Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // SSE2 version of speed-critical encoding functions.
      9 //
     10 // Author: Christian Duvivier (cduvivier (at) google.com)
     11 
     12 #include "./dsp.h"
     13 
     14 #if defined(__cplusplus) || defined(c_plusplus)
     15 extern "C" {
     16 #endif
     17 
     18 #if defined(WEBP_USE_SSE2)
     19 #include <stdlib.h>  // for abs()
     20 #include <emmintrin.h>
     21 
     22 #include "../enc/vp8enci.h"
     23 
     24 //------------------------------------------------------------------------------
     25 // Quite useful macro for debugging. Left here for convenience.
     26 
     27 #if 0
     28 #include <stdio.h>
     29 static void PrintReg(const __m128i r, const char* const name, int size) {
     30   int n;
     31   union {
     32     __m128i r;
     33     uint8_t i8[16];
     34     uint16_t i16[8];
     35     uint32_t i32[4];
     36     uint64_t i64[2];
     37   } tmp;
     38   tmp.r = r;
     39   printf("%s\t: ", name);
     40   if (size == 8) {
     41     for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
     42   } else if (size == 16) {
     43     for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
     44   } else if (size == 32) {
     45     for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
     46   } else {
     47     for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
     48   }
     49   printf("\n");
     50 }
     51 #endif
     52 
     53 //------------------------------------------------------------------------------
     54 // Compute susceptibility based on DCT-coeff histograms:
     55 // the higher, the "easier" the macroblock is to compress.
     56 
     57 static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
     58                                  int start_block, int end_block,
     59                                  VP8Histogram* const histo) {
     60   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
     61   int j;
     62   for (j = start_block; j < end_block; ++j) {
     63     int16_t out[16];
     64     int k;
     65 
     66     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
     67 
     68     // Convert coefficients to bin (within out[]).
     69     {
     70       // Load.
     71       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
     72       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
     73       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
     74       const __m128i sign0 = _mm_srai_epi16(out0, 15);
     75       const __m128i sign1 = _mm_srai_epi16(out1, 15);
     76       // abs(out) = (out ^ sign) - sign
     77       const __m128i xor0 = _mm_xor_si128(out0, sign0);
     78       const __m128i xor1 = _mm_xor_si128(out1, sign1);
     79       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
     80       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
     81       // v = abs(out) >> 3
     82       const __m128i v0 = _mm_srai_epi16(abs0, 3);
     83       const __m128i v1 = _mm_srai_epi16(abs1, 3);
     84       // bin = min(v, MAX_COEFF_THRESH)
     85       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
     86       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
     87       // Store.
     88       _mm_storeu_si128((__m128i*)&out[0], bin0);
     89       _mm_storeu_si128((__m128i*)&out[8], bin1);
     90     }
     91 
     92     // Convert coefficients to bin.
     93     for (k = 0; k < 16; ++k) {
     94       histo->distribution[out[k]]++;
     95     }
     96   }
     97 }
     98 
     99 //------------------------------------------------------------------------------
    100 // Transforms (Paragraph 14.4)
    101 
    102 // Does one or two inverse transforms.
    103 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
    104                            int do_two) {
    105   // This implementation makes use of 16-bit fixed point versions of two
    106   // multiply constants:
    107   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
    108   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
    109   //
    110   // To be able to use signed 16-bit integers, we use the following trick to
    111   // have constants within range:
    112   // - Associated constants are obtained by subtracting the 16-bit fixed point
    113   //   version of one:
    114   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
    115   //      K1 = 85267  =>  k1 =  20091
    116   //      K2 = 35468  =>  k2 = -30068
    117   // - The multiplication of a variable by a constant become the sum of the
    118   //   variable and the multiplication of that variable by the associated
    119   //   constant:
    120   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
    121   const __m128i k1 = _mm_set1_epi16(20091);
    122   const __m128i k2 = _mm_set1_epi16(-30068);
    123   __m128i T0, T1, T2, T3;
    124 
    125   // Load and concatenate the transform coefficients (we'll do two inverse
    126   // transforms in parallel). In the case of only one inverse transform, the
    127   // second half of the vectors will just contain random value we'll never
    128   // use nor store.
    129   __m128i in0, in1, in2, in3;
    130   {
    131     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
    132     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
    133     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
    134     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
    135     // a00 a10 a20 a30   x x x x
    136     // a01 a11 a21 a31   x x x x
    137     // a02 a12 a22 a32   x x x x
    138     // a03 a13 a23 a33   x x x x
    139     if (do_two) {
    140       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
    141       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
    142       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
    143       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
    144       in0 = _mm_unpacklo_epi64(in0, inB0);
    145       in1 = _mm_unpacklo_epi64(in1, inB1);
    146       in2 = _mm_unpacklo_epi64(in2, inB2);
    147       in3 = _mm_unpacklo_epi64(in3, inB3);
    148       // a00 a10 a20 a30   b00 b10 b20 b30
    149       // a01 a11 a21 a31   b01 b11 b21 b31
    150       // a02 a12 a22 a32   b02 b12 b22 b32
    151       // a03 a13 a23 a33   b03 b13 b23 b33
    152     }
    153   }
    154 
    155   // Vertical pass and subsequent transpose.
    156   {
    157     // First pass, c and d calculations are longer because of the "trick"
    158     // multiplications.
    159     const __m128i a = _mm_add_epi16(in0, in2);
    160     const __m128i b = _mm_sub_epi16(in0, in2);
    161     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    162     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    163     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    164     const __m128i c3 = _mm_sub_epi16(in1, in3);
    165     const __m128i c4 = _mm_sub_epi16(c1, c2);
    166     const __m128i c = _mm_add_epi16(c3, c4);
    167     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    168     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    169     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    170     const __m128i d3 = _mm_add_epi16(in1, in3);
    171     const __m128i d4 = _mm_add_epi16(d1, d2);
    172     const __m128i d = _mm_add_epi16(d3, d4);
    173 
    174     // Second pass.
    175     const __m128i tmp0 = _mm_add_epi16(a, d);
    176     const __m128i tmp1 = _mm_add_epi16(b, c);
    177     const __m128i tmp2 = _mm_sub_epi16(b, c);
    178     const __m128i tmp3 = _mm_sub_epi16(a, d);
    179 
    180     // Transpose the two 4x4.
    181     // a00 a01 a02 a03   b00 b01 b02 b03
    182     // a10 a11 a12 a13   b10 b11 b12 b13
    183     // a20 a21 a22 a23   b20 b21 b22 b23
    184     // a30 a31 a32 a33   b30 b31 b32 b33
    185     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    186     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    187     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    188     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    189     // a00 a10 a01 a11   a02 a12 a03 a13
    190     // a20 a30 a21 a31   a22 a32 a23 a33
    191     // b00 b10 b01 b11   b02 b12 b03 b13
    192     // b20 b30 b21 b31   b22 b32 b23 b33
    193     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    194     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    195     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    196     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    197     // a00 a10 a20 a30 a01 a11 a21 a31
    198     // b00 b10 b20 b30 b01 b11 b21 b31
    199     // a02 a12 a22 a32 a03 a13 a23 a33
    200     // b02 b12 a22 b32 b03 b13 b23 b33
    201     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    202     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    203     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    204     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    205     // a00 a10 a20 a30   b00 b10 b20 b30
    206     // a01 a11 a21 a31   b01 b11 b21 b31
    207     // a02 a12 a22 a32   b02 b12 b22 b32
    208     // a03 a13 a23 a33   b03 b13 b23 b33
    209   }
    210 
    211   // Horizontal pass and subsequent transpose.
    212   {
    213     // First pass, c and d calculations are longer because of the "trick"
    214     // multiplications.
    215     const __m128i four = _mm_set1_epi16(4);
    216     const __m128i dc = _mm_add_epi16(T0, four);
    217     const __m128i a =  _mm_add_epi16(dc, T2);
    218     const __m128i b =  _mm_sub_epi16(dc, T2);
    219     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    220     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    221     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    222     const __m128i c3 = _mm_sub_epi16(T1, T3);
    223     const __m128i c4 = _mm_sub_epi16(c1, c2);
    224     const __m128i c = _mm_add_epi16(c3, c4);
    225     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    226     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    227     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    228     const __m128i d3 = _mm_add_epi16(T1, T3);
    229     const __m128i d4 = _mm_add_epi16(d1, d2);
    230     const __m128i d = _mm_add_epi16(d3, d4);
    231 
    232     // Second pass.
    233     const __m128i tmp0 = _mm_add_epi16(a, d);
    234     const __m128i tmp1 = _mm_add_epi16(b, c);
    235     const __m128i tmp2 = _mm_sub_epi16(b, c);
    236     const __m128i tmp3 = _mm_sub_epi16(a, d);
    237     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    238     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    239     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    240     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    241 
    242     // Transpose the two 4x4.
    243     // a00 a01 a02 a03   b00 b01 b02 b03
    244     // a10 a11 a12 a13   b10 b11 b12 b13
    245     // a20 a21 a22 a23   b20 b21 b22 b23
    246     // a30 a31 a32 a33   b30 b31 b32 b33
    247     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    248     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    249     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    250     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    251     // a00 a10 a01 a11   a02 a12 a03 a13
    252     // a20 a30 a21 a31   a22 a32 a23 a33
    253     // b00 b10 b01 b11   b02 b12 b03 b13
    254     // b20 b30 b21 b31   b22 b32 b23 b33
    255     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    256     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    257     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    258     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    259     // a00 a10 a20 a30 a01 a11 a21 a31
    260     // b00 b10 b20 b30 b01 b11 b21 b31
    261     // a02 a12 a22 a32 a03 a13 a23 a33
    262     // b02 b12 a22 b32 b03 b13 b23 b33
    263     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    264     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    265     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    266     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    267     // a00 a10 a20 a30   b00 b10 b20 b30
    268     // a01 a11 a21 a31   b01 b11 b21 b31
    269     // a02 a12 a22 a32   b02 b12 b22 b32
    270     // a03 a13 a23 a33   b03 b13 b23 b33
    271   }
    272 
    273   // Add inverse transform to 'ref' and store.
    274   {
    275     const __m128i zero = _mm_setzero_si128();
    276     // Load the reference(s).
    277     __m128i ref0, ref1, ref2, ref3;
    278     if (do_two) {
    279       // Load eight bytes/pixels per line.
    280       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    281       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    282       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    283       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    284     } else {
    285       // Load four bytes/pixels per line.
    286       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
    287       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
    288       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
    289       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
    290     }
    291     // Convert to 16b.
    292     ref0 = _mm_unpacklo_epi8(ref0, zero);
    293     ref1 = _mm_unpacklo_epi8(ref1, zero);
    294     ref2 = _mm_unpacklo_epi8(ref2, zero);
    295     ref3 = _mm_unpacklo_epi8(ref3, zero);
    296     // Add the inverse transform(s).
    297     ref0 = _mm_add_epi16(ref0, T0);
    298     ref1 = _mm_add_epi16(ref1, T1);
    299     ref2 = _mm_add_epi16(ref2, T2);
    300     ref3 = _mm_add_epi16(ref3, T3);
    301     // Unsigned saturate to 8b.
    302     ref0 = _mm_packus_epi16(ref0, ref0);
    303     ref1 = _mm_packus_epi16(ref1, ref1);
    304     ref2 = _mm_packus_epi16(ref2, ref2);
    305     ref3 = _mm_packus_epi16(ref3, ref3);
    306     // Store the results.
    307     if (do_two) {
    308       // Store eight bytes/pixels per line.
    309       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
    310       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
    311       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
    312       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    313     } else {
    314       // Store four bytes/pixels per line.
    315       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
    316       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
    317       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
    318       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
    319     }
    320   }
    321 }
    322 
    323 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
    324                            int16_t* out) {
    325   const __m128i zero = _mm_setzero_si128();
    326   const __m128i seven = _mm_set1_epi16(7);
    327   const __m128i k937 = _mm_set1_epi32(937);
    328   const __m128i k1812 = _mm_set1_epi32(1812);
    329   const __m128i k51000 = _mm_set1_epi32(51000);
    330   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
    331   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
    332                                            5352,  2217, 5352,  2217);
    333   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
    334                                            2217, -5352, 2217, -5352);
    335   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
    336   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
    337   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
    338                                             2217, 5352, 2217, 5352);
    339   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
    340                                             -5352, 2217, -5352, 2217);
    341   __m128i v01, v32;
    342 
    343 
    344   // Difference between src and ref and initial transpose.
    345   {
    346     // Load src and convert to 16b.
    347     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
    348     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
    349     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
    350     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
    351     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
    352     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
    353     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
    354     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
    355     // Load ref and convert to 16b.
    356     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    357     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    358     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    359     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    360     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
    361     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
    362     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
    363     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
    364     // Compute difference. -> 00 01 02 03 00 00 00 00
    365     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
    366     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
    367     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
    368     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
    369 
    370 
    371     // Unpack and shuffle
    372     // 00 01 02 03   0 0 0 0
    373     // 10 11 12 13   0 0 0 0
    374     // 20 21 22 23   0 0 0 0
    375     // 30 31 32 33   0 0 0 0
    376     const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
    377     const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
    378     // 00 01 10 11 02 03 12 13
    379     // 20 21 30 31 22 23 32 33
    380     const __m128i shuf01_p =
    381         _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
    382     const __m128i shuf23_p =
    383         _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
    384     // 00 01 10 11 03 02 13 12
    385     // 20 21 30 31 23 22 33 32
    386     const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
    387     const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
    388     // 00 01 10 11 20 21 30 31
    389     // 03 02 13 12 23 22 33 32
    390     const __m128i a01 = _mm_add_epi16(s01, s32);
    391     const __m128i a32 = _mm_sub_epi16(s01, s32);
    392     // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
    393     // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
    394 
    395     const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
    396     const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
    397     const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
    398     const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
    399     const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
    400     const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
    401     const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
    402     const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
    403     const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
    404     const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
    405     const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
    406     const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
    407     const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
    408     v01 = _mm_unpacklo_epi32(s_lo, s_hi);
    409     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
    410   }
    411 
    412   // Second pass
    413   {
    414     // Same operations are done on the (0,3) and (1,2) pairs.
    415     // a0 = v0 + v3
    416     // a1 = v1 + v2
    417     // a3 = v0 - v3
    418     // a2 = v1 - v2
    419     const __m128i a01 = _mm_add_epi16(v01, v32);
    420     const __m128i a32 = _mm_sub_epi16(v01, v32);
    421     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
    422     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
    423     const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
    424 
    425     // d0 = (a0 + a1 + 7) >> 4;
    426     // d2 = (a0 - a1 + 7) >> 4;
    427     const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
    428     const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
    429     const __m128i d0 = _mm_srai_epi16(c0, 4);
    430     const __m128i d2 = _mm_srai_epi16(c2, 4);
    431 
    432     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
    433     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
    434     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
    435     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    436     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    437     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
    438     const __m128i d3 = _mm_add_epi32(c3, k51000);
    439     const __m128i e1 = _mm_srai_epi32(d1, 16);
    440     const __m128i e3 = _mm_srai_epi32(d3, 16);
    441     const __m128i f1 = _mm_packs_epi32(e1, e1);
    442     const __m128i f3 = _mm_packs_epi32(e3, e3);
    443     // f1 = f1 + (a3 != 0);
    444     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
    445     // desired (0, 1), we add one earlier through k12000_plus_one.
    446     // -> f1 = f1 + 1 - (a3 == 0)
    447     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
    448 
    449     _mm_storel_epi64((__m128i*)&out[ 0], d0);
    450     _mm_storel_epi64((__m128i*)&out[ 4], g1);
    451     _mm_storel_epi64((__m128i*)&out[ 8], d2);
    452     _mm_storel_epi64((__m128i*)&out[12], f3);
    453   }
    454 }
    455 
    456 //------------------------------------------------------------------------------
    457 // Metric
    458 
    459 static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
    460                        int num_quads, int do_16) {
    461   const __m128i zero = _mm_setzero_si128();
    462   __m128i sum1 = zero;
    463   __m128i sum2 = zero;
    464 
    465   while (num_quads-- > 0) {
    466     // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
    467     // thanks to buffer over-allocation to that effect.
    468     const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
    469     const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
    470     const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
    471     const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
    472     const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
    473     const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
    474     const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
    475     const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
    476 
    477     // compute clip0(a-b) and clip0(b-a)
    478     const __m128i a0p = _mm_subs_epu8(a0, b0);
    479     const __m128i a0m = _mm_subs_epu8(b0, a0);
    480     const __m128i a1p = _mm_subs_epu8(a1, b1);
    481     const __m128i a1m = _mm_subs_epu8(b1, a1);
    482     const __m128i a2p = _mm_subs_epu8(a2, b2);
    483     const __m128i a2m = _mm_subs_epu8(b2, a2);
    484     const __m128i a3p = _mm_subs_epu8(a3, b3);
    485     const __m128i a3m = _mm_subs_epu8(b3, a3);
    486 
    487     // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
    488     const __m128i diff0 = _mm_or_si128(a0p, a0m);
    489     const __m128i diff1 = _mm_or_si128(a1p, a1m);
    490     const __m128i diff2 = _mm_or_si128(a2p, a2m);
    491     const __m128i diff3 = _mm_or_si128(a3p, a3m);
    492 
    493     // unpack (only four operations, instead of eight)
    494     const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
    495     const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
    496     const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
    497     const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
    498 
    499     // multiply with self
    500     const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
    501     const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
    502     const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
    503     const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
    504 
    505     // collect in a cascading way
    506     const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
    507     const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
    508     sum1 = _mm_add_epi32(sum1, low_sum0);
    509     sum2 = _mm_add_epi32(sum2, low_sum1);
    510 
    511     if (do_16) {  // if necessary, process the higher 8 bytes similarly
    512       const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
    513       const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
    514       const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
    515       const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
    516 
    517       const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
    518       const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
    519       const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
    520       const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
    521       const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
    522       const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
    523       sum1 = _mm_add_epi32(sum1, hi_sum0);
    524       sum2 = _mm_add_epi32(sum2, hi_sum1);
    525     }
    526     a += 4 * BPS;
    527     b += 4 * BPS;
    528   }
    529   {
    530     int32_t tmp[4];
    531     const __m128i sum = _mm_add_epi32(sum1, sum2);
    532     _mm_storeu_si128((__m128i*)tmp, sum);
    533     return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    534   }
    535 }
    536 
    537 static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
    538   return SSE_Nx4SSE2(a, b, 4, 1);
    539 }
    540 
    541 static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
    542   return SSE_Nx4SSE2(a, b, 2, 1);
    543 }
    544 
    545 static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
    546   return SSE_Nx4SSE2(a, b, 2, 0);
    547 }
    548 
    549 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
    550   const __m128i zero = _mm_setzero_si128();
    551 
    552   // Load values. Note that we read 8 pixels instead of 4,
    553   // but the a/b buffers are over-allocated to that effect.
    554   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
    555   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
    556   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
    557   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
    558   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
    559   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
    560   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
    561   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
    562 
    563   // Combine pair of lines and convert to 16b.
    564   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
    565   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
    566   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
    567   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
    568   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
    569   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
    570   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
    571   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
    572 
    573   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
    574   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
    575   //                  need absolute values, there is no need to do calculation
    576   //                  in 8bit as we are already in 16bit, ... Yet this is what
    577   //                  benchmarks the fastest!
    578   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
    579   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
    580   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
    581   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
    582 
    583   // Square and add them all together.
    584   const __m128i madd0 = _mm_madd_epi16(d0, d0);
    585   const __m128i madd1 = _mm_madd_epi16(d1, d1);
    586   const __m128i madd2 = _mm_madd_epi16(d2, d2);
    587   const __m128i madd3 = _mm_madd_epi16(d3, d3);
    588   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
    589   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
    590   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
    591 
    592   int32_t tmp[4];
    593   _mm_storeu_si128((__m128i*)tmp, sum2);
    594   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    595 }
    596 
    597 //------------------------------------------------------------------------------
    598 // Texture distortion
    599 //
    600 // We try to match the spectral content (weighted) between source and
    601 // reconstructed samples.
    602 
    603 // Hadamard transform
    604 // Returns the difference between the weighted sum of the absolute value of
    605 // transformed coefficients.
    606 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
    607                           const uint16_t* const w) {
    608   int32_t sum[4];
    609   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
    610   const __m128i zero = _mm_setzero_si128();
    611 
    612   // Load, combine and tranpose inputs.
    613   {
    614     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
    615     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
    616     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
    617     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
    618     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
    619     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
    620     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
    621     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
    622 
    623     // Combine inA and inB (we'll do two transforms in parallel).
    624     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
    625     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
    626     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
    627     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
    628     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
    629     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
    630     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
    631     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
    632 
    633     // Transpose the two 4x4, discarding the filling zeroes.
    634     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
    635     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
    636     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
    637     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
    638     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
    639     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
    640     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
    641     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
    642 
    643     // Convert to 16b.
    644     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
    645     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
    646     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
    647     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
    648     // a00 a10 a20 a30   b00 b10 b20 b30
    649     // a01 a11 a21 a31   b01 b11 b21 b31
    650     // a02 a12 a22 a32   b02 b12 b22 b32
    651     // a03 a13 a23 a33   b03 b13 b23 b33
    652   }
    653 
    654   // Horizontal pass and subsequent transpose.
    655   {
    656     // Calculate a and b (two 4x4 at once).
    657     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    658     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    659     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    660     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    661     const __m128i b0 = _mm_add_epi16(a0, a1);
    662     const __m128i b1 = _mm_add_epi16(a3, a2);
    663     const __m128i b2 = _mm_sub_epi16(a3, a2);
    664     const __m128i b3 = _mm_sub_epi16(a0, a1);
    665     // a00 a01 a02 a03   b00 b01 b02 b03
    666     // a10 a11 a12 a13   b10 b11 b12 b13
    667     // a20 a21 a22 a23   b20 b21 b22 b23
    668     // a30 a31 a32 a33   b30 b31 b32 b33
    669 
    670     // Transpose the two 4x4.
    671     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
    672     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
    673     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
    674     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
    675     // a00 a10 a01 a11   a02 a12 a03 a13
    676     // a20 a30 a21 a31   a22 a32 a23 a33
    677     // b00 b10 b01 b11   b02 b12 b03 b13
    678     // b20 b30 b21 b31   b22 b32 b23 b33
    679     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    680     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    681     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    682     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    683     // a00 a10 a20 a30 a01 a11 a21 a31
    684     // b00 b10 b20 b30 b01 b11 b21 b31
    685     // a02 a12 a22 a32 a03 a13 a23 a33
    686     // b02 b12 a22 b32 b03 b13 b23 b33
    687     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    688     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    689     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    690     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    691     // a00 a10 a20 a30   b00 b10 b20 b30
    692     // a01 a11 a21 a31   b01 b11 b21 b31
    693     // a02 a12 a22 a32   b02 b12 b22 b32
    694     // a03 a13 a23 a33   b03 b13 b23 b33
    695   }
    696 
    697   // Vertical pass and difference of weighted sums.
    698   {
    699     // Load all inputs.
    700     // TODO(cduvivier): Make variable declarations and allocations aligned so
    701     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    702     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
    703     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
    704 
    705     // Calculate a and b (two 4x4 at once).
    706     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    707     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    708     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    709     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    710     const __m128i b0 = _mm_add_epi16(a0, a1);
    711     const __m128i b1 = _mm_add_epi16(a3, a2);
    712     const __m128i b2 = _mm_sub_epi16(a3, a2);
    713     const __m128i b3 = _mm_sub_epi16(a0, a1);
    714 
    715     // Separate the transforms of inA and inB.
    716     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    717     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    718     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    719     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
    720 
    721     {
    722       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
    723       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
    724       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
    725       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
    726       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
    727 
    728       // b = abs(b) = (b ^ sign) - sign
    729       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
    730       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
    731       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
    732       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
    733       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
    734       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
    735       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
    736       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
    737     }
    738 
    739     // weighted sums
    740     A_b0 = _mm_madd_epi16(A_b0, w_0);
    741     A_b2 = _mm_madd_epi16(A_b2, w_8);
    742     B_b0 = _mm_madd_epi16(B_b0, w_0);
    743     B_b2 = _mm_madd_epi16(B_b2, w_8);
    744     A_b0 = _mm_add_epi32(A_b0, A_b2);
    745     B_b0 = _mm_add_epi32(B_b0, B_b2);
    746 
    747     // difference of weighted sums
    748     A_b0 = _mm_sub_epi32(A_b0, B_b0);
    749     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
    750   }
    751   return sum[0] + sum[1] + sum[2] + sum[3];
    752 }
    753 
    754 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
    755                         const uint16_t* const w) {
    756   const int diff_sum = TTransformSSE2(a, b, w);
    757   return abs(diff_sum) >> 5;
    758 }
    759 
    760 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
    761                           const uint16_t* const w) {
    762   int D = 0;
    763   int x, y;
    764   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    765     for (x = 0; x < 16; x += 4) {
    766       D += Disto4x4SSE2(a + x + y, b + x + y, w);
    767     }
    768   }
    769   return D;
    770 }
    771 
    772 //------------------------------------------------------------------------------
    773 // Quantization
    774 //
    775 
    776 // Simple quantization
    777 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
    778                              int n, const VP8Matrix* const mtx) {
    779   const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
    780   const __m128i zero = _mm_setzero_si128();
    781   __m128i coeff0, coeff8;
    782   __m128i out0, out8;
    783   __m128i packed_out;
    784 
    785   // Load all inputs.
    786   // TODO(cduvivier): Make variable declarations and allocations aligned so that
    787   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    788   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
    789   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
    790   const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
    791   const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
    792   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
    793   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
    794   const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
    795   const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
    796   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
    797   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
    798   const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
    799   const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
    800 
    801   // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
    802   const __m128i sign0 = _mm_srai_epi16(in0, 15);
    803   const __m128i sign8 = _mm_srai_epi16(in8, 15);
    804 
    805   // coeff = abs(in) = (in ^ sign) - sign
    806   coeff0 = _mm_xor_si128(in0, sign0);
    807   coeff8 = _mm_xor_si128(in8, sign8);
    808   coeff0 = _mm_sub_epi16(coeff0, sign0);
    809   coeff8 = _mm_sub_epi16(coeff8, sign8);
    810 
    811   // coeff = abs(in) + sharpen
    812   coeff0 = _mm_add_epi16(coeff0, sharpen0);
    813   coeff8 = _mm_add_epi16(coeff8, sharpen8);
    814 
    815   // if (coeff > 2047) coeff = 2047
    816   coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
    817   coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
    818 
    819   // out = (coeff * iQ + B) >> QFIX;
    820   {
    821     // doing calculations with 32b precision (QFIX=17)
    822     // out = (coeff * iQ)
    823     __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    824     __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    825     __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    826     __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    827     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    828     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    829     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    830     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    831     // expand bias from 16b to 32b
    832     __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
    833     __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
    834     __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
    835     __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
    836     // out = (coeff * iQ + B)
    837     out_00 = _mm_add_epi32(out_00, bias_00);
    838     out_04 = _mm_add_epi32(out_04, bias_04);
    839     out_08 = _mm_add_epi32(out_08, bias_08);
    840     out_12 = _mm_add_epi32(out_12, bias_12);
    841     // out = (coeff * iQ + B) >> QFIX;
    842     out_00 = _mm_srai_epi32(out_00, QFIX);
    843     out_04 = _mm_srai_epi32(out_04, QFIX);
    844     out_08 = _mm_srai_epi32(out_08, QFIX);
    845     out_12 = _mm_srai_epi32(out_12, QFIX);
    846     // pack result as 16b
    847     out0 = _mm_packs_epi32(out_00, out_04);
    848     out8 = _mm_packs_epi32(out_08, out_12);
    849   }
    850 
    851   // get sign back (if (sign[j]) out_n = -out_n)
    852   out0 = _mm_xor_si128(out0, sign0);
    853   out8 = _mm_xor_si128(out8, sign8);
    854   out0 = _mm_sub_epi16(out0, sign0);
    855   out8 = _mm_sub_epi16(out8, sign8);
    856 
    857   // in = out * Q
    858   in0 = _mm_mullo_epi16(out0, q0);
    859   in8 = _mm_mullo_epi16(out8, q8);
    860 
    861   // if (coeff <= mtx->zthresh_) {in=0; out=0;}
    862   {
    863     __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
    864     __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
    865     in0 = _mm_and_si128(in0, cmp0);
    866     in8 = _mm_and_si128(in8, cmp8);
    867     _mm_storeu_si128((__m128i*)&in[0], in0);
    868     _mm_storeu_si128((__m128i*)&in[8], in8);
    869     out0 = _mm_and_si128(out0, cmp0);
    870     out8 = _mm_and_si128(out8, cmp8);
    871   }
    872 
    873   // zigzag the output before storing it.
    874   //
    875   // The zigzag pattern can almost be reproduced with a small sequence of
    876   // shuffles. After it, we only need to swap the 7th (ending up in third
    877   // position instead of twelfth) and 8th values.
    878   {
    879     __m128i outZ0, outZ8;
    880     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    881     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    882     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    883     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    884     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    885     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    886     _mm_storeu_si128((__m128i*)&out[0], outZ0);
    887     _mm_storeu_si128((__m128i*)&out[8], outZ8);
    888     packed_out = _mm_packs_epi16(outZ0, outZ8);
    889   }
    890   {
    891     const int16_t outZ_12 = out[12];
    892     const int16_t outZ_3 = out[3];
    893     out[3] = outZ_12;
    894     out[12] = outZ_3;
    895   }
    896 
    897   // detect if all 'out' values are zeroes or not
    898   {
    899     int32_t tmp[4];
    900     _mm_storeu_si128((__m128i*)tmp, packed_out);
    901     if (n) {
    902       tmp[0] &= ~0xff;
    903     }
    904     return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
    905   }
    906 }
    907 
    908 #endif   // WEBP_USE_SSE2
    909 
    910 //------------------------------------------------------------------------------
    911 // Entry point
    912 
    913 extern void VP8EncDspInitSSE2(void);
    914 
    915 void VP8EncDspInitSSE2(void) {
    916 #if defined(WEBP_USE_SSE2)
    917   VP8CollectHistogram = CollectHistogramSSE2;
    918   VP8EncQuantizeBlock = QuantizeBlockSSE2;
    919   VP8ITransform = ITransformSSE2;
    920   VP8FTransform = FTransformSSE2;
    921   VP8SSE16x16 = SSE16x16SSE2;
    922   VP8SSE16x8 = SSE16x8SSE2;
    923   VP8SSE8x8 = SSE8x8SSE2;
    924   VP8SSE4x4 = SSE4x4SSE2;
    925   VP8TDisto4x4 = Disto4x4SSE2;
    926   VP8TDisto16x16 = Disto16x16SSE2;
    927 #endif   // WEBP_USE_SSE2
    928 }
    929 
    930 #if defined(__cplusplus) || defined(c_plusplus)
    931 }    // extern "C"
    932 #endif
    933