Home | History | Annotate | Download | only in input
      1 /*
      2  * Copyright (C) 2005 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "EventHub"
     18 
     19 // #define LOG_NDEBUG 0
     20 
     21 #include "EventHub.h"
     22 
     23 #include <hardware_legacy/power.h>
     24 
     25 #include <cutils/properties.h>
     26 #include <utils/Log.h>
     27 #include <utils/Timers.h>
     28 #include <utils/threads.h>
     29 #include <utils/Errors.h>
     30 
     31 #include <stdlib.h>
     32 #include <stdio.h>
     33 #include <unistd.h>
     34 #include <fcntl.h>
     35 #include <memory.h>
     36 #include <errno.h>
     37 #include <assert.h>
     38 
     39 #include <androidfw/KeyLayoutMap.h>
     40 #include <androidfw/KeyCharacterMap.h>
     41 #include <androidfw/VirtualKeyMap.h>
     42 
     43 #include <string.h>
     44 #include <stdint.h>
     45 #include <dirent.h>
     46 
     47 #include <sys/inotify.h>
     48 #include <sys/epoll.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/limits.h>
     51 #include <sys/sha1.h>
     52 
     53 /* this macro is used to tell if "bit" is set in "array"
     54  * it selects a byte from the array, and does a boolean AND
     55  * operation with a byte that only has the relevant bit set.
     56  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
     57  */
     58 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
     59 
     60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
     61 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
     62 
     63 #define INDENT "  "
     64 #define INDENT2 "    "
     65 #define INDENT3 "      "
     66 
     67 namespace android {
     68 
     69 static const char *WAKE_LOCK_ID = "KeyEvents";
     70 static const char *DEVICE_PATH = "/dev/input";
     71 
     72 /* return the larger integer */
     73 static inline int max(int v1, int v2)
     74 {
     75     return (v1 > v2) ? v1 : v2;
     76 }
     77 
     78 static inline const char* toString(bool value) {
     79     return value ? "true" : "false";
     80 }
     81 
     82 static String8 sha1(const String8& in) {
     83     SHA1_CTX ctx;
     84     SHA1Init(&ctx);
     85     SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
     86     u_char digest[SHA1_DIGEST_LENGTH];
     87     SHA1Final(digest, &ctx);
     88 
     89     String8 out;
     90     for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
     91         out.appendFormat("%02x", digest[i]);
     92     }
     93     return out;
     94 }
     95 
     96 static void setDescriptor(InputDeviceIdentifier& identifier) {
     97     // Compute a device descriptor that uniquely identifies the device.
     98     // The descriptor is assumed to be a stable identifier.  Its value should not
     99     // change between reboots, reconnections, firmware updates or new releases of Android.
    100     // Ideally, we also want the descriptor to be short and relatively opaque.
    101     String8 rawDescriptor;
    102     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
    103     if (!identifier.uniqueId.isEmpty()) {
    104         rawDescriptor.append("uniqueId:");
    105         rawDescriptor.append(identifier.uniqueId);
    106     } if (identifier.vendor == 0 && identifier.product == 0) {
    107         // If we don't know the vendor and product id, then the device is probably
    108         // built-in so we need to rely on other information to uniquely identify
    109         // the input device.  Usually we try to avoid relying on the device name or
    110         // location but for built-in input device, they are unlikely to ever change.
    111         if (!identifier.name.isEmpty()) {
    112             rawDescriptor.append("name:");
    113             rawDescriptor.append(identifier.name);
    114         } else if (!identifier.location.isEmpty()) {
    115             rawDescriptor.append("location:");
    116             rawDescriptor.append(identifier.location);
    117         }
    118     }
    119     identifier.descriptor = sha1(rawDescriptor);
    120     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
    121             identifier.descriptor.string());
    122 }
    123 
    124 // --- Global Functions ---
    125 
    126 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
    127     // Touch devices get dibs on touch-related axes.
    128     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
    129         switch (axis) {
    130         case ABS_X:
    131         case ABS_Y:
    132         case ABS_PRESSURE:
    133         case ABS_TOOL_WIDTH:
    134         case ABS_DISTANCE:
    135         case ABS_TILT_X:
    136         case ABS_TILT_Y:
    137         case ABS_MT_SLOT:
    138         case ABS_MT_TOUCH_MAJOR:
    139         case ABS_MT_TOUCH_MINOR:
    140         case ABS_MT_WIDTH_MAJOR:
    141         case ABS_MT_WIDTH_MINOR:
    142         case ABS_MT_ORIENTATION:
    143         case ABS_MT_POSITION_X:
    144         case ABS_MT_POSITION_Y:
    145         case ABS_MT_TOOL_TYPE:
    146         case ABS_MT_BLOB_ID:
    147         case ABS_MT_TRACKING_ID:
    148         case ABS_MT_PRESSURE:
    149         case ABS_MT_DISTANCE:
    150             return INPUT_DEVICE_CLASS_TOUCH;
    151         }
    152     }
    153 
    154     // Joystick devices get the rest.
    155     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
    156 }
    157 
    158 // --- EventHub::Device ---
    159 
    160 EventHub::Device::Device(int fd, int32_t id, const String8& path,
    161         const InputDeviceIdentifier& identifier) :
    162         next(NULL),
    163         fd(fd), id(id), path(path), identifier(identifier),
    164         classes(0), configuration(NULL), virtualKeyMap(NULL),
    165         ffEffectPlaying(false), ffEffectId(-1),
    166         timestampOverrideSec(0), timestampOverrideUsec(0) {
    167     memset(keyBitmask, 0, sizeof(keyBitmask));
    168     memset(absBitmask, 0, sizeof(absBitmask));
    169     memset(relBitmask, 0, sizeof(relBitmask));
    170     memset(swBitmask, 0, sizeof(swBitmask));
    171     memset(ledBitmask, 0, sizeof(ledBitmask));
    172     memset(ffBitmask, 0, sizeof(ffBitmask));
    173     memset(propBitmask, 0, sizeof(propBitmask));
    174 }
    175 
    176 EventHub::Device::~Device() {
    177     close();
    178     delete configuration;
    179     delete virtualKeyMap;
    180 }
    181 
    182 void EventHub::Device::close() {
    183     if (fd >= 0) {
    184         ::close(fd);
    185         fd = -1;
    186     }
    187 }
    188 
    189 
    190 // --- EventHub ---
    191 
    192 const uint32_t EventHub::EPOLL_ID_INOTIFY;
    193 const uint32_t EventHub::EPOLL_ID_WAKE;
    194 const int EventHub::EPOLL_SIZE_HINT;
    195 const int EventHub::EPOLL_MAX_EVENTS;
    196 
    197 EventHub::EventHub(void) :
    198         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
    199         mOpeningDevices(0), mClosingDevices(0),
    200         mNeedToSendFinishedDeviceScan(false),
    201         mNeedToReopenDevices(false), mNeedToScanDevices(true),
    202         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
    203     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
    204 
    205     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    206     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
    207 
    208     mINotifyFd = inotify_init();
    209     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
    210     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
    211             DEVICE_PATH, errno);
    212 
    213     struct epoll_event eventItem;
    214     memset(&eventItem, 0, sizeof(eventItem));
    215     eventItem.events = EPOLLIN;
    216     eventItem.data.u32 = EPOLL_ID_INOTIFY;
    217     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
    218     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
    219 
    220     int wakeFds[2];
    221     result = pipe(wakeFds);
    222     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
    223 
    224     mWakeReadPipeFd = wakeFds[0];
    225     mWakeWritePipeFd = wakeFds[1];
    226 
    227     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
    228     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
    229             errno);
    230 
    231     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
    232     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
    233             errno);
    234 
    235     eventItem.data.u32 = EPOLL_ID_WAKE;
    236     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
    237     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
    238             errno);
    239 }
    240 
    241 EventHub::~EventHub(void) {
    242     closeAllDevicesLocked();
    243 
    244     while (mClosingDevices) {
    245         Device* device = mClosingDevices;
    246         mClosingDevices = device->next;
    247         delete device;
    248     }
    249 
    250     ::close(mEpollFd);
    251     ::close(mINotifyFd);
    252     ::close(mWakeReadPipeFd);
    253     ::close(mWakeWritePipeFd);
    254 
    255     release_wake_lock(WAKE_LOCK_ID);
    256 }
    257 
    258 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
    259     AutoMutex _l(mLock);
    260     Device* device = getDeviceLocked(deviceId);
    261     if (device == NULL) return InputDeviceIdentifier();
    262     return device->identifier;
    263 }
    264 
    265 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
    266     AutoMutex _l(mLock);
    267     Device* device = getDeviceLocked(deviceId);
    268     if (device == NULL) return 0;
    269     return device->classes;
    270 }
    271 
    272 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
    273     AutoMutex _l(mLock);
    274     Device* device = getDeviceLocked(deviceId);
    275     if (device && device->configuration) {
    276         *outConfiguration = *device->configuration;
    277     } else {
    278         outConfiguration->clear();
    279     }
    280 }
    281 
    282 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
    283         RawAbsoluteAxisInfo* outAxisInfo) const {
    284     outAxisInfo->clear();
    285 
    286     if (axis >= 0 && axis <= ABS_MAX) {
    287         AutoMutex _l(mLock);
    288 
    289         Device* device = getDeviceLocked(deviceId);
    290         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
    291             struct input_absinfo info;
    292             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
    293                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
    294                      axis, device->identifier.name.string(), device->fd, errno);
    295                 return -errno;
    296             }
    297 
    298             if (info.minimum != info.maximum) {
    299                 outAxisInfo->valid = true;
    300                 outAxisInfo->minValue = info.minimum;
    301                 outAxisInfo->maxValue = info.maximum;
    302                 outAxisInfo->flat = info.flat;
    303                 outAxisInfo->fuzz = info.fuzz;
    304                 outAxisInfo->resolution = info.resolution;
    305             }
    306             return OK;
    307         }
    308     }
    309     return -1;
    310 }
    311 
    312 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
    313     if (axis >= 0 && axis <= REL_MAX) {
    314         AutoMutex _l(mLock);
    315 
    316         Device* device = getDeviceLocked(deviceId);
    317         if (device) {
    318             return test_bit(axis, device->relBitmask);
    319         }
    320     }
    321     return false;
    322 }
    323 
    324 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
    325     if (property >= 0 && property <= INPUT_PROP_MAX) {
    326         AutoMutex _l(mLock);
    327 
    328         Device* device = getDeviceLocked(deviceId);
    329         if (device) {
    330             return test_bit(property, device->propBitmask);
    331         }
    332     }
    333     return false;
    334 }
    335 
    336 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
    337     if (scanCode >= 0 && scanCode <= KEY_MAX) {
    338         AutoMutex _l(mLock);
    339 
    340         Device* device = getDeviceLocked(deviceId);
    341         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
    342             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
    343             memset(keyState, 0, sizeof(keyState));
    344             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
    345                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
    346             }
    347         }
    348     }
    349     return AKEY_STATE_UNKNOWN;
    350 }
    351 
    352 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
    353     AutoMutex _l(mLock);
    354 
    355     Device* device = getDeviceLocked(deviceId);
    356     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
    357         Vector<int32_t> scanCodes;
    358         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
    359         if (scanCodes.size() != 0) {
    360             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
    361             memset(keyState, 0, sizeof(keyState));
    362             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
    363                 for (size_t i = 0; i < scanCodes.size(); i++) {
    364                     int32_t sc = scanCodes.itemAt(i);
    365                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
    366                         return AKEY_STATE_DOWN;
    367                     }
    368                 }
    369                 return AKEY_STATE_UP;
    370             }
    371         }
    372     }
    373     return AKEY_STATE_UNKNOWN;
    374 }
    375 
    376 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
    377     if (sw >= 0 && sw <= SW_MAX) {
    378         AutoMutex _l(mLock);
    379 
    380         Device* device = getDeviceLocked(deviceId);
    381         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
    382             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
    383             memset(swState, 0, sizeof(swState));
    384             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
    385                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
    386             }
    387         }
    388     }
    389     return AKEY_STATE_UNKNOWN;
    390 }
    391 
    392 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
    393     *outValue = 0;
    394 
    395     if (axis >= 0 && axis <= ABS_MAX) {
    396         AutoMutex _l(mLock);
    397 
    398         Device* device = getDeviceLocked(deviceId);
    399         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
    400             struct input_absinfo info;
    401             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
    402                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
    403                      axis, device->identifier.name.string(), device->fd, errno);
    404                 return -errno;
    405             }
    406 
    407             *outValue = info.value;
    408             return OK;
    409         }
    410     }
    411     return -1;
    412 }
    413 
    414 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
    415         const int32_t* keyCodes, uint8_t* outFlags) const {
    416     AutoMutex _l(mLock);
    417 
    418     Device* device = getDeviceLocked(deviceId);
    419     if (device && device->keyMap.haveKeyLayout()) {
    420         Vector<int32_t> scanCodes;
    421         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
    422             scanCodes.clear();
    423 
    424             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
    425                     keyCodes[codeIndex], &scanCodes);
    426             if (! err) {
    427                 // check the possible scan codes identified by the layout map against the
    428                 // map of codes actually emitted by the driver
    429                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
    430                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
    431                         outFlags[codeIndex] = 1;
    432                         break;
    433                     }
    434                 }
    435             }
    436         }
    437         return true;
    438     }
    439     return false;
    440 }
    441 
    442 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
    443         int32_t* outKeycode, uint32_t* outFlags) const {
    444     AutoMutex _l(mLock);
    445     Device* device = getDeviceLocked(deviceId);
    446 
    447     if (device) {
    448         // Check the key character map first.
    449         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
    450         if (kcm != NULL) {
    451             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
    452                 *outFlags = 0;
    453                 return NO_ERROR;
    454             }
    455         }
    456 
    457         // Check the key layout next.
    458         if (device->keyMap.haveKeyLayout()) {
    459             if (!device->keyMap.keyLayoutMap->mapKey(
    460                     scanCode, usageCode, outKeycode, outFlags)) {
    461                 return NO_ERROR;
    462             }
    463         }
    464     }
    465 
    466     *outKeycode = 0;
    467     *outFlags = 0;
    468     return NAME_NOT_FOUND;
    469 }
    470 
    471 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
    472     AutoMutex _l(mLock);
    473     Device* device = getDeviceLocked(deviceId);
    474 
    475     if (device && device->keyMap.haveKeyLayout()) {
    476         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
    477         if (err == NO_ERROR) {
    478             return NO_ERROR;
    479         }
    480     }
    481 
    482     return NAME_NOT_FOUND;
    483 }
    484 
    485 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
    486     AutoMutex _l(mLock);
    487 
    488     mExcludedDevices = devices;
    489 }
    490 
    491 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
    492     AutoMutex _l(mLock);
    493     Device* device = getDeviceLocked(deviceId);
    494     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
    495         if (test_bit(scanCode, device->keyBitmask)) {
    496             return true;
    497         }
    498     }
    499     return false;
    500 }
    501 
    502 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
    503     AutoMutex _l(mLock);
    504     Device* device = getDeviceLocked(deviceId);
    505     if (device && led >= 0 && led <= LED_MAX) {
    506         if (test_bit(led, device->ledBitmask)) {
    507             return true;
    508         }
    509     }
    510     return false;
    511 }
    512 
    513 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
    514     AutoMutex _l(mLock);
    515     Device* device = getDeviceLocked(deviceId);
    516     if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
    517         struct input_event ev;
    518         ev.time.tv_sec = 0;
    519         ev.time.tv_usec = 0;
    520         ev.type = EV_LED;
    521         ev.code = led;
    522         ev.value = on ? 1 : 0;
    523 
    524         ssize_t nWrite;
    525         do {
    526             nWrite = write(device->fd, &ev, sizeof(struct input_event));
    527         } while (nWrite == -1 && errno == EINTR);
    528     }
    529 }
    530 
    531 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
    532         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
    533     outVirtualKeys.clear();
    534 
    535     AutoMutex _l(mLock);
    536     Device* device = getDeviceLocked(deviceId);
    537     if (device && device->virtualKeyMap) {
    538         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
    539     }
    540 }
    541 
    542 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
    543     AutoMutex _l(mLock);
    544     Device* device = getDeviceLocked(deviceId);
    545     if (device) {
    546         return device->getKeyCharacterMap();
    547     }
    548     return NULL;
    549 }
    550 
    551 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
    552         const sp<KeyCharacterMap>& map) {
    553     AutoMutex _l(mLock);
    554     Device* device = getDeviceLocked(deviceId);
    555     if (device) {
    556         if (map != device->overlayKeyMap) {
    557             device->overlayKeyMap = map;
    558             device->combinedKeyMap = KeyCharacterMap::combine(
    559                     device->keyMap.keyCharacterMap, map);
    560             return true;
    561         }
    562     }
    563     return false;
    564 }
    565 
    566 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
    567     AutoMutex _l(mLock);
    568     Device* device = getDeviceLocked(deviceId);
    569     if (device && !device->isVirtual()) {
    570         ff_effect effect;
    571         memset(&effect, 0, sizeof(effect));
    572         effect.type = FF_RUMBLE;
    573         effect.id = device->ffEffectId;
    574         effect.u.rumble.strong_magnitude = 0xc000;
    575         effect.u.rumble.weak_magnitude = 0xc000;
    576         effect.replay.length = (duration + 999999LL) / 1000000LL;
    577         effect.replay.delay = 0;
    578         if (ioctl(device->fd, EVIOCSFF, &effect)) {
    579             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
    580                     device->identifier.name.string(), errno);
    581             return;
    582         }
    583         device->ffEffectId = effect.id;
    584 
    585         struct input_event ev;
    586         ev.time.tv_sec = 0;
    587         ev.time.tv_usec = 0;
    588         ev.type = EV_FF;
    589         ev.code = device->ffEffectId;
    590         ev.value = 1;
    591         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
    592             ALOGW("Could not start force feedback effect on device %s due to error %d.",
    593                     device->identifier.name.string(), errno);
    594             return;
    595         }
    596         device->ffEffectPlaying = true;
    597     }
    598 }
    599 
    600 void EventHub::cancelVibrate(int32_t deviceId) {
    601     AutoMutex _l(mLock);
    602     Device* device = getDeviceLocked(deviceId);
    603     if (device && !device->isVirtual()) {
    604         if (device->ffEffectPlaying) {
    605             device->ffEffectPlaying = false;
    606 
    607             struct input_event ev;
    608             ev.time.tv_sec = 0;
    609             ev.time.tv_usec = 0;
    610             ev.type = EV_FF;
    611             ev.code = device->ffEffectId;
    612             ev.value = 0;
    613             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
    614                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
    615                         device->identifier.name.string(), errno);
    616                 return;
    617             }
    618         }
    619     }
    620 }
    621 
    622 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
    623     if (deviceId == BUILT_IN_KEYBOARD_ID) {
    624         deviceId = mBuiltInKeyboardId;
    625     }
    626     ssize_t index = mDevices.indexOfKey(deviceId);
    627     return index >= 0 ? mDevices.valueAt(index) : NULL;
    628 }
    629 
    630 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
    631     for (size_t i = 0; i < mDevices.size(); i++) {
    632         Device* device = mDevices.valueAt(i);
    633         if (device->path == devicePath) {
    634             return device;
    635         }
    636     }
    637     return NULL;
    638 }
    639 
    640 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
    641     ALOG_ASSERT(bufferSize >= 1);
    642 
    643     AutoMutex _l(mLock);
    644 
    645     struct input_event readBuffer[bufferSize];
    646 
    647     RawEvent* event = buffer;
    648     size_t capacity = bufferSize;
    649     bool awoken = false;
    650     for (;;) {
    651         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    652 
    653         // Reopen input devices if needed.
    654         if (mNeedToReopenDevices) {
    655             mNeedToReopenDevices = false;
    656 
    657             ALOGI("Reopening all input devices due to a configuration change.");
    658 
    659             closeAllDevicesLocked();
    660             mNeedToScanDevices = true;
    661             break; // return to the caller before we actually rescan
    662         }
    663 
    664         // Report any devices that had last been added/removed.
    665         while (mClosingDevices) {
    666             Device* device = mClosingDevices;
    667             ALOGV("Reporting device closed: id=%d, name=%s\n",
    668                  device->id, device->path.string());
    669             mClosingDevices = device->next;
    670             event->when = now;
    671             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
    672             event->type = DEVICE_REMOVED;
    673             event += 1;
    674             delete device;
    675             mNeedToSendFinishedDeviceScan = true;
    676             if (--capacity == 0) {
    677                 break;
    678             }
    679         }
    680 
    681         if (mNeedToScanDevices) {
    682             mNeedToScanDevices = false;
    683             scanDevicesLocked();
    684             mNeedToSendFinishedDeviceScan = true;
    685         }
    686 
    687         while (mOpeningDevices != NULL) {
    688             Device* device = mOpeningDevices;
    689             ALOGV("Reporting device opened: id=%d, name=%s\n",
    690                  device->id, device->path.string());
    691             mOpeningDevices = device->next;
    692             event->when = now;
    693             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
    694             event->type = DEVICE_ADDED;
    695             event += 1;
    696             mNeedToSendFinishedDeviceScan = true;
    697             if (--capacity == 0) {
    698                 break;
    699             }
    700         }
    701 
    702         if (mNeedToSendFinishedDeviceScan) {
    703             mNeedToSendFinishedDeviceScan = false;
    704             event->when = now;
    705             event->type = FINISHED_DEVICE_SCAN;
    706             event += 1;
    707             if (--capacity == 0) {
    708                 break;
    709             }
    710         }
    711 
    712         // Grab the next input event.
    713         bool deviceChanged = false;
    714         while (mPendingEventIndex < mPendingEventCount) {
    715             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
    716             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
    717                 if (eventItem.events & EPOLLIN) {
    718                     mPendingINotify = true;
    719                 } else {
    720                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
    721                 }
    722                 continue;
    723             }
    724 
    725             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
    726                 if (eventItem.events & EPOLLIN) {
    727                     ALOGV("awoken after wake()");
    728                     awoken = true;
    729                     char buffer[16];
    730                     ssize_t nRead;
    731                     do {
    732                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
    733                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
    734                 } else {
    735                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
    736                             eventItem.events);
    737                 }
    738                 continue;
    739             }
    740 
    741             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
    742             if (deviceIndex < 0) {
    743                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
    744                         eventItem.events, eventItem.data.u32);
    745                 continue;
    746             }
    747 
    748             Device* device = mDevices.valueAt(deviceIndex);
    749             if (eventItem.events & EPOLLIN) {
    750                 int32_t readSize = read(device->fd, readBuffer,
    751                         sizeof(struct input_event) * capacity);
    752                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
    753                     // Device was removed before INotify noticed.
    754                     ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
    755                             "capacity: %d errno: %d)\n",
    756                             device->fd, readSize, bufferSize, capacity, errno);
    757                     deviceChanged = true;
    758                     closeDeviceLocked(device);
    759                 } else if (readSize < 0) {
    760                     if (errno != EAGAIN && errno != EINTR) {
    761                         ALOGW("could not get event (errno=%d)", errno);
    762                     }
    763                 } else if ((readSize % sizeof(struct input_event)) != 0) {
    764                     ALOGE("could not get event (wrong size: %d)", readSize);
    765                 } else {
    766                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
    767 
    768                     size_t count = size_t(readSize) / sizeof(struct input_event);
    769                     for (size_t i = 0; i < count; i++) {
    770                         struct input_event& iev = readBuffer[i];
    771                         ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
    772                                 device->path.string(),
    773                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
    774                                 iev.type, iev.code, iev.value);
    775 
    776                         // Some input devices may have a better concept of the time
    777                         // when an input event was actually generated than the kernel
    778                         // which simply timestamps all events on entry to evdev.
    779                         // This is a custom Android extension of the input protocol
    780                         // mainly intended for use with uinput based device drivers.
    781                         if (iev.type == EV_MSC) {
    782                             if (iev.code == MSC_ANDROID_TIME_SEC) {
    783                                 device->timestampOverrideSec = iev.value;
    784                                 continue;
    785                             } else if (iev.code == MSC_ANDROID_TIME_USEC) {
    786                                 device->timestampOverrideUsec = iev.value;
    787                                 continue;
    788                             }
    789                         }
    790                         if (device->timestampOverrideSec || device->timestampOverrideUsec) {
    791                             iev.time.tv_sec = device->timestampOverrideSec;
    792                             iev.time.tv_usec = device->timestampOverrideUsec;
    793                             if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
    794                                 device->timestampOverrideSec = 0;
    795                                 device->timestampOverrideUsec = 0;
    796                             }
    797                             ALOGV("applied override time %d.%06d",
    798                                     int(iev.time.tv_sec), int(iev.time.tv_usec));
    799                         }
    800 
    801 #ifdef HAVE_POSIX_CLOCKS
    802                         // Use the time specified in the event instead of the current time
    803                         // so that downstream code can get more accurate estimates of
    804                         // event dispatch latency from the time the event is enqueued onto
    805                         // the evdev client buffer.
    806                         //
    807                         // The event's timestamp fortuitously uses the same monotonic clock
    808                         // time base as the rest of Android.  The kernel event device driver
    809                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
    810                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
    811                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
    812                         // system call that also queries ktime_get_ts().
    813                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
    814                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
    815                         ALOGV("event time %lld, now %lld", event->when, now);
    816 
    817                         // Bug 7291243: Add a guard in case the kernel generates timestamps
    818                         // that appear to be far into the future because they were generated
    819                         // using the wrong clock source.
    820                         //
    821                         // This can happen because when the input device is initially opened
    822                         // it has a default clock source of CLOCK_REALTIME.  Any input events
    823                         // enqueued right after the device is opened will have timestamps
    824                         // generated using CLOCK_REALTIME.  We later set the clock source
    825                         // to CLOCK_MONOTONIC but it is already too late.
    826                         //
    827                         // Invalid input event timestamps can result in ANRs, crashes and
    828                         // and other issues that are hard to track down.  We must not let them
    829                         // propagate through the system.
    830                         //
    831                         // Log a warning so that we notice the problem and recover gracefully.
    832                         if (event->when >= now + 10 * 1000000000LL) {
    833                             // Double-check.  Time may have moved on.
    834                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
    835                             if (event->when > time) {
    836                                 ALOGW("An input event from %s has a timestamp that appears to "
    837                                         "have been generated using the wrong clock source "
    838                                         "(expected CLOCK_MONOTONIC): "
    839                                         "event time %lld, current time %lld, call time %lld.  "
    840                                         "Using current time instead.",
    841                                         device->path.string(), event->when, time, now);
    842                                 event->when = time;
    843                             } else {
    844                                 ALOGV("Event time is ok but failed the fast path and required "
    845                                         "an extra call to systemTime: "
    846                                         "event time %lld, current time %lld, call time %lld.",
    847                                         event->when, time, now);
    848                             }
    849                         }
    850 #else
    851                         event->when = now;
    852 #endif
    853                         event->deviceId = deviceId;
    854                         event->type = iev.type;
    855                         event->code = iev.code;
    856                         event->value = iev.value;
    857                         event += 1;
    858                         capacity -= 1;
    859                     }
    860                     if (capacity == 0) {
    861                         // The result buffer is full.  Reset the pending event index
    862                         // so we will try to read the device again on the next iteration.
    863                         mPendingEventIndex -= 1;
    864                         break;
    865                     }
    866                 }
    867             } else if (eventItem.events & EPOLLHUP) {
    868                 ALOGI("Removing device %s due to epoll hang-up event.",
    869                         device->identifier.name.string());
    870                 deviceChanged = true;
    871                 closeDeviceLocked(device);
    872             } else {
    873                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
    874                         eventItem.events, device->identifier.name.string());
    875             }
    876         }
    877 
    878         // readNotify() will modify the list of devices so this must be done after
    879         // processing all other events to ensure that we read all remaining events
    880         // before closing the devices.
    881         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
    882             mPendingINotify = false;
    883             readNotifyLocked();
    884             deviceChanged = true;
    885         }
    886 
    887         // Report added or removed devices immediately.
    888         if (deviceChanged) {
    889             continue;
    890         }
    891 
    892         // Return now if we have collected any events or if we were explicitly awoken.
    893         if (event != buffer || awoken) {
    894             break;
    895         }
    896 
    897         // Poll for events.  Mind the wake lock dance!
    898         // We hold a wake lock at all times except during epoll_wait().  This works due to some
    899         // subtle choreography.  When a device driver has pending (unread) events, it acquires
    900         // a kernel wake lock.  However, once the last pending event has been read, the device
    901         // driver will release the kernel wake lock.  To prevent the system from going to sleep
    902         // when this happens, the EventHub holds onto its own user wake lock while the client
    903         // is processing events.  Thus the system can only sleep if there are no events
    904         // pending or currently being processed.
    905         //
    906         // The timeout is advisory only.  If the device is asleep, it will not wake just to
    907         // service the timeout.
    908         mPendingEventIndex = 0;
    909 
    910         mLock.unlock(); // release lock before poll, must be before release_wake_lock
    911         release_wake_lock(WAKE_LOCK_ID);
    912 
    913         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
    914 
    915         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
    916         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
    917 
    918         if (pollResult == 0) {
    919             // Timed out.
    920             mPendingEventCount = 0;
    921             break;
    922         }
    923 
    924         if (pollResult < 0) {
    925             // An error occurred.
    926             mPendingEventCount = 0;
    927 
    928             // Sleep after errors to avoid locking up the system.
    929             // Hopefully the error is transient.
    930             if (errno != EINTR) {
    931                 ALOGW("poll failed (errno=%d)\n", errno);
    932                 usleep(100000);
    933             }
    934         } else {
    935             // Some events occurred.
    936             mPendingEventCount = size_t(pollResult);
    937         }
    938     }
    939 
    940     // All done, return the number of events we read.
    941     return event - buffer;
    942 }
    943 
    944 void EventHub::wake() {
    945     ALOGV("wake() called");
    946 
    947     ssize_t nWrite;
    948     do {
    949         nWrite = write(mWakeWritePipeFd, "W", 1);
    950     } while (nWrite == -1 && errno == EINTR);
    951 
    952     if (nWrite != 1 && errno != EAGAIN) {
    953         ALOGW("Could not write wake signal, errno=%d", errno);
    954     }
    955 }
    956 
    957 void EventHub::scanDevicesLocked() {
    958     status_t res = scanDirLocked(DEVICE_PATH);
    959     if(res < 0) {
    960         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
    961     }
    962     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
    963         createVirtualKeyboardLocked();
    964     }
    965 }
    966 
    967 // ----------------------------------------------------------------------------
    968 
    969 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
    970     const uint8_t* end = array + endIndex;
    971     array += startIndex;
    972     while (array != end) {
    973         if (*(array++) != 0) {
    974             return true;
    975         }
    976     }
    977     return false;
    978 }
    979 
    980 static const int32_t GAMEPAD_KEYCODES[] = {
    981         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
    982         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
    983         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
    984         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
    985         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
    986         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
    987         AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
    988         AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
    989         AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
    990         AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
    991 };
    992 
    993 status_t EventHub::openDeviceLocked(const char *devicePath) {
    994     char buffer[80];
    995 
    996     ALOGV("Opening device: %s", devicePath);
    997 
    998     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
    999     if(fd < 0) {
   1000         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
   1001         return -1;
   1002     }
   1003 
   1004     InputDeviceIdentifier identifier;
   1005 
   1006     // Get device name.
   1007     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
   1008         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
   1009     } else {
   1010         buffer[sizeof(buffer) - 1] = '\0';
   1011         identifier.name.setTo(buffer);
   1012     }
   1013 
   1014     // Check to see if the device is on our excluded list
   1015     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
   1016         const String8& item = mExcludedDevices.itemAt(i);
   1017         if (identifier.name == item) {
   1018             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
   1019             close(fd);
   1020             return -1;
   1021         }
   1022     }
   1023 
   1024     // Get device driver version.
   1025     int driverVersion;
   1026     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
   1027         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
   1028         close(fd);
   1029         return -1;
   1030     }
   1031 
   1032     // Get device identifier.
   1033     struct input_id inputId;
   1034     if(ioctl(fd, EVIOCGID, &inputId)) {
   1035         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
   1036         close(fd);
   1037         return -1;
   1038     }
   1039     identifier.bus = inputId.bustype;
   1040     identifier.product = inputId.product;
   1041     identifier.vendor = inputId.vendor;
   1042     identifier.version = inputId.version;
   1043 
   1044     // Get device physical location.
   1045     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
   1046         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
   1047     } else {
   1048         buffer[sizeof(buffer) - 1] = '\0';
   1049         identifier.location.setTo(buffer);
   1050     }
   1051 
   1052     // Get device unique id.
   1053     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
   1054         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
   1055     } else {
   1056         buffer[sizeof(buffer) - 1] = '\0';
   1057         identifier.uniqueId.setTo(buffer);
   1058     }
   1059 
   1060     // Fill in the descriptor.
   1061     setDescriptor(identifier);
   1062 
   1063     // Make file descriptor non-blocking for use with poll().
   1064     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
   1065         ALOGE("Error %d making device file descriptor non-blocking.", errno);
   1066         close(fd);
   1067         return -1;
   1068     }
   1069 
   1070     // Allocate device.  (The device object takes ownership of the fd at this point.)
   1071     int32_t deviceId = mNextDeviceId++;
   1072     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
   1073 
   1074     ALOGV("add device %d: %s\n", deviceId, devicePath);
   1075     ALOGV("  bus:        %04x\n"
   1076          "  vendor      %04x\n"
   1077          "  product     %04x\n"
   1078          "  version     %04x\n",
   1079         identifier.bus, identifier.vendor, identifier.product, identifier.version);
   1080     ALOGV("  name:       \"%s\"\n", identifier.name.string());
   1081     ALOGV("  location:   \"%s\"\n", identifier.location.string());
   1082     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
   1083     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
   1084     ALOGV("  driver:     v%d.%d.%d\n",
   1085         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
   1086 
   1087     // Load the configuration file for the device.
   1088     loadConfigurationLocked(device);
   1089 
   1090     // Figure out the kinds of events the device reports.
   1091     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
   1092     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
   1093     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
   1094     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
   1095     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
   1096     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
   1097     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
   1098 
   1099     // See if this is a keyboard.  Ignore everything in the button range except for
   1100     // joystick and gamepad buttons which are handled like keyboards for the most part.
   1101     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
   1102             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
   1103                     sizeof_bit_array(KEY_MAX + 1));
   1104     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
   1105                     sizeof_bit_array(BTN_MOUSE))
   1106             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
   1107                     sizeof_bit_array(BTN_DIGI));
   1108     if (haveKeyboardKeys || haveGamepadButtons) {
   1109         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
   1110     }
   1111 
   1112     // See if this is a cursor device such as a trackball or mouse.
   1113     if (test_bit(BTN_MOUSE, device->keyBitmask)
   1114             && test_bit(REL_X, device->relBitmask)
   1115             && test_bit(REL_Y, device->relBitmask)) {
   1116         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
   1117     }
   1118 
   1119     // See if this is a touch pad.
   1120     // Is this a new modern multi-touch driver?
   1121     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
   1122             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
   1123         // Some joysticks such as the PS3 controller report axes that conflict
   1124         // with the ABS_MT range.  Try to confirm that the device really is
   1125         // a touch screen.
   1126         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
   1127             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
   1128         }
   1129     // Is this an old style single-touch driver?
   1130     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
   1131             && test_bit(ABS_X, device->absBitmask)
   1132             && test_bit(ABS_Y, device->absBitmask)) {
   1133         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
   1134     }
   1135 
   1136     // See if this device is a joystick.
   1137     // Assumes that joysticks always have gamepad buttons in order to distinguish them
   1138     // from other devices such as accelerometers that also have absolute axes.
   1139     if (haveGamepadButtons) {
   1140         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
   1141         for (int i = 0; i <= ABS_MAX; i++) {
   1142             if (test_bit(i, device->absBitmask)
   1143                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
   1144                 device->classes = assumedClasses;
   1145                 break;
   1146             }
   1147         }
   1148     }
   1149 
   1150     // Check whether this device has switches.
   1151     for (int i = 0; i <= SW_MAX; i++) {
   1152         if (test_bit(i, device->swBitmask)) {
   1153             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
   1154             break;
   1155         }
   1156     }
   1157 
   1158     // Check whether this device supports the vibrator.
   1159     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
   1160         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
   1161     }
   1162 
   1163     // Configure virtual keys.
   1164     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
   1165         // Load the virtual keys for the touch screen, if any.
   1166         // We do this now so that we can make sure to load the keymap if necessary.
   1167         status_t status = loadVirtualKeyMapLocked(device);
   1168         if (!status) {
   1169             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
   1170         }
   1171     }
   1172 
   1173     // Load the key map.
   1174     // We need to do this for joysticks too because the key layout may specify axes.
   1175     status_t keyMapStatus = NAME_NOT_FOUND;
   1176     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
   1177         // Load the keymap for the device.
   1178         keyMapStatus = loadKeyMapLocked(device);
   1179     }
   1180 
   1181     // Configure the keyboard, gamepad or virtual keyboard.
   1182     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
   1183         // Register the keyboard as a built-in keyboard if it is eligible.
   1184         if (!keyMapStatus
   1185                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
   1186                 && isEligibleBuiltInKeyboard(device->identifier,
   1187                         device->configuration, &device->keyMap)) {
   1188             mBuiltInKeyboardId = device->id;
   1189         }
   1190 
   1191         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
   1192         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
   1193             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
   1194         }
   1195 
   1196         // See if this device has a DPAD.
   1197         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
   1198                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
   1199                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
   1200                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
   1201                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
   1202             device->classes |= INPUT_DEVICE_CLASS_DPAD;
   1203         }
   1204 
   1205         // See if this device has a gamepad.
   1206         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
   1207             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
   1208                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
   1209                 break;
   1210             }
   1211         }
   1212 
   1213         // Disable kernel key repeat since we handle it ourselves
   1214         unsigned int repeatRate[] = {0,0};
   1215         if (ioctl(fd, EVIOCSREP, repeatRate)) {
   1216             ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
   1217         }
   1218     }
   1219 
   1220     // If the device isn't recognized as something we handle, don't monitor it.
   1221     if (device->classes == 0) {
   1222         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
   1223                 deviceId, devicePath, device->identifier.name.string());
   1224         delete device;
   1225         return -1;
   1226     }
   1227 
   1228     // Determine whether the device is external or internal.
   1229     if (isExternalDeviceLocked(device)) {
   1230         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
   1231     }
   1232 
   1233     // Register with epoll.
   1234     struct epoll_event eventItem;
   1235     memset(&eventItem, 0, sizeof(eventItem));
   1236     eventItem.events = EPOLLIN;
   1237     eventItem.data.u32 = deviceId;
   1238     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
   1239         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
   1240         delete device;
   1241         return -1;
   1242     }
   1243 
   1244     // Enable wake-lock behavior on kernels that support it.
   1245     // TODO: Only need this for devices that can really wake the system.
   1246     bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
   1247 
   1248     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
   1249     // associated with input events.  This is important because the input system
   1250     // uses the timestamps extensively and assumes they were recorded using the monotonic
   1251     // clock.
   1252     //
   1253     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
   1254     // clock to use to input event timestamps.  The standard kernel behavior was to
   1255     // record a real time timestamp, which isn't what we want.  Android kernels therefore
   1256     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
   1257     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
   1258     // clock to be used instead of the real time clock.
   1259     //
   1260     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
   1261     // Therefore, we no longer require the Android-specific kernel patch described above
   1262     // as long as we make sure to set select the monotonic clock.  We do that here.
   1263     int clockId = CLOCK_MONOTONIC;
   1264     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
   1265 
   1266     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
   1267             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
   1268             "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
   1269          deviceId, fd, devicePath, device->identifier.name.string(),
   1270          device->classes,
   1271          device->configurationFile.string(),
   1272          device->keyMap.keyLayoutFile.string(),
   1273          device->keyMap.keyCharacterMapFile.string(),
   1274          toString(mBuiltInKeyboardId == deviceId),
   1275          toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
   1276 
   1277     addDeviceLocked(device);
   1278     return 0;
   1279 }
   1280 
   1281 void EventHub::createVirtualKeyboardLocked() {
   1282     InputDeviceIdentifier identifier;
   1283     identifier.name = "Virtual";
   1284     identifier.uniqueId = "<virtual>";
   1285     setDescriptor(identifier);
   1286 
   1287     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
   1288     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
   1289             | INPUT_DEVICE_CLASS_ALPHAKEY
   1290             | INPUT_DEVICE_CLASS_DPAD
   1291             | INPUT_DEVICE_CLASS_VIRTUAL;
   1292     loadKeyMapLocked(device);
   1293     addDeviceLocked(device);
   1294 }
   1295 
   1296 void EventHub::addDeviceLocked(Device* device) {
   1297     mDevices.add(device->id, device);
   1298     device->next = mOpeningDevices;
   1299     mOpeningDevices = device;
   1300 }
   1301 
   1302 void EventHub::loadConfigurationLocked(Device* device) {
   1303     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
   1304             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
   1305     if (device->configurationFile.isEmpty()) {
   1306         ALOGD("No input device configuration file found for device '%s'.",
   1307                 device->identifier.name.string());
   1308     } else {
   1309         status_t status = PropertyMap::load(device->configurationFile,
   1310                 &device->configuration);
   1311         if (status) {
   1312             ALOGE("Error loading input device configuration file for device '%s'.  "
   1313                     "Using default configuration.",
   1314                     device->identifier.name.string());
   1315         }
   1316     }
   1317 }
   1318 
   1319 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
   1320     // The virtual key map is supplied by the kernel as a system board property file.
   1321     String8 path;
   1322     path.append("/sys/board_properties/virtualkeys.");
   1323     path.append(device->identifier.name);
   1324     if (access(path.string(), R_OK)) {
   1325         return NAME_NOT_FOUND;
   1326     }
   1327     return VirtualKeyMap::load(path, &device->virtualKeyMap);
   1328 }
   1329 
   1330 status_t EventHub::loadKeyMapLocked(Device* device) {
   1331     return device->keyMap.load(device->identifier, device->configuration);
   1332 }
   1333 
   1334 bool EventHub::isExternalDeviceLocked(Device* device) {
   1335     if (device->configuration) {
   1336         bool value;
   1337         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
   1338             return !value;
   1339         }
   1340     }
   1341     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
   1342 }
   1343 
   1344 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
   1345     if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
   1346         return false;
   1347     }
   1348 
   1349     Vector<int32_t> scanCodes;
   1350     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
   1351     const size_t N = scanCodes.size();
   1352     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
   1353         int32_t sc = scanCodes.itemAt(i);
   1354         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
   1355             return true;
   1356         }
   1357     }
   1358 
   1359     return false;
   1360 }
   1361 
   1362 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
   1363     Device* device = getDeviceByPathLocked(devicePath);
   1364     if (device) {
   1365         closeDeviceLocked(device);
   1366         return 0;
   1367     }
   1368     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
   1369     return -1;
   1370 }
   1371 
   1372 void EventHub::closeAllDevicesLocked() {
   1373     while (mDevices.size() > 0) {
   1374         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
   1375     }
   1376 }
   1377 
   1378 void EventHub::closeDeviceLocked(Device* device) {
   1379     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
   1380          device->path.string(), device->identifier.name.string(), device->id,
   1381          device->fd, device->classes);
   1382 
   1383     if (device->id == mBuiltInKeyboardId) {
   1384         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
   1385                 device->path.string(), mBuiltInKeyboardId);
   1386         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
   1387     }
   1388 
   1389     if (!device->isVirtual()) {
   1390         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
   1391             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
   1392         }
   1393     }
   1394 
   1395     mDevices.removeItem(device->id);
   1396     device->close();
   1397 
   1398     // Unlink for opening devices list if it is present.
   1399     Device* pred = NULL;
   1400     bool found = false;
   1401     for (Device* entry = mOpeningDevices; entry != NULL; ) {
   1402         if (entry == device) {
   1403             found = true;
   1404             break;
   1405         }
   1406         pred = entry;
   1407         entry = entry->next;
   1408     }
   1409     if (found) {
   1410         // Unlink the device from the opening devices list then delete it.
   1411         // We don't need to tell the client that the device was closed because
   1412         // it does not even know it was opened in the first place.
   1413         ALOGI("Device %s was immediately closed after opening.", device->path.string());
   1414         if (pred) {
   1415             pred->next = device->next;
   1416         } else {
   1417             mOpeningDevices = device->next;
   1418         }
   1419         delete device;
   1420     } else {
   1421         // Link into closing devices list.
   1422         // The device will be deleted later after we have informed the client.
   1423         device->next = mClosingDevices;
   1424         mClosingDevices = device;
   1425     }
   1426 }
   1427 
   1428 status_t EventHub::readNotifyLocked() {
   1429     int res;
   1430     char devname[PATH_MAX];
   1431     char *filename;
   1432     char event_buf[512];
   1433     int event_size;
   1434     int event_pos = 0;
   1435     struct inotify_event *event;
   1436 
   1437     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
   1438     res = read(mINotifyFd, event_buf, sizeof(event_buf));
   1439     if(res < (int)sizeof(*event)) {
   1440         if(errno == EINTR)
   1441             return 0;
   1442         ALOGW("could not get event, %s\n", strerror(errno));
   1443         return -1;
   1444     }
   1445     //printf("got %d bytes of event information\n", res);
   1446 
   1447     strcpy(devname, DEVICE_PATH);
   1448     filename = devname + strlen(devname);
   1449     *filename++ = '/';
   1450 
   1451     while(res >= (int)sizeof(*event)) {
   1452         event = (struct inotify_event *)(event_buf + event_pos);
   1453         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
   1454         if(event->len) {
   1455             strcpy(filename, event->name);
   1456             if(event->mask & IN_CREATE) {
   1457                 openDeviceLocked(devname);
   1458             } else {
   1459                 ALOGI("Removing device '%s' due to inotify event\n", devname);
   1460                 closeDeviceByPathLocked(devname);
   1461             }
   1462         }
   1463         event_size = sizeof(*event) + event->len;
   1464         res -= event_size;
   1465         event_pos += event_size;
   1466     }
   1467     return 0;
   1468 }
   1469 
   1470 status_t EventHub::scanDirLocked(const char *dirname)
   1471 {
   1472     char devname[PATH_MAX];
   1473     char *filename;
   1474     DIR *dir;
   1475     struct dirent *de;
   1476     dir = opendir(dirname);
   1477     if(dir == NULL)
   1478         return -1;
   1479     strcpy(devname, dirname);
   1480     filename = devname + strlen(devname);
   1481     *filename++ = '/';
   1482     while((de = readdir(dir))) {
   1483         if(de->d_name[0] == '.' &&
   1484            (de->d_name[1] == '\0' ||
   1485             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
   1486             continue;
   1487         strcpy(filename, de->d_name);
   1488         openDeviceLocked(devname);
   1489     }
   1490     closedir(dir);
   1491     return 0;
   1492 }
   1493 
   1494 void EventHub::requestReopenDevices() {
   1495     ALOGV("requestReopenDevices() called");
   1496 
   1497     AutoMutex _l(mLock);
   1498     mNeedToReopenDevices = true;
   1499 }
   1500 
   1501 void EventHub::dump(String8& dump) {
   1502     dump.append("Event Hub State:\n");
   1503 
   1504     { // acquire lock
   1505         AutoMutex _l(mLock);
   1506 
   1507         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
   1508 
   1509         dump.append(INDENT "Devices:\n");
   1510 
   1511         for (size_t i = 0; i < mDevices.size(); i++) {
   1512             const Device* device = mDevices.valueAt(i);
   1513             if (mBuiltInKeyboardId == device->id) {
   1514                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
   1515                         device->id, device->identifier.name.string());
   1516             } else {
   1517                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
   1518                         device->identifier.name.string());
   1519             }
   1520             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
   1521             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
   1522             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
   1523             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
   1524             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
   1525             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
   1526                     "product=0x%04x, version=0x%04x\n",
   1527                     device->identifier.bus, device->identifier.vendor,
   1528                     device->identifier.product, device->identifier.version);
   1529             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
   1530                     device->keyMap.keyLayoutFile.string());
   1531             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
   1532                     device->keyMap.keyCharacterMapFile.string());
   1533             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
   1534                     device->configurationFile.string());
   1535             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
   1536                     toString(device->overlayKeyMap != NULL));
   1537         }
   1538     } // release lock
   1539 }
   1540 
   1541 void EventHub::monitor() {
   1542     // Acquire and release the lock to ensure that the event hub has not deadlocked.
   1543     mLock.lock();
   1544     mLock.unlock();
   1545 }
   1546 
   1547 
   1548 }; // namespace android
   1549