantDigits
    372 static double BignumStrtod(Vector<const char> buffer,
    373                            int exponent,
    374                            double guess) {
    375   if (guess == V8_INFINITY) {
    376     return guess;
    377   }
    378 
    379   DiyFp upper_boundary = Double(guess).UpperBoundary();
    380 
    381   ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
    382   ASSERT(buffer.length() + exponent > kMinDecimalPower);
    383   ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
    384   // Make sure that the Bignum will be able to hold all our numbers.
    385   // Our Bignum implementation has a separate field for exponents. Shifts will
    386   // consume at most one bigit (< 64 bits).
    387   // ln(10) == 3.3219...
    388   ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
    389   Bignum input;
    390   Bignum boundary;
    391   input.AssignDecimalString(buffer);
    392   boundary.AssignUInt64(upper_boundary.f());
    393   if (exponent >= 0) {
    394     input.MultiplyByPowerOfTen(exponent);
    395   } else {
    396     boundary.MultiplyByPowerOfTen(-exponent);
    397   }
    398   if (upper_boundary.e() > 0) {
    399     boundary.ShiftLeft(upper_boundary.e());
    400   } else {
    401     input.ShiftLeft(-upper_boundary.e());
    402   }
    403   int comparison = Bignum::Compare(input, boundary);
    404   if (comparison < 0) {
    405     return guess;
    406   } else if (comparison > 0) {
    407     return Double(guess).NextDouble();
    408   } else if ((Double(guess).Significand() & 1) == 0) {
    409     // Round towards even.
    410     return guess;
    411   } else {
    412     return Double(guess).NextDouble();
    413   }
    414 }
    415 
    416 
    417 double Strtod(Vector<const char> buffer, int exponent) {
    418   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
    419   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
    420   exponent += left_trimmed.length() - trimmed.length();
    421   if (trimmed.length() == 0) return 0.0;
    422   if (trimmed.length() > kMaxSignificantDecimalDigits) {
    423     char significant_buffer[kMaxSignificantDecimalDigits];
    424     int significant_exponent;
    425     TrimToMaxSignificantDigits(trimmed, exponent,
    426                                significant_buffer, &significant_exponent);
    427     return Strtod(Vector<const char>(significant_buffer,
    428                                      kMaxSignificantDecimalDigits),
    429                   significant_exponent);
    430   }
    431   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
    432   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
    433 
    434   double guess;
    435   if (DoubleStrtod(trimmed, exponent, &guess) ||
    436       DiyFpStrtod(trimmed, exponent, &guess)) {
    437     return guess;
    438   }
    439   return BignumStrtod(trimmed, exponent, guess);
    440 }
    441 
    442 } }  // namespace v8::internal
    443