Home | History | Annotate | Download | only in audio
      1 /*
      2  * Copyright (C) 2010 Google Inc. All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1.  Redistributions of source code must retain the above copyright
      9  *     notice, this list of conditions and the following disclaimer.
     10  * 2.  Redistributions in binary form must reproduce the above copyright
     11  *     notice, this list of conditions and the following disclaimer in the
     12  *     documentation and/or other materials provided with the distribution.
     13  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
     14  *     its contributors may be used to endorse or promote products derived
     15  *     from this software without specific prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
     18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     20  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
     21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include "config.h"
     30 
     31 #if ENABLE(WEB_AUDIO)
     32 
     33 #include "HRTFElevation.h"
     34 
     35 #include "AudioBus.h"
     36 #include "AudioFileReader.h"
     37 #include "Biquad.h"
     38 #include "FFTFrame.h"
     39 #include "HRTFPanner.h"
     40 #include <algorithm>
     41 #include <math.h>
     42 #include <wtf/OwnPtr.h>
     43 
     44 using namespace std;
     45 
     46 namespace WebCore {
     47 
     48 const unsigned HRTFElevation::AzimuthSpacing = 15;
     49 const unsigned HRTFElevation::NumberOfRawAzimuths = 360 / AzimuthSpacing;
     50 const unsigned HRTFElevation::InterpolationFactor = 8;
     51 const unsigned HRTFElevation::NumberOfTotalAzimuths = NumberOfRawAzimuths * InterpolationFactor;
     52 
     53 // Takes advantage of the symmetry and creates a composite version of the two measured versions.  For example, we have both azimuth 30 and -30 degrees
     54 // where the roles of left and right ears are reversed with respect to each other.
     55 bool HRTFElevation::calculateSymmetricKernelsForAzimuthElevation(int azimuth, int elevation, double sampleRate, const String& subjectName,
     56                                                                  RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
     57 {
     58     RefPtr<HRTFKernel> kernelL1;
     59     RefPtr<HRTFKernel> kernelR1;
     60     bool success = calculateKernelsForAzimuthElevation(azimuth, elevation, sampleRate, subjectName, kernelL1, kernelR1);
     61     if (!success)
     62         return false;
     63 
     64     // And symmetric version
     65     int symmetricAzimuth = !azimuth ? 0 : 360 - azimuth;
     66 
     67     RefPtr<HRTFKernel> kernelL2;
     68     RefPtr<HRTFKernel> kernelR2;
     69     success = calculateKernelsForAzimuthElevation(symmetricAzimuth, elevation, sampleRate, subjectName, kernelL2, kernelR2);
     70     if (!success)
     71         return false;
     72 
     73     // Notice L/R reversal in symmetric version.
     74     kernelL = HRTFKernel::createInterpolatedKernel(kernelL1.get(), kernelR2.get(), 0.5);
     75     kernelR = HRTFKernel::createInterpolatedKernel(kernelR1.get(), kernelL2.get(), 0.5);
     76 
     77     return true;
     78 }
     79 
     80 bool HRTFElevation::calculateKernelsForAzimuthElevation(int azimuth, int elevation, double sampleRate, const String& subjectName,
     81                                                         RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
     82 {
     83     // Valid values for azimuth are 0 -> 345 in 15 degree increments.
     84     // Valid values for elevation are -45 -> +90 in 15 degree increments.
     85 
     86     bool isAzimuthGood = azimuth >= 0 && azimuth <= 345 && (azimuth / 15) * 15 == azimuth;
     87     ASSERT(isAzimuthGood);
     88     if (!isAzimuthGood)
     89         return false;
     90 
     91     bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
     92     ASSERT(isElevationGood);
     93     if (!isElevationGood)
     94         return false;
     95 
     96     // Construct the resource name from the subject name, azimuth, and elevation, for example:
     97     // "IRC_Composite_C_R0195_T015_P000"
     98     // Note: the passed in subjectName is not a string passed in via JavaScript or the web.
     99     // It's passed in as an internal ASCII identifier and is an implementation detail.
    100     int positiveElevation = elevation < 0 ? elevation + 360 : elevation;
    101     String resourceName = String::format("IRC_%s_C_R0195_T%03d_P%03d", subjectName.utf8().data(), azimuth, positiveElevation);
    102 
    103     OwnPtr<AudioBus> impulseResponse(AudioBus::loadPlatformResource(resourceName.utf8().data(), sampleRate));
    104 
    105     ASSERT(impulseResponse.get());
    106     if (!impulseResponse.get())
    107         return false;
    108 
    109     size_t responseLength = impulseResponse->length();
    110     size_t expectedLength = static_cast<size_t>(256 * (sampleRate / 44100.0));
    111 
    112     // Check number of channels and length.  For now these are fixed and known.
    113     bool isBusGood = responseLength == expectedLength && impulseResponse->numberOfChannels() == 2;
    114     ASSERT(isBusGood);
    115     if (!isBusGood)
    116         return false;
    117 
    118     AudioChannel* leftEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelLeft);
    119     AudioChannel* rightEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelRight);
    120 
    121     // Note that depending on the fftSize returned by the panner, we may be truncating the impulse response we just loaded in.
    122     const size_t fftSize = HRTFPanner::fftSizeForSampleRate(sampleRate);
    123     kernelL = HRTFKernel::create(leftEarImpulseResponse, fftSize, sampleRate, true);
    124     kernelR = HRTFKernel::create(rightEarImpulseResponse, fftSize, sampleRate, true);
    125 
    126     return true;
    127 }
    128 
    129 // The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
    130 //
    131 // Here's how it goes:
    132 static int maxElevations[] = {
    133         //  Azimuth
    134         //
    135     90, // 0
    136     45, // 15
    137     60, // 30
    138     45, // 45
    139     75, // 60
    140     45, // 75
    141     60, // 90
    142     45, // 105
    143     75, // 120
    144     45, // 135
    145     60, // 150
    146     45, // 165
    147     75, // 180
    148     45, // 195
    149     60, // 210
    150     45, // 225
    151     75, // 240
    152     45, // 255
    153     60, // 270
    154     45, // 285
    155     75, // 300
    156     45, // 315
    157     60, // 330
    158     45 //  345
    159 };
    160 
    161 PassOwnPtr<HRTFElevation> HRTFElevation::createForSubject(const String& subjectName, int elevation, double sampleRate)
    162 {
    163     bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
    164     ASSERT(isElevationGood);
    165     if (!isElevationGood)
    166         return 0;
    167 
    168     OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
    169     OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
    170 
    171     // Load convolution kernels from HRTF files.
    172     int interpolatedIndex = 0;
    173     for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
    174         // Don't let elevation exceed maximum for this azimuth.
    175         int maxElevation = maxElevations[rawIndex];
    176         int actualElevation = min(elevation, maxElevation);
    177 
    178         bool success = calculateKernelsForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, sampleRate, subjectName, kernelListL->at(interpolatedIndex), kernelListR->at(interpolatedIndex));
    179         if (!success)
    180             return 0;
    181 
    182         interpolatedIndex += InterpolationFactor;
    183     }
    184 
    185     // Now go back and interpolate intermediate azimuth values.
    186     for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
    187         int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
    188 
    189         // Create the interpolated convolution kernels and delays.
    190         for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
    191             double x = double(jj) / double(InterpolationFactor); // interpolate from 0 -> 1
    192 
    193             (*kernelListL)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL->at(i).get(), kernelListL->at(j).get(), x);
    194             (*kernelListR)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListR->at(i).get(), kernelListR->at(j).get(), x);
    195         }
    196     }
    197 
    198     OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), elevation, sampleRate));
    199     return hrtfElevation.release();
    200 }
    201 
    202 PassOwnPtr<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, double x, double sampleRate)
    203 {
    204     ASSERT(hrtfElevation1 && hrtfElevation2);
    205     if (!hrtfElevation1 || !hrtfElevation2)
    206         return 0;
    207 
    208     ASSERT(x >= 0.0 && x < 1.0);
    209 
    210     OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
    211     OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
    212 
    213     HRTFKernelList* kernelListL1 = hrtfElevation1->kernelListL();
    214     HRTFKernelList* kernelListR1 = hrtfElevation1->kernelListR();
    215     HRTFKernelList* kernelListL2 = hrtfElevation2->kernelListL();
    216     HRTFKernelList* kernelListR2 = hrtfElevation2->kernelListR();
    217 
    218     // Interpolate kernels of corresponding azimuths of the two elevations.
    219     for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
    220         (*kernelListL)[i] = HRTFKernel::createInterpolatedKernel(kernelListL1->at(i).get(), kernelListL2->at(i).get(), x);
    221         (*kernelListR)[i] = HRTFKernel::createInterpolatedKernel(kernelListR1->at(i).get(), kernelListR2->at(i).get(), x);
    222     }
    223 
    224     // Interpolate elevation angle.
    225     double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
    226 
    227     OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), static_cast<int>(angle), sampleRate));
    228     return hrtfElevation.release();
    229 }
    230 
    231 void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
    232 {
    233     bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
    234     ASSERT(checkAzimuthBlend);
    235     if (!checkAzimuthBlend)
    236         azimuthBlend = 0.0;
    237 
    238     unsigned numKernels = m_kernelListL->size();
    239 
    240     bool isIndexGood = azimuthIndex < numKernels;
    241     ASSERT(isIndexGood);
    242     if (!isIndexGood) {
    243         kernelL = 0;
    244         kernelR = 0;
    245         return;
    246     }
    247 
    248     // Return the left and right kernels.
    249     kernelL = m_kernelListL->at(azimuthIndex).get();
    250     kernelR = m_kernelListR->at(azimuthIndex).get();
    251 
    252     frameDelayL = m_kernelListL->at(azimuthIndex)->frameDelay();
    253     frameDelayR = m_kernelListR->at(azimuthIndex)->frameDelay();
    254 
    255     int azimuthIndex2 = (azimuthIndex + 1) % numKernels;
    256     double frameDelay2L = m_kernelListL->at(azimuthIndex2)->frameDelay();
    257     double frameDelay2R = m_kernelListR->at(azimuthIndex2)->frameDelay();
    258 
    259     // Linearly interpolate delays.
    260     frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
    261     frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
    262 }
    263 
    264 } // namespace WebCore
    265 
    266 #endif // ENABLE(WEB_AUDIO)
    267