Home | History | Annotate | Download | only in x64
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if defined(V8_TARGET_ARCH_X64)
     31 
     32 #include "serialize.h"
     33 #include "unicode.h"
     34 #include "log.h"
     35 #include "regexp-stack.h"
     36 #include "macro-assembler.h"
     37 #include "regexp-macro-assembler.h"
     38 #include "x64/regexp-macro-assembler-x64.h"
     39 
     40 namespace v8 {
     41 namespace internal {
     42 
     43 #ifndef V8_INTERPRETED_REGEXP
     44 
     45 /*
     46  * This assembler uses the following register assignment convention
     47  * - rdx : currently loaded character(s) as ASCII or UC16. Must be loaded using
     48  *         LoadCurrentCharacter before using any of the dispatch methods.
     49  * - rdi : current position in input, as negative offset from end of string.
     50  *         Please notice that this is the byte offset, not the character
     51  *         offset! Is always a 32-bit signed (negative) offset, but must be
     52  *         maintained sign-extended to 64 bits, since it is used as index.
     53  * - rsi : end of input (points to byte after last character in input),
     54  *         so that rsi+rdi points to the current character.
     55  * - rbp : frame pointer. Used to access arguments, local variables and
     56  *         RegExp registers.
     57  * - rsp : points to tip of C stack.
     58  * - rcx : points to tip of backtrack stack. The backtrack stack contains
     59  *         only 32-bit values. Most are offsets from some base (e.g., character
     60  *         positions from end of string or code location from Code* pointer).
     61  * - r8  : code object pointer. Used to convert between absolute and
     62  *         code-object-relative addresses.
     63  *
     64  * The registers rax, rbx, r9 and r11 are free to use for computations.
     65  * If changed to use r12+, they should be saved as callee-save registers.
     66  * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
     67  * kRootRegister) aren't special during execution of RegExp code (they don't
     68  * hold the values assumed when creating JS code), so no Smi or Root related
     69  * macro operations can be used.
     70  *
     71  * Each call to a C++ method should retain these registers.
     72  *
     73  * The stack will have the following content, in some order, indexable from the
     74  * frame pointer (see, e.g., kStackHighEnd):
     75  *    - Isolate* isolate     (Address of the current isolate)
     76  *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
     77  *                            through the runtime system)
     78  *    - stack_area_base      (High end of the memory area to use as
     79  *                            backtracking stack)
     80  *    - int* capture_array   (int[num_saved_registers_], for output).
     81  *    - end of input         (Address of end of string)
     82  *    - start of input       (Address of first character in string)
     83  *    - start index          (character index of start)
     84  *    - String* input_string (input string)
     85  *    - return address
     86  *    - backup of callee save registers (rbx, possibly rsi and rdi).
     87  *    - Offset of location before start of input (effectively character
     88  *      position -1). Used to initialize capture registers to a non-position.
     89  *    - At start of string (if 1, we are starting at the start of the
     90  *      string, otherwise 0)
     91  *    - register 0  rbp[-n]   (Only positions must be stored in the first
     92  *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
     93  *    - ...
     94  *
     95  * The first num_saved_registers_ registers are initialized to point to
     96  * "character -1" in the string (i.e., char_size() bytes before the first
     97  * character of the string). The remaining registers starts out uninitialized.
     98  *
     99  * The first seven values must be provided by the calling code by
    100  * calling the code's entry address cast to a function pointer with the
    101  * following signature:
    102  * int (*match)(String* input_string,
    103  *              int start_index,
    104  *              Address start,
    105  *              Address end,
    106  *              int* capture_output_array,
    107  *              bool at_start,
    108  *              byte* stack_area_base,
    109  *              bool direct_call)
    110  */
    111 
    112 #define __ ACCESS_MASM((&masm_))
    113 
    114 RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
    115     Mode mode,
    116     int registers_to_save)
    117     : masm_(Isolate::Current(), NULL, kRegExpCodeSize),
    118       no_root_array_scope_(&masm_),
    119       code_relative_fixup_positions_(4),
    120       mode_(mode),
    121       num_registers_(registers_to_save),
    122       num_saved_registers_(registers_to_save),
    123       entry_label_(),
    124       start_label_(),
    125       success_label_(),
    126       backtrack_label_(),
    127       exit_label_() {
    128   ASSERT_EQ(0, registers_to_save % 2);
    129   __ jmp(&entry_label_);   // We'll write the entry code when we know more.
    130   __ bind(&start_label_);  // And then continue from here.
    131 }
    132 
    133 
    134 RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
    135   // Unuse labels in case we throw away the assembler without calling GetCode.
    136   entry_label_.Unuse();
    137   start_label_.Unuse();
    138   success_label_.Unuse();
    139   backtrack_label_.Unuse();
    140   exit_label_.Unuse();
    141   check_preempt_label_.Unuse();
    142   stack_overflow_label_.Unuse();
    143 }
    144 
    145 
    146 int RegExpMacroAssemblerX64::stack_limit_slack()  {
    147   return RegExpStack::kStackLimitSlack;
    148 }
    149 
    150 
    151 void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
    152   if (by != 0) {
    153     __ addq(rdi, Immediate(by * char_size()));
    154   }
    155 }
    156 
    157 
    158 void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
    159   ASSERT(reg >= 0);
    160   ASSERT(reg < num_registers_);
    161   if (by != 0) {
    162     __ addq(register_location(reg), Immediate(by));
    163   }
    164 }
    165 
    166 
    167 void RegExpMacroAssemblerX64::Backtrack() {
    168   CheckPreemption();
    169   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    170   Pop(rbx);
    171   __ addq(rbx, code_object_pointer());
    172   __ jmp(rbx);
    173 }
    174 
    175 
    176 void RegExpMacroAssemblerX64::Bind(Label* label) {
    177   __ bind(label);
    178 }
    179 
    180 
    181 void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
    182   __ cmpl(current_character(), Immediate(c));
    183   BranchOrBacktrack(equal, on_equal);
    184 }
    185 
    186 
    187 void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
    188   __ cmpl(current_character(), Immediate(limit));
    189   BranchOrBacktrack(greater, on_greater);
    190 }
    191 
    192 
    193 void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
    194   Label not_at_start;
    195   // Did we start the match at the start of the string at all?
    196   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    197   BranchOrBacktrack(not_equal, &not_at_start);
    198   // If we did, are we still at the start of the input?
    199   __ lea(rax, Operand(rsi, rdi, times_1, 0));
    200   __ cmpq(rax, Operand(rbp, kInputStart));
    201   BranchOrBacktrack(equal, on_at_start);
    202   __ bind(&not_at_start);
    203 }
    204 
    205 
    206 void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
    207   // Did we start the match at the start of the string at all?
    208   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    209   BranchOrBacktrack(not_equal, on_not_at_start);
    210   // If we did, are we still at the start of the input?
    211   __ lea(rax, Operand(rsi, rdi, times_1, 0));
    212   __ cmpq(rax, Operand(rbp, kInputStart));
    213   BranchOrBacktrack(not_equal, on_not_at_start);
    214 }
    215 
    216 
    217 void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
    218   __ cmpl(current_character(), Immediate(limit));
    219   BranchOrBacktrack(less, on_less);
    220 }
    221 
    222 
    223 void RegExpMacroAssemblerX64::CheckCharacters(Vector<const uc16> str,
    224                                               int cp_offset,
    225                                               Label* on_failure,
    226                                               bool check_end_of_string) {
    227 #ifdef DEBUG
    228   // If input is ASCII, don't even bother calling here if the string to
    229   // match contains a non-ASCII character.
    230   if (mode_ == ASCII) {
    231     ASSERT(String::IsAscii(str.start(), str.length()));
    232   }
    233 #endif
    234   int byte_length = str.length() * char_size();
    235   int byte_offset = cp_offset * char_size();
    236   if (check_end_of_string) {
    237     // Check that there are at least str.length() characters left in the input.
    238     __ cmpl(rdi, Immediate(-(byte_offset + byte_length)));
    239     BranchOrBacktrack(greater, on_failure);
    240   }
    241 
    242   if (on_failure == NULL) {
    243     // Instead of inlining a backtrack, (re)use the global backtrack target.
    244     on_failure = &backtrack_label_;
    245   }
    246 
    247   // Do one character test first to minimize loading for the case that
    248   // we don't match at all (loading more than one character introduces that
    249   // chance of reading unaligned and reading across cache boundaries).
    250   // If the first character matches, expect a larger chance of matching the
    251   // string, and start loading more characters at a time.
    252   if (mode_ == ASCII) {
    253     __ cmpb(Operand(rsi, rdi, times_1, byte_offset),
    254             Immediate(static_cast<int8_t>(str[0])));
    255   } else {
    256     // Don't use 16-bit immediate. The size changing prefix throws off
    257     // pre-decoding.
    258     __ movzxwl(rax,
    259                Operand(rsi, rdi, times_1, byte_offset));
    260     __ cmpl(rax, Immediate(static_cast<int32_t>(str[0])));
    261   }
    262   BranchOrBacktrack(not_equal, on_failure);
    263 
    264   __ lea(rbx, Operand(rsi, rdi, times_1, 0));
    265   for (int i = 1, n = str.length(); i < n; ) {
    266     if (mode_ == ASCII) {
    267       if (i + 8 <= n) {
    268         uint64_t combined_chars =
    269             (static_cast<uint64_t>(str[i + 0]) << 0) ||
    270             (static_cast<uint64_t>(str[i + 1]) << 8) ||
    271             (static_cast<uint64_t>(str[i + 2]) << 16) ||
    272             (static_cast<uint64_t>(str[i + 3]) << 24) ||
    273             (static_cast<uint64_t>(str[i + 4]) << 32) ||
    274             (static_cast<uint64_t>(str[i + 5]) << 40) ||
    275             (static_cast<uint64_t>(str[i + 6]) << 48) ||
    276             (static_cast<uint64_t>(str[i + 7]) << 56);
    277         __ movq(rax, combined_chars, RelocInfo::NONE);
    278         __ cmpq(rax, Operand(rbx, byte_offset + i));
    279         i += 8;
    280       } else if (i + 4 <= n) {
    281         uint32_t combined_chars =
    282             (static_cast<uint32_t>(str[i + 0]) << 0) ||
    283             (static_cast<uint32_t>(str[i + 1]) << 8) ||
    284             (static_cast<uint32_t>(str[i + 2]) << 16) ||
    285             (static_cast<uint32_t>(str[i + 3]) << 24);
    286         __ cmpl(Operand(rbx, byte_offset + i), Immediate(combined_chars));
    287         i += 4;
    288       } else {
    289         __ cmpb(Operand(rbx, byte_offset + i),
    290                 Immediate(static_cast<int8_t>(str[i])));
    291         i++;
    292       }
    293     } else {
    294       ASSERT(mode_ == UC16);
    295       if (i + 4 <= n) {
    296         uint64_t combined_chars = *reinterpret_cast<const uint64_t*>(&str[i]);
    297         __ movq(rax, combined_chars, RelocInfo::NONE);
    298         __ cmpq(rax,
    299                 Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
    300         i += 4;
    301       } else if (i + 2 <= n) {
    302         uint32_t combined_chars = *reinterpret_cast<const uint32_t*>(&str[i]);
    303         __ cmpl(Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)),
    304                 Immediate(combined_chars));
    305         i += 2;
    306       } else {
    307         __ movzxwl(rax,
    308                    Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
    309         __ cmpl(rax, Immediate(str[i]));
    310         i++;
    311       }
    312     }
    313     BranchOrBacktrack(not_equal, on_failure);
    314   }
    315 }
    316 
    317 
    318 void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
    319   Label fallthrough;
    320   __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
    321   __ j(not_equal, &fallthrough);
    322   Drop();
    323   BranchOrBacktrack(no_condition, on_equal);
    324   __ bind(&fallthrough);
    325 }
    326 
    327 
    328 void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
    329     int start_reg,
    330     Label* on_no_match) {
    331   Label fallthrough;
    332   __ movq(rdx, register_location(start_reg));  // Offset of start of capture
    333   __ movq(rbx, register_location(start_reg + 1));  // Offset of end of capture
    334   __ subq(rbx, rdx);  // Length of capture.
    335 
    336   // -----------------------
    337   // rdx  = Start offset of capture.
    338   // rbx = Length of capture
    339 
    340   // If length is negative, this code will fail (it's a symptom of a partial or
    341   // illegal capture where start of capture after end of capture).
    342   // This must not happen (no back-reference can reference a capture that wasn't
    343   // closed before in the reg-exp, and we must not generate code that can cause
    344   // this condition).
    345 
    346   // If length is zero, either the capture is empty or it is nonparticipating.
    347   // In either case succeed immediately.
    348   __ j(equal, &fallthrough);
    349 
    350   if (mode_ == ASCII) {
    351     Label loop_increment;
    352     if (on_no_match == NULL) {
    353       on_no_match = &backtrack_label_;
    354     }
    355 
    356     __ lea(r9, Operand(rsi, rdx, times_1, 0));
    357     __ lea(r11, Operand(rsi, rdi, times_1, 0));
    358     __ addq(rbx, r9);  // End of capture
    359     // ---------------------
    360     // r11 - current input character address
    361     // r9 - current capture character address
    362     // rbx - end of capture
    363 
    364     Label loop;
    365     __ bind(&loop);
    366     __ movzxbl(rdx, Operand(r9, 0));
    367     __ movzxbl(rax, Operand(r11, 0));
    368     // al - input character
    369     // dl - capture character
    370     __ cmpb(rax, rdx);
    371     __ j(equal, &loop_increment);
    372 
    373     // Mismatch, try case-insensitive match (converting letters to lower-case).
    374     // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
    375     // a match.
    376     __ or_(rax, Immediate(0x20));  // Convert match character to lower-case.
    377     __ or_(rdx, Immediate(0x20));  // Convert capture character to lower-case.
    378     __ cmpb(rax, rdx);
    379     __ j(not_equal, on_no_match);  // Definitely not equal.
    380     __ subb(rax, Immediate('a'));
    381     __ cmpb(rax, Immediate('z' - 'a'));
    382     __ j(above, on_no_match);  // Weren't letters anyway.
    383 
    384     __ bind(&loop_increment);
    385     // Increment pointers into match and capture strings.
    386     __ addq(r11, Immediate(1));
    387     __ addq(r9, Immediate(1));
    388     // Compare to end of capture, and loop if not done.
    389     __ cmpq(r9, rbx);
    390     __ j(below, &loop);
    391 
    392     // Compute new value of character position after the matched part.
    393     __ movq(rdi, r11);
    394     __ subq(rdi, rsi);
    395   } else {
    396     ASSERT(mode_ == UC16);
    397     // Save important/volatile registers before calling C function.
    398 #ifndef _WIN64
    399     // Caller save on Linux and callee save in Windows.
    400     __ push(rsi);
    401     __ push(rdi);
    402 #endif
    403     __ push(backtrack_stackpointer());
    404 
    405     static const int num_arguments = 4;
    406     __ PrepareCallCFunction(num_arguments);
    407 
    408     // Put arguments into parameter registers. Parameters are
    409     //   Address byte_offset1 - Address captured substring's start.
    410     //   Address byte_offset2 - Address of current character position.
    411     //   size_t byte_length - length of capture in bytes(!)
    412     //   Isolate* isolate
    413 #ifdef _WIN64
    414     // Compute and set byte_offset1 (start of capture).
    415     __ lea(rcx, Operand(rsi, rdx, times_1, 0));
    416     // Set byte_offset2.
    417     __ lea(rdx, Operand(rsi, rdi, times_1, 0));
    418     // Set byte_length.
    419     __ movq(r8, rbx);
    420     // Isolate.
    421     __ LoadAddress(r9, ExternalReference::isolate_address());
    422 #else  // AMD64 calling convention
    423     // Compute byte_offset2 (current position = rsi+rdi).
    424     __ lea(rax, Operand(rsi, rdi, times_1, 0));
    425     // Compute and set byte_offset1 (start of capture).
    426     __ lea(rdi, Operand(rsi, rdx, times_1, 0));
    427     // Set byte_offset2.
    428     __ movq(rsi, rax);
    429     // Set byte_length.
    430     __ movq(rdx, rbx);
    431     // Isolate.
    432     __ LoadAddress(rcx, ExternalReference::isolate_address());
    433 #endif
    434 
    435     { // NOLINT: Can't find a way to open this scope without confusing the
    436       // linter.
    437       AllowExternalCallThatCantCauseGC scope(&masm_);
    438       ExternalReference compare =
    439           ExternalReference::re_case_insensitive_compare_uc16(masm_.isolate());
    440       __ CallCFunction(compare, num_arguments);
    441     }
    442 
    443     // Restore original values before reacting on result value.
    444     __ Move(code_object_pointer(), masm_.CodeObject());
    445     __ pop(backtrack_stackpointer());
    446 #ifndef _WIN64
    447     __ pop(rdi);
    448     __ pop(rsi);
    449 #endif
    450 
    451     // Check if function returned non-zero for success or zero for failure.
    452     __ testq(rax, rax);
    453     BranchOrBacktrack(zero, on_no_match);
    454     // On success, increment position by length of capture.
    455     // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
    456     __ addq(rdi, rbx);
    457   }
    458   __ bind(&fallthrough);
    459 }
    460 
    461 
    462 void RegExpMacroAssemblerX64::CheckNotBackReference(
    463     int start_reg,
    464     Label* on_no_match) {
    465   Label fallthrough;
    466 
    467   // Find length of back-referenced capture.
    468   __ movq(rdx, register_location(start_reg));
    469   __ movq(rax, register_location(start_reg + 1));
    470   __ subq(rax, rdx);  // Length to check.
    471 
    472   // Fail on partial or illegal capture (start of capture after end of capture).
    473   // This must not happen (no back-reference can reference a capture that wasn't
    474   // closed before in the reg-exp).
    475   __ Check(greater_equal, "Invalid capture referenced");
    476 
    477   // Succeed on empty capture (including non-participating capture)
    478   __ j(equal, &fallthrough);
    479 
    480   // -----------------------
    481   // rdx - Start of capture
    482   // rax - length of capture
    483 
    484   // Check that there are sufficient characters left in the input.
    485   __ movl(rbx, rdi);
    486   __ addl(rbx, rax);
    487   BranchOrBacktrack(greater, on_no_match);
    488 
    489   // Compute pointers to match string and capture string
    490   __ lea(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
    491   __ addq(rdx, rsi);  // Start of capture.
    492   __ lea(r9, Operand(rdx, rax, times_1, 0));  // End of capture
    493 
    494   // -----------------------
    495   // rbx - current capture character address.
    496   // rbx - current input character address .
    497   // r9 - end of input to match (capture length after rbx).
    498 
    499   Label loop;
    500   __ bind(&loop);
    501   if (mode_ == ASCII) {
    502     __ movzxbl(rax, Operand(rdx, 0));
    503     __ cmpb(rax, Operand(rbx, 0));
    504   } else {
    505     ASSERT(mode_ == UC16);
    506     __ movzxwl(rax, Operand(rdx, 0));
    507     __ cmpw(rax, Operand(rbx, 0));
    508   }
    509   BranchOrBacktrack(not_equal, on_no_match);
    510   // Increment pointers into capture and match string.
    511   __ addq(rbx, Immediate(char_size()));
    512   __ addq(rdx, Immediate(char_size()));
    513   // Check if we have reached end of match area.
    514   __ cmpq(rdx, r9);
    515   __ j(below, &loop);
    516 
    517   // Success.
    518   // Set current character position to position after match.
    519   __ movq(rdi, rbx);
    520   __ subq(rdi, rsi);
    521 
    522   __ bind(&fallthrough);
    523 }
    524 
    525 
    526 void RegExpMacroAssemblerX64::CheckNotRegistersEqual(int reg1,
    527                                                      int reg2,
    528                                                      Label* on_not_equal) {
    529   __ movq(rax, register_location(reg1));
    530   __ cmpq(rax, register_location(reg2));
    531   BranchOrBacktrack(not_equal, on_not_equal);
    532 }
    533 
    534 
    535 void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
    536                                                 Label* on_not_equal) {
    537   __ cmpl(current_character(), Immediate(c));
    538   BranchOrBacktrack(not_equal, on_not_equal);
    539 }
    540 
    541 
    542 void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
    543                                                      uint32_t mask,
    544                                                      Label* on_equal) {
    545   __ movl(rax, current_character());
    546   __ and_(rax, Immediate(mask));
    547   __ cmpl(rax, Immediate(c));
    548   BranchOrBacktrack(equal, on_equal);
    549 }
    550 
    551 
    552 void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
    553                                                         uint32_t mask,
    554                                                         Label* on_not_equal) {
    555   __ movl(rax, current_character());
    556   __ and_(rax, Immediate(mask));
    557   __ cmpl(rax, Immediate(c));
    558   BranchOrBacktrack(not_equal, on_not_equal);
    559 }
    560 
    561 
    562 void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
    563     uc16 c,
    564     uc16 minus,
    565     uc16 mask,
    566     Label* on_not_equal) {
    567   ASSERT(minus < String::kMaxUtf16CodeUnit);
    568   __ lea(rax, Operand(current_character(), -minus));
    569   __ and_(rax, Immediate(mask));
    570   __ cmpl(rax, Immediate(c));
    571   BranchOrBacktrack(not_equal, on_not_equal);
    572 }
    573 
    574 
    575 bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
    576                                                          Label* on_no_match) {
    577   // Range checks (c in min..max) are generally implemented by an unsigned
    578   // (c - min) <= (max - min) check, using the sequence:
    579   //   lea(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
    580   //   cmp(rax, Immediate(max - min))
    581   switch (type) {
    582   case 's':
    583     // Match space-characters
    584     if (mode_ == ASCII) {
    585       // ASCII space characters are '\t'..'\r' and ' '.
    586       Label success;
    587       __ cmpl(current_character(), Immediate(' '));
    588       __ j(equal, &success);
    589       // Check range 0x09..0x0d
    590       __ lea(rax, Operand(current_character(), -'\t'));
    591       __ cmpl(rax, Immediate('\r' - '\t'));
    592       BranchOrBacktrack(above, on_no_match);
    593       __ bind(&success);
    594       return true;
    595     }
    596     return false;
    597   case 'S':
    598     // Match non-space characters.
    599     if (mode_ == ASCII) {
    600       // ASCII space characters are '\t'..'\r' and ' '.
    601       __ cmpl(current_character(), Immediate(' '));
    602       BranchOrBacktrack(equal, on_no_match);
    603       __ lea(rax, Operand(current_character(), -'\t'));
    604       __ cmpl(rax, Immediate('\r' - '\t'));
    605       BranchOrBacktrack(below_equal, on_no_match);
    606       return true;
    607     }
    608     return false;
    609   case 'd':
    610     // Match ASCII digits ('0'..'9')
    611     __ lea(rax, Operand(current_character(), -'0'));
    612     __ cmpl(rax, Immediate('9' - '0'));
    613     BranchOrBacktrack(above, on_no_match);
    614     return true;
    615   case 'D':
    616     // Match non ASCII-digits
    617     __ lea(rax, Operand(current_character(), -'0'));
    618     __ cmpl(rax, Immediate('9' - '0'));
    619     BranchOrBacktrack(below_equal, on_no_match);
    620     return true;
    621   case '.': {
    622     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    623     __ movl(rax, current_character());
    624     __ xor_(rax, Immediate(0x01));
    625     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    626     __ subl(rax, Immediate(0x0b));
    627     __ cmpl(rax, Immediate(0x0c - 0x0b));
    628     BranchOrBacktrack(below_equal, on_no_match);
    629     if (mode_ == UC16) {
    630       // Compare original value to 0x2028 and 0x2029, using the already
    631       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    632       // 0x201d (0x2028 - 0x0b) or 0x201e.
    633       __ subl(rax, Immediate(0x2028 - 0x0b));
    634       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    635       BranchOrBacktrack(below_equal, on_no_match);
    636     }
    637     return true;
    638   }
    639   case 'n': {
    640     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    641     __ movl(rax, current_character());
    642     __ xor_(rax, Immediate(0x01));
    643     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    644     __ subl(rax, Immediate(0x0b));
    645     __ cmpl(rax, Immediate(0x0c - 0x0b));
    646     if (mode_ == ASCII) {
    647       BranchOrBacktrack(above, on_no_match);
    648     } else {
    649       Label done;
    650       BranchOrBacktrack(below_equal, &done);
    651       // Compare original value to 0x2028 and 0x2029, using the already
    652       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    653       // 0x201d (0x2028 - 0x0b) or 0x201e.
    654       __ subl(rax, Immediate(0x2028 - 0x0b));
    655       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    656       BranchOrBacktrack(above, on_no_match);
    657       __ bind(&done);
    658     }
    659     return true;
    660   }
    661   case 'w': {
    662     if (mode_ != ASCII) {
    663       // Table is 128 entries, so all ASCII characters can be tested.
    664       __ cmpl(current_character(), Immediate('z'));
    665       BranchOrBacktrack(above, on_no_match);
    666     }
    667     __ movq(rbx, ExternalReference::re_word_character_map());
    668     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    669     __ testb(Operand(rbx, current_character(), times_1, 0),
    670              current_character());
    671     BranchOrBacktrack(zero, on_no_match);
    672     return true;
    673   }
    674   case 'W': {
    675     Label done;
    676     if (mode_ != ASCII) {
    677       // Table is 128 entries, so all ASCII characters can be tested.
    678       __ cmpl(current_character(), Immediate('z'));
    679       __ j(above, &done);
    680     }
    681     __ movq(rbx, ExternalReference::re_word_character_map());
    682     ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    683     __ testb(Operand(rbx, current_character(), times_1, 0),
    684              current_character());
    685     BranchOrBacktrack(not_zero, on_no_match);
    686     if (mode_ != ASCII) {
    687       __ bind(&done);
    688     }
    689     return true;
    690   }
    691 
    692   case '*':
    693     // Match any character.
    694     return true;
    695   // No custom implementation (yet): s(UC16), S(UC16).
    696   default:
    697     return false;
    698   }
    699 }
    700 
    701 
    702 void RegExpMacroAssemblerX64::Fail() {
    703   ASSERT(FAILURE == 0);  // Return value for failure is zero.
    704   __ Set(rax, 0);
    705   __ jmp(&exit_label_);
    706 }
    707 
    708 
    709 Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
    710   // Finalize code - write the entry point code now we know how many
    711   // registers we need.
    712   // Entry code:
    713   __ bind(&entry_label_);
    714 
    715   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
    716   // is generated.
    717   FrameScope scope(&masm_, StackFrame::MANUAL);
    718 
    719   // Actually emit code to start a new stack frame.
    720   __ push(rbp);
    721   __ movq(rbp, rsp);
    722   // Save parameters and callee-save registers. Order here should correspond
    723   //  to order of kBackup_ebx etc.
    724 #ifdef _WIN64
    725   // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
    726   // Store register parameters in pre-allocated stack slots,
    727   __ movq(Operand(rbp, kInputString), rcx);
    728   __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
    729   __ movq(Operand(rbp, kInputStart), r8);
    730   __ movq(Operand(rbp, kInputEnd), r9);
    731   // Callee-save on Win64.
    732   __ push(rsi);
    733   __ push(rdi);
    734   __ push(rbx);
    735 #else
    736   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
    737   // Push register parameters on stack for reference.
    738   ASSERT_EQ(kInputString, -1 * kPointerSize);
    739   ASSERT_EQ(kStartIndex, -2 * kPointerSize);
    740   ASSERT_EQ(kInputStart, -3 * kPointerSize);
    741   ASSERT_EQ(kInputEnd, -4 * kPointerSize);
    742   ASSERT_EQ(kRegisterOutput, -5 * kPointerSize);
    743   ASSERT_EQ(kStackHighEnd, -6 * kPointerSize);
    744   __ push(rdi);
    745   __ push(rsi);
    746   __ push(rdx);
    747   __ push(rcx);
    748   __ push(r8);
    749   __ push(r9);
    750 
    751   __ push(rbx);  // Callee-save
    752 #endif
    753 
    754   __ push(Immediate(0));  // Make room for "at start" constant.
    755 
    756   // Check if we have space on the stack for registers.
    757   Label stack_limit_hit;
    758   Label stack_ok;
    759 
    760   ExternalReference stack_limit =
    761       ExternalReference::address_of_stack_limit(masm_.isolate());
    762   __ movq(rcx, rsp);
    763   __ movq(kScratchRegister, stack_limit);
    764   __ subq(rcx, Operand(kScratchRegister, 0));
    765   // Handle it if the stack pointer is already below the stack limit.
    766   __ j(below_equal, &stack_limit_hit);
    767   // Check if there is room for the variable number of registers above
    768   // the stack limit.
    769   __ cmpq(rcx, Immediate(num_registers_ * kPointerSize));
    770   __ j(above_equal, &stack_ok);
    771   // Exit with OutOfMemory exception. There is not enough space on the stack
    772   // for our working registers.
    773   __ Set(rax, EXCEPTION);
    774   __ jmp(&exit_label_);
    775 
    776   __ bind(&stack_limit_hit);
    777   __ Move(code_object_pointer(), masm_.CodeObject());
    778   CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
    779   __ testq(rax, rax);
    780   // If returned value is non-zero, we exit with the returned value as result.
    781   __ j(not_zero, &exit_label_);
    782 
    783   __ bind(&stack_ok);
    784 
    785   // Allocate space on stack for registers.
    786   __ subq(rsp, Immediate(num_registers_ * kPointerSize));
    787   // Load string length.
    788   __ movq(rsi, Operand(rbp, kInputEnd));
    789   // Load input position.
    790   __ movq(rdi, Operand(rbp, kInputStart));
    791   // Set up rdi to be negative offset from string end.
    792   __ subq(rdi, rsi);
    793   // Set rax to address of char before start of the string
    794   // (effectively string position -1).
    795   __ movq(rbx, Operand(rbp, kStartIndex));
    796   __ neg(rbx);
    797   if (mode_ == UC16) {
    798     __ lea(rax, Operand(rdi, rbx, times_2, -char_size()));
    799   } else {
    800     __ lea(rax, Operand(rdi, rbx, times_1, -char_size()));
    801   }
    802   // Store this value in a local variable, for use when clearing
    803   // position registers.
    804   __ movq(Operand(rbp, kInputStartMinusOne), rax);
    805 
    806   if (num_saved_registers_ > 0) {
    807     // Fill saved registers with initial value = start offset - 1
    808     // Fill in stack push order, to avoid accessing across an unwritten
    809     // page (a problem on Windows).
    810     __ Set(rcx, kRegisterZero);
    811     Label init_loop;
    812     __ bind(&init_loop);
    813     __ movq(Operand(rbp, rcx, times_1, 0), rax);
    814     __ subq(rcx, Immediate(kPointerSize));
    815     __ cmpq(rcx,
    816             Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
    817     __ j(greater, &init_loop);
    818   }
    819   // Ensure that we have written to each stack page, in order. Skipping a page
    820   // on Windows can cause segmentation faults. Assuming page size is 4k.
    821   const int kPageSize = 4096;
    822   const int kRegistersPerPage = kPageSize / kPointerSize;
    823   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
    824       i < num_registers_;
    825       i += kRegistersPerPage) {
    826     __ movq(register_location(i), rax);  // One write every page.
    827   }
    828 
    829   // Initialize backtrack stack pointer.
    830   __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
    831   // Initialize code object pointer.
    832   __ Move(code_object_pointer(), masm_.CodeObject());
    833   // Load previous char as initial value of current-character.
    834   Label at_start;
    835   __ cmpb(Operand(rbp, kStartIndex), Immediate(0));
    836   __ j(equal, &at_start);
    837   LoadCurrentCharacterUnchecked(-1, 1);  // Load previous char.
    838   __ jmp(&start_label_);
    839   __ bind(&at_start);
    840   __ Set(current_character(), '\n');
    841   __ jmp(&start_label_);
    842 
    843 
    844   // Exit code:
    845   if (success_label_.is_linked()) {
    846     // Save captures when successful.
    847     __ bind(&success_label_);
    848     if (num_saved_registers_ > 0) {
    849       // copy captures to output
    850       __ movq(rdx, Operand(rbp, kStartIndex));
    851       __ movq(rbx, Operand(rbp, kRegisterOutput));
    852       __ movq(rcx, Operand(rbp, kInputEnd));
    853       __ subq(rcx, Operand(rbp, kInputStart));
    854       if (mode_ == UC16) {
    855         __ lea(rcx, Operand(rcx, rdx, times_2, 0));
    856       } else {
    857         __ addq(rcx, rdx);
    858       }
    859       for (int i = 0; i < num_saved_registers_; i++) {
    860         __ movq(rax, register_location(i));
    861         __ addq(rax, rcx);  // Convert to index from start, not end.
    862         if (mode_ == UC16) {
    863           __ sar(rax, Immediate(1));  // Convert byte index to character index.
    864         }
    865         __ movl(Operand(rbx, i * kIntSize), rax);
    866       }
    867     }
    868     __ Set(rax, SUCCESS);
    869   }
    870 
    871   // Exit and return rax
    872   __ bind(&exit_label_);
    873 
    874 #ifdef _WIN64
    875   // Restore callee save registers.
    876   __ lea(rsp, Operand(rbp, kLastCalleeSaveRegister));
    877   __ pop(rbx);
    878   __ pop(rdi);
    879   __ pop(rsi);
    880   // Stack now at rbp.
    881 #else
    882   // Restore callee save register.
    883   __ movq(rbx, Operand(rbp, kBackup_rbx));
    884   // Skip rsp to rbp.
    885   __ movq(rsp, rbp);
    886 #endif
    887   // Exit function frame, restore previous one.
    888   __ pop(rbp);
    889   __ ret(0);
    890 
    891   // Backtrack code (branch target for conditional backtracks).
    892   if (backtrack_label_.is_linked()) {
    893     __ bind(&backtrack_label_);
    894     Backtrack();
    895   }
    896 
    897   Label exit_with_exception;
    898 
    899   // Preempt-code
    900   if (check_preempt_label_.is_linked()) {
    901     SafeCallTarget(&check_preempt_label_);
    902 
    903     __ push(backtrack_stackpointer());
    904     __ push(rdi);
    905 
    906     CallCheckStackGuardState();
    907     __ testq(rax, rax);
    908     // If returning non-zero, we should end execution with the given
    909     // result as return value.
    910     __ j(not_zero, &exit_label_);
    911 
    912     // Restore registers.
    913     __ Move(code_object_pointer(), masm_.CodeObject());
    914     __ pop(rdi);
    915     __ pop(backtrack_stackpointer());
    916     // String might have moved: Reload esi from frame.
    917     __ movq(rsi, Operand(rbp, kInputEnd));
    918     SafeReturn();
    919   }
    920 
    921   // Backtrack stack overflow code.
    922   if (stack_overflow_label_.is_linked()) {
    923     SafeCallTarget(&stack_overflow_label_);
    924     // Reached if the backtrack-stack limit has been hit.
    925 
    926     Label grow_failed;
    927     // Save registers before calling C function
    928 #ifndef _WIN64
    929     // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
    930     __ push(rsi);
    931     __ push(rdi);
    932 #endif
    933 
    934     // Call GrowStack(backtrack_stackpointer())
    935     static const int num_arguments = 3;
    936     __ PrepareCallCFunction(num_arguments);
    937 #ifdef _WIN64
    938     // Microsoft passes parameters in rcx, rdx, r8.
    939     // First argument, backtrack stackpointer, is already in rcx.
    940     __ lea(rdx, Operand(rbp, kStackHighEnd));  // Second argument
    941     __ LoadAddress(r8, ExternalReference::isolate_address());
    942 #else
    943     // AMD64 ABI passes parameters in rdi, rsi, rdx.
    944     __ movq(rdi, backtrack_stackpointer());   // First argument.
    945     __ lea(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
    946     __ LoadAddress(rdx, ExternalReference::isolate_address());
    947 #endif
    948     ExternalReference grow_stack =
    949         ExternalReference::re_grow_stack(masm_.isolate());
    950     __ CallCFunction(grow_stack, num_arguments);
    951     // If return NULL, we have failed to grow the stack, and
    952     // must exit with a stack-overflow exception.
    953     __ testq(rax, rax);
    954     __ j(equal, &exit_with_exception);
    955     // Otherwise use return value as new stack pointer.
    956     __ movq(backtrack_stackpointer(), rax);
    957     // Restore saved registers and continue.
    958     __ Move(code_object_pointer(), masm_.CodeObject());
    959 #ifndef _WIN64
    960     __ pop(rdi);
    961     __ pop(rsi);
    962 #endif
    963     SafeReturn();
    964   }
    965 
    966   if (exit_with_exception.is_linked()) {
    967     // If any of the code above needed to exit with an exception.
    968     __ bind(&exit_with_exception);
    969     // Exit with Result EXCEPTION(-1) to signal thrown exception.
    970     __ Set(rax, EXCEPTION);
    971     __ jmp(&exit_label_);
    972   }
    973 
    974   FixupCodeRelativePositions();
    975 
    976   CodeDesc code_desc;
    977   masm_.GetCode(&code_desc);
    978   Isolate* isolate = ISOLATE;
    979   Handle<Code> code = isolate->factory()->NewCode(
    980       code_desc, Code::ComputeFlags(Code::REGEXP),
    981       masm_.CodeObject());
    982   PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
    983   return Handle<HeapObject>::cast(code);
    984 }
    985 
    986 
    987 void RegExpMacroAssemblerX64::GoTo(Label* to) {
    988   BranchOrBacktrack(no_condition, to);
    989 }
    990 
    991 
    992 void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
    993                                            int comparand,
    994                                            Label* if_ge) {
    995   __ cmpq(register_location(reg), Immediate(comparand));
    996   BranchOrBacktrack(greater_equal, if_ge);
    997 }
    998 
    999 
   1000 void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
   1001                                            int comparand,
   1002                                            Label* if_lt) {
   1003   __ cmpq(register_location(reg), Immediate(comparand));
   1004   BranchOrBacktrack(less, if_lt);
   1005 }
   1006 
   1007 
   1008 void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
   1009                                               Label* if_eq) {
   1010   __ cmpq(rdi, register_location(reg));
   1011   BranchOrBacktrack(equal, if_eq);
   1012 }
   1013 
   1014 
   1015 RegExpMacroAssembler::IrregexpImplementation
   1016     RegExpMacroAssemblerX64::Implementation() {
   1017   return kX64Implementation;
   1018 }
   1019 
   1020 
   1021 void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
   1022                                                    Label* on_end_of_input,
   1023                                                    bool check_bounds,
   1024                                                    int characters) {
   1025   ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
   1026   ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
   1027   if (check_bounds) {
   1028     CheckPosition(cp_offset + characters - 1, on_end_of_input);
   1029   }
   1030   LoadCurrentCharacterUnchecked(cp_offset, characters);
   1031 }
   1032 
   1033 
   1034 void RegExpMacroAssemblerX64::PopCurrentPosition() {
   1035   Pop(rdi);
   1036 }
   1037 
   1038 
   1039 void RegExpMacroAssemblerX64::PopRegister(int register_index) {
   1040   Pop(rax);
   1041   __ movq(register_location(register_index), rax);
   1042 }
   1043 
   1044 
   1045 void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
   1046   Push(label);
   1047   CheckStackLimit();
   1048 }
   1049 
   1050 
   1051 void RegExpMacroAssemblerX64::PushCurrentPosition() {
   1052   Push(rdi);
   1053 }
   1054 
   1055 
   1056 void RegExpMacroAssemblerX64::PushRegister(int register_index,
   1057                                            StackCheckFlag check_stack_limit) {
   1058   __ movq(rax, register_location(register_index));
   1059   Push(rax);
   1060   if (check_stack_limit) CheckStackLimit();
   1061 }
   1062 
   1063 
   1064 void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
   1065   __ movq(rdi, register_location(reg));
   1066 }
   1067 
   1068 
   1069 void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
   1070   __ movq(backtrack_stackpointer(), register_location(reg));
   1071   __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
   1072 }
   1073 
   1074 
   1075 void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
   1076   Label after_position;
   1077   __ cmpq(rdi, Immediate(-by * char_size()));
   1078   __ j(greater_equal, &after_position, Label::kNear);
   1079   __ movq(rdi, Immediate(-by * char_size()));
   1080   // On RegExp code entry (where this operation is used), the character before
   1081   // the current position is expected to be already loaded.
   1082   // We have advanced the position, so it's safe to read backwards.
   1083   LoadCurrentCharacterUnchecked(-1, 1);
   1084   __ bind(&after_position);
   1085 }
   1086 
   1087 
   1088 void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
   1089   ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
   1090   __ movq(register_location(register_index), Immediate(to));
   1091 }
   1092 
   1093 
   1094 void RegExpMacroAssemblerX64::Succeed() {
   1095   __ jmp(&success_label_);
   1096 }
   1097 
   1098 
   1099 void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
   1100                                                              int cp_offset) {
   1101   if (cp_offset == 0) {
   1102     __ movq(register_location(reg), rdi);
   1103   } else {
   1104     __ lea(rax, Operand(rdi, cp_offset * char_size()));
   1105     __ movq(register_location(reg), rax);
   1106   }
   1107 }
   1108 
   1109 
   1110 void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
   1111   ASSERT(reg_from <= reg_to);
   1112   __ movq(rax, Operand(rbp, kInputStartMinusOne));
   1113   for (int reg = reg_from; reg <= reg_to; reg++) {
   1114     __ movq(register_location(reg), rax);
   1115   }
   1116 }
   1117 
   1118 
   1119 void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
   1120   __ movq(rax, backtrack_stackpointer());
   1121   __ subq(rax, Operand(rbp, kStackHighEnd));
   1122   __ movq(register_location(reg), rax);
   1123 }
   1124 
   1125 
   1126 // Private methods:
   1127 
   1128 void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
   1129   // This function call preserves no register values. Caller should
   1130   // store anything volatile in a C call or overwritten by this function.
   1131   static const int num_arguments = 3;
   1132   __ PrepareCallCFunction(num_arguments);
   1133 #ifdef _WIN64
   1134   // Second argument: Code* of self. (Do this before overwriting r8).
   1135   __ movq(rdx, code_object_pointer());
   1136   // Third argument: RegExp code frame pointer.
   1137   __ movq(r8, rbp);
   1138   // First argument: Next address on the stack (will be address of
   1139   // return address).
   1140   __ lea(rcx, Operand(rsp, -kPointerSize));
   1141 #else
   1142   // Third argument: RegExp code frame pointer.
   1143   __ movq(rdx, rbp);
   1144   // Second argument: Code* of self.
   1145   __ movq(rsi, code_object_pointer());
   1146   // First argument: Next address on the stack (will be address of
   1147   // return address).
   1148   __ lea(rdi, Operand(rsp, -kPointerSize));
   1149 #endif
   1150   ExternalReference stack_check =
   1151       ExternalReference::re_check_stack_guard_state(masm_.isolate());
   1152   __ CallCFunction(stack_check, num_arguments);
   1153 }
   1154 
   1155 
   1156 // Helper function for reading a value out of a stack frame.
   1157 template <typename T>
   1158 static T& frame_entry(Address re_frame, int frame_offset) {
   1159   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
   1160 }
   1161 
   1162 
   1163 int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
   1164                                                   Code* re_code,
   1165                                                   Address re_frame) {
   1166   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
   1167   ASSERT(isolate == Isolate::Current());
   1168   if (isolate->stack_guard()->IsStackOverflow()) {
   1169     isolate->StackOverflow();
   1170     return EXCEPTION;
   1171   }
   1172 
   1173   // If not real stack overflow the stack guard was used to interrupt
   1174   // execution for another purpose.
   1175 
   1176   // If this is a direct call from JavaScript retry the RegExp forcing the call
   1177   // through the runtime system. Currently the direct call cannot handle a GC.
   1178   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
   1179     return RETRY;
   1180   }
   1181 
   1182   // Prepare for possible GC.
   1183   HandleScope handles(isolate);
   1184   Handle<Code> code_handle(re_code);
   1185 
   1186   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
   1187 
   1188   // Current string.
   1189   bool is_ascii = subject->IsAsciiRepresentationUnderneath();
   1190 
   1191   ASSERT(re_code->instruction_start() <= *return_address);
   1192   ASSERT(*return_address <=
   1193       re_code->instruction_start() + re_code->instruction_size());
   1194 
   1195   MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate);
   1196 
   1197   if (*code_handle != re_code) {  // Return address no longer valid
   1198     intptr_t delta = code_handle->address() - re_code->address();
   1199     // Overwrite the return address on the stack.
   1200     *return_address += delta;
   1201   }
   1202 
   1203   if (result->IsException()) {
   1204     return EXCEPTION;
   1205   }
   1206 
   1207   Handle<String> subject_tmp = subject;
   1208   int slice_offset = 0;
   1209 
   1210   // Extract the underlying string and the slice offset.
   1211   if (StringShape(*subject_tmp).IsCons()) {
   1212     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
   1213   } else if (StringShape(*subject_tmp).IsSliced()) {
   1214     SlicedString* slice = SlicedString::cast(*subject_tmp);
   1215     subject_tmp = Handle<String>(slice->parent());
   1216     slice_offset = slice->offset();
   1217   }
   1218 
   1219   // String might have changed.
   1220   if (subject_tmp->IsAsciiRepresentation() != is_ascii) {
   1221     // If we changed between an ASCII and an UC16 string, the specialized
   1222     // code cannot be used, and we need to restart regexp matching from
   1223     // scratch (including, potentially, compiling a new version of the code).
   1224     return RETRY;
   1225   }
   1226 
   1227   // Otherwise, the content of the string might have moved. It must still
   1228   // be a sequential or external string with the same content.
   1229   // Update the start and end pointers in the stack frame to the current
   1230   // location (whether it has actually moved or not).
   1231   ASSERT(StringShape(*subject_tmp).IsSequential() ||
   1232       StringShape(*subject_tmp).IsExternal());
   1233 
   1234   // The original start address of the characters to match.
   1235   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
   1236 
   1237   // Find the current start address of the same character at the current string
   1238   // position.
   1239   int start_index = frame_entry<int>(re_frame, kStartIndex);
   1240   const byte* new_address = StringCharacterPosition(*subject_tmp,
   1241                                                     start_index + slice_offset);
   1242 
   1243   if (start_address != new_address) {
   1244     // If there is a difference, update the object pointer and start and end
   1245     // addresses in the RegExp stack frame to match the new value.
   1246     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
   1247     int byte_length = static_cast<int>(end_address - start_address);
   1248     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1249     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
   1250     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
   1251   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
   1252     // Subject string might have been a ConsString that underwent
   1253     // short-circuiting during GC. That will not change start_address but
   1254     // will change pointer inside the subject handle.
   1255     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1256   }
   1257 
   1258   return 0;
   1259 }
   1260 
   1261 
   1262 Operand RegExpMacroAssemblerX64::register_location(int register_index) {
   1263   ASSERT(register_index < (1<<30));
   1264   if (num_registers_ <= register_index) {
   1265     num_registers_ = register_index + 1;
   1266   }
   1267   return Operand(rbp, kRegisterZero - register_index * kPointerSize);
   1268 }
   1269 
   1270 
   1271 void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
   1272                                             Label* on_outside_input) {
   1273   __ cmpl(rdi, Immediate(-cp_offset * char_size()));
   1274   BranchOrBacktrack(greater_equal, on_outside_input);
   1275 }
   1276 
   1277 
   1278 void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
   1279                                                 Label* to) {
   1280   if (condition < 0) {  // No condition
   1281     if (to == NULL) {
   1282       Backtrack();
   1283       return;
   1284     }
   1285     __ jmp(to);
   1286     return;
   1287   }
   1288   if (to == NULL) {
   1289     __ j(condition, &backtrack_label_);
   1290     return;
   1291   }
   1292   __ j(condition, to);
   1293 }
   1294 
   1295 
   1296 void RegExpMacroAssemblerX64::SafeCall(Label* to) {
   1297   __ call(to);
   1298 }
   1299 
   1300 
   1301 void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
   1302   __ bind(label);
   1303   __ subq(Operand(rsp, 0), code_object_pointer());
   1304 }
   1305 
   1306 
   1307 void RegExpMacroAssemblerX64::SafeReturn() {
   1308   __ addq(Operand(rsp, 0), code_object_pointer());
   1309   __ ret(0);
   1310 }
   1311 
   1312 
   1313 void RegExpMacroAssemblerX64::Push(Register source) {
   1314   ASSERT(!source.is(backtrack_stackpointer()));
   1315   // Notice: This updates flags, unlike normal Push.
   1316   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
   1317   __ movl(Operand(backtrack_stackpointer(), 0), source);
   1318 }
   1319 
   1320 
   1321 void RegExpMacroAssemblerX64::Push(Immediate value) {
   1322   // Notice: This updates flags, unlike normal Push.
   1323   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
   1324   __ movl(Operand(backtrack_stackpointer(), 0), value);
   1325 }
   1326 
   1327 
   1328 void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
   1329   for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
   1330     int position = code_relative_fixup_positions_[i];
   1331     // The position succeeds a relative label offset from position.
   1332     // Patch the relative offset to be relative to the Code object pointer
   1333     // instead.
   1334     int patch_position = position - kIntSize;
   1335     int offset = masm_.long_at(patch_position);
   1336     masm_.long_at_put(patch_position,
   1337                        offset
   1338                        + position
   1339                        + Code::kHeaderSize
   1340                        - kHeapObjectTag);
   1341   }
   1342   code_relative_fixup_positions_.Clear();
   1343 }
   1344 
   1345 
   1346 void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
   1347   __ subq(backtrack_stackpointer(), Immediate(kIntSize));
   1348   __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
   1349   MarkPositionForCodeRelativeFixup();
   1350 }
   1351 
   1352 
   1353 void RegExpMacroAssemblerX64::Pop(Register target) {
   1354   ASSERT(!target.is(backtrack_stackpointer()));
   1355   __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
   1356   // Notice: This updates flags, unlike normal Pop.
   1357   __ addq(backtrack_stackpointer(), Immediate(kIntSize));
   1358 }
   1359 
   1360 
   1361 void RegExpMacroAssemblerX64::Drop() {
   1362   __ addq(backtrack_stackpointer(), Immediate(kIntSize));
   1363 }
   1364 
   1365 
   1366 void RegExpMacroAssemblerX64::CheckPreemption() {
   1367   // Check for preemption.
   1368   Label no_preempt;
   1369   ExternalReference stack_limit =
   1370       ExternalReference::address_of_stack_limit(masm_.isolate());
   1371   __ load_rax(stack_limit);
   1372   __ cmpq(rsp, rax);
   1373   __ j(above, &no_preempt);
   1374 
   1375   SafeCall(&check_preempt_label_);
   1376 
   1377   __ bind(&no_preempt);
   1378 }
   1379 
   1380 
   1381 void RegExpMacroAssemblerX64::CheckStackLimit() {
   1382   Label no_stack_overflow;
   1383   ExternalReference stack_limit =
   1384       ExternalReference::address_of_regexp_stack_limit(masm_.isolate());
   1385   __ load_rax(stack_limit);
   1386   __ cmpq(backtrack_stackpointer(), rax);
   1387   __ j(above, &no_stack_overflow);
   1388 
   1389   SafeCall(&stack_overflow_label_);
   1390 
   1391   __ bind(&no_stack_overflow);
   1392 }
   1393 
   1394 
   1395 void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
   1396                                                             int characters) {
   1397   if (mode_ == ASCII) {
   1398     if (characters == 4) {
   1399       __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1400     } else if (characters == 2) {
   1401       __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1402     } else {
   1403       ASSERT(characters == 1);
   1404       __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1405     }
   1406   } else {
   1407     ASSERT(mode_ == UC16);
   1408     if (characters == 2) {
   1409       __ movl(current_character(),
   1410               Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1411     } else {
   1412       ASSERT(characters == 1);
   1413       __ movzxwl(current_character(),
   1414                  Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1415     }
   1416   }
   1417 }
   1418 
   1419 #undef __
   1420 
   1421 #endif  // V8_INTERPRETED_REGEXP
   1422 
   1423 }}  // namespace v8::internal
   1424 
   1425 #endif  // V8_TARGET_ARCH_X64
   1426