Home | History | Annotate | Download | only in bits
      1 // Map implementation -*- C++ -*-
      2 
      3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
      4 // 2011 Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /*
     27  *
     28  * Copyright (c) 1994
     29  * Hewlett-Packard Company
     30  *
     31  * Permission to use, copy, modify, distribute and sell this software
     32  * and its documentation for any purpose is hereby granted without fee,
     33  * provided that the above copyright notice appear in all copies and
     34  * that both that copyright notice and this permission notice appear
     35  * in supporting documentation.  Hewlett-Packard Company makes no
     36  * representations about the suitability of this software for any
     37  * purpose.  It is provided "as is" without express or implied warranty.
     38  *
     39  *
     40  * Copyright (c) 1996,1997
     41  * Silicon Graphics Computer Systems, Inc.
     42  *
     43  * Permission to use, copy, modify, distribute and sell this software
     44  * and its documentation for any purpose is hereby granted without fee,
     45  * provided that the above copyright notice appear in all copies and
     46  * that both that copyright notice and this permission notice appear
     47  * in supporting documentation.  Silicon Graphics makes no
     48  * representations about the suitability of this software for any
     49  * purpose.  It is provided "as is" without express or implied warranty.
     50  */
     51 
     52 /** @file bits/stl_map.h
     53  *  This is an internal header file, included by other library headers.
     54  *  Do not attempt to use it directly. @headername{map}
     55  */
     56 
     57 #ifndef _STL_MAP_H
     58 #define _STL_MAP_H 1
     59 
     60 #include <bits/functexcept.h>
     61 #include <bits/concept_check.h>
     62 #include <initializer_list>
     63 
     64 namespace std _GLIBCXX_VISIBILITY(default)
     65 {
     66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
     67 
     68   /**
     69    *  @brief A standard container made up of (key,value) pairs, which can be
     70    *  retrieved based on a key, in logarithmic time.
     71    *
     72    *  @ingroup associative_containers
     73    *
     74    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
     75    *  <a href="tables.html#66">reversible container</a>, and an
     76    *  <a href="tables.html#69">associative container</a> (using unique keys).
     77    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
     78    *  value_type is std::pair<const Key,T>.
     79    *
     80    *  Maps support bidirectional iterators.
     81    *
     82    *  The private tree data is declared exactly the same way for map and
     83    *  multimap; the distinction is made entirely in how the tree functions are
     84    *  called (*_unique versus *_equal, same as the standard).
     85   */
     86   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
     87             typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
     88     class map
     89     {
     90     public:
     91       typedef _Key                                          key_type;
     92       typedef _Tp                                           mapped_type;
     93       typedef std::pair<const _Key, _Tp>                    value_type;
     94       typedef _Compare                                      key_compare;
     95       typedef _Alloc                                        allocator_type;
     96 
     97     private:
     98       // concept requirements
     99       typedef typename _Alloc::value_type                   _Alloc_value_type;
    100       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
    101       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
    102 				_BinaryFunctionConcept)
    103       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
    104 
    105     public:
    106       class value_compare
    107       : public std::binary_function<value_type, value_type, bool>
    108       {
    109 	friend class map<_Key, _Tp, _Compare, _Alloc>;
    110       protected:
    111 	_Compare comp;
    112 
    113 	value_compare(_Compare __c)
    114 	: comp(__c) { }
    115 
    116       public:
    117 	bool operator()(const value_type& __x, const value_type& __y) const
    118 	{ return comp(__x.first, __y.first); }
    119       };
    120 
    121     private:
    122       /// This turns a red-black tree into a [multi]map.
    123       typedef typename _Alloc::template rebind<value_type>::other
    124         _Pair_alloc_type;
    125 
    126       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
    127 		       key_compare, _Pair_alloc_type> _Rep_type;
    128 
    129       /// The actual tree structure.
    130       _Rep_type _M_t;
    131 
    132     public:
    133       // many of these are specified differently in ISO, but the following are
    134       // "functionally equivalent"
    135       typedef typename _Pair_alloc_type::pointer         pointer;
    136       typedef typename _Pair_alloc_type::const_pointer   const_pointer;
    137       typedef typename _Pair_alloc_type::reference       reference;
    138       typedef typename _Pair_alloc_type::const_reference const_reference;
    139       typedef typename _Rep_type::iterator               iterator;
    140       typedef typename _Rep_type::const_iterator         const_iterator;
    141       typedef typename _Rep_type::size_type              size_type;
    142       typedef typename _Rep_type::difference_type        difference_type;
    143       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
    144       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
    145 
    146       // [23.3.1.1] construct/copy/destroy
    147       // (get_allocator() is normally listed in this section, but seems to have
    148       // been accidentally omitted in the printed standard)
    149       /**
    150        *  @brief  Default constructor creates no elements.
    151        */
    152       map()
    153       : _M_t() { }
    154 
    155       /**
    156        *  @brief  Creates a %map with no elements.
    157        *  @param  comp  A comparison object.
    158        *  @param  a  An allocator object.
    159        */
    160       explicit
    161       map(const _Compare& __comp,
    162 	  const allocator_type& __a = allocator_type())
    163       : _M_t(__comp, __a) { }
    164 
    165       /**
    166        *  @brief  %Map copy constructor.
    167        *  @param  x  A %map of identical element and allocator types.
    168        *
    169        *  The newly-created %map uses a copy of the allocation object
    170        *  used by @a x.
    171        */
    172       map(const map& __x)
    173       : _M_t(__x._M_t) { }
    174 
    175 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    176       /**
    177        *  @brief  %Map move constructor.
    178        *  @param  x  A %map of identical element and allocator types.
    179        *
    180        *  The newly-created %map contains the exact contents of @a x.
    181        *  The contents of @a x are a valid, but unspecified %map.
    182        */
    183       map(map&& __x)
    184       : _M_t(std::move(__x._M_t)) { }
    185 
    186       /**
    187        *  @brief  Builds a %map from an initializer_list.
    188        *  @param  l  An initializer_list.
    189        *  @param  comp  A comparison object.
    190        *  @param  a  An allocator object.
    191        *
    192        *  Create a %map consisting of copies of the elements in the
    193        *  initializer_list @a l.
    194        *  This is linear in N if the range is already sorted, and NlogN
    195        *  otherwise (where N is @a l.size()).
    196        */
    197       map(initializer_list<value_type> __l,
    198 	  const _Compare& __c = _Compare(),
    199 	  const allocator_type& __a = allocator_type())
    200       : _M_t(__c, __a)
    201       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
    202 #endif
    203 
    204       /**
    205        *  @brief  Builds a %map from a range.
    206        *  @param  first  An input iterator.
    207        *  @param  last  An input iterator.
    208        *
    209        *  Create a %map consisting of copies of the elements from [first,last).
    210        *  This is linear in N if the range is already sorted, and NlogN
    211        *  otherwise (where N is distance(first,last)).
    212        */
    213       template<typename _InputIterator>
    214         map(_InputIterator __first, _InputIterator __last)
    215 	: _M_t()
    216         { _M_t._M_insert_unique(__first, __last); }
    217 
    218       /**
    219        *  @brief  Builds a %map from a range.
    220        *  @param  first  An input iterator.
    221        *  @param  last  An input iterator.
    222        *  @param  comp  A comparison functor.
    223        *  @param  a  An allocator object.
    224        *
    225        *  Create a %map consisting of copies of the elements from [first,last).
    226        *  This is linear in N if the range is already sorted, and NlogN
    227        *  otherwise (where N is distance(first,last)).
    228        */
    229       template<typename _InputIterator>
    230         map(_InputIterator __first, _InputIterator __last,
    231 	    const _Compare& __comp,
    232 	    const allocator_type& __a = allocator_type())
    233 	: _M_t(__comp, __a)
    234         { _M_t._M_insert_unique(__first, __last); }
    235 
    236       // FIXME There is no dtor declared, but we should have something
    237       // generated by Doxygen.  I don't know what tags to add to this
    238       // paragraph to make that happen:
    239       /**
    240        *  The dtor only erases the elements, and note that if the elements
    241        *  themselves are pointers, the pointed-to memory is not touched in any
    242        *  way.  Managing the pointer is the user's responsibility.
    243        */
    244 
    245       /**
    246        *  @brief  %Map assignment operator.
    247        *  @param  x  A %map of identical element and allocator types.
    248        *
    249        *  All the elements of @a x are copied, but unlike the copy constructor,
    250        *  the allocator object is not copied.
    251        */
    252       map&
    253       operator=(const map& __x)
    254       {
    255 	_M_t = __x._M_t;
    256 	return *this;
    257       }
    258 
    259 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    260       /**
    261        *  @brief  %Map move assignment operator.
    262        *  @param  x  A %map of identical element and allocator types.
    263        *
    264        *  The contents of @a x are moved into this map (without copying).
    265        *  @a x is a valid, but unspecified %map.
    266        */
    267       map&
    268       operator=(map&& __x)
    269       {
    270 	// NB: DR 1204.
    271 	// NB: DR 675.
    272 	this->clear();
    273 	this->swap(__x);
    274 	return *this;
    275       }
    276 
    277       /**
    278        *  @brief  %Map list assignment operator.
    279        *  @param  l  An initializer_list.
    280        *
    281        *  This function fills a %map with copies of the elements in the
    282        *  initializer list @a l.
    283        *
    284        *  Note that the assignment completely changes the %map and
    285        *  that the resulting %map's size is the same as the number
    286        *  of elements assigned.  Old data may be lost.
    287        */
    288       map&
    289       operator=(initializer_list<value_type> __l)
    290       {
    291 	this->clear();
    292 	this->insert(__l.begin(), __l.end());
    293 	return *this;
    294       }
    295 #endif
    296 
    297       /// Get a copy of the memory allocation object.
    298       allocator_type
    299       get_allocator() const
    300       { return _M_t.get_allocator(); }
    301 
    302       // iterators
    303       /**
    304        *  Returns a read/write iterator that points to the first pair in the
    305        *  %map.
    306        *  Iteration is done in ascending order according to the keys.
    307        */
    308       iterator
    309       begin()
    310       { return _M_t.begin(); }
    311 
    312       /**
    313        *  Returns a read-only (constant) iterator that points to the first pair
    314        *  in the %map.  Iteration is done in ascending order according to the
    315        *  keys.
    316        */
    317       const_iterator
    318       begin() const
    319       { return _M_t.begin(); }
    320 
    321       /**
    322        *  Returns a read/write iterator that points one past the last
    323        *  pair in the %map.  Iteration is done in ascending order
    324        *  according to the keys.
    325        */
    326       iterator
    327       end()
    328       { return _M_t.end(); }
    329 
    330       /**
    331        *  Returns a read-only (constant) iterator that points one past the last
    332        *  pair in the %map.  Iteration is done in ascending order according to
    333        *  the keys.
    334        */
    335       const_iterator
    336       end() const
    337       { return _M_t.end(); }
    338 
    339       /**
    340        *  Returns a read/write reverse iterator that points to the last pair in
    341        *  the %map.  Iteration is done in descending order according to the
    342        *  keys.
    343        */
    344       reverse_iterator
    345       rbegin()
    346       { return _M_t.rbegin(); }
    347 
    348       /**
    349        *  Returns a read-only (constant) reverse iterator that points to the
    350        *  last pair in the %map.  Iteration is done in descending order
    351        *  according to the keys.
    352        */
    353       const_reverse_iterator
    354       rbegin() const
    355       { return _M_t.rbegin(); }
    356 
    357       /**
    358        *  Returns a read/write reverse iterator that points to one before the
    359        *  first pair in the %map.  Iteration is done in descending order
    360        *  according to the keys.
    361        */
    362       reverse_iterator
    363       rend()
    364       { return _M_t.rend(); }
    365 
    366       /**
    367        *  Returns a read-only (constant) reverse iterator that points to one
    368        *  before the first pair in the %map.  Iteration is done in descending
    369        *  order according to the keys.
    370        */
    371       const_reverse_iterator
    372       rend() const
    373       { return _M_t.rend(); }
    374 
    375 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    376       /**
    377        *  Returns a read-only (constant) iterator that points to the first pair
    378        *  in the %map.  Iteration is done in ascending order according to the
    379        *  keys.
    380        */
    381       const_iterator
    382       cbegin() const
    383       { return _M_t.begin(); }
    384 
    385       /**
    386        *  Returns a read-only (constant) iterator that points one past the last
    387        *  pair in the %map.  Iteration is done in ascending order according to
    388        *  the keys.
    389        */
    390       const_iterator
    391       cend() const
    392       { return _M_t.end(); }
    393 
    394       /**
    395        *  Returns a read-only (constant) reverse iterator that points to the
    396        *  last pair in the %map.  Iteration is done in descending order
    397        *  according to the keys.
    398        */
    399       const_reverse_iterator
    400       crbegin() const
    401       { return _M_t.rbegin(); }
    402 
    403       /**
    404        *  Returns a read-only (constant) reverse iterator that points to one
    405        *  before the first pair in the %map.  Iteration is done in descending
    406        *  order according to the keys.
    407        */
    408       const_reverse_iterator
    409       crend() const
    410       { return _M_t.rend(); }
    411 #endif
    412 
    413       // capacity
    414       /** Returns true if the %map is empty.  (Thus begin() would equal
    415        *  end().)
    416       */
    417       bool
    418       empty() const
    419       { return _M_t.empty(); }
    420 
    421       /** Returns the size of the %map.  */
    422       size_type
    423       size() const
    424       { return _M_t.size(); }
    425 
    426       /** Returns the maximum size of the %map.  */
    427       size_type
    428       max_size() const
    429       { return _M_t.max_size(); }
    430 
    431       // [23.3.1.2] element access
    432       /**
    433        *  @brief  Subscript ( @c [] ) access to %map data.
    434        *  @param  k  The key for which data should be retrieved.
    435        *  @return  A reference to the data of the (key,data) %pair.
    436        *
    437        *  Allows for easy lookup with the subscript ( @c [] )
    438        *  operator.  Returns data associated with the key specified in
    439        *  subscript.  If the key does not exist, a pair with that key
    440        *  is created using default values, which is then returned.
    441        *
    442        *  Lookup requires logarithmic time.
    443        */
    444       mapped_type&
    445       operator[](const key_type& __k)
    446       {
    447 	// concept requirements
    448 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
    449 
    450 	iterator __i = lower_bound(__k);
    451 	// __i->first is greater than or equivalent to __k.
    452 	if (__i == end() || key_comp()(__k, (*__i).first))
    453           __i = insert(__i, value_type(__k, mapped_type()));
    454 	return (*__i).second;
    455       }
    456 
    457 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    458       mapped_type&
    459       operator[](key_type&& __k)
    460       {
    461 	// concept requirements
    462 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
    463 
    464 	iterator __i = lower_bound(__k);
    465 	// __i->first is greater than or equivalent to __k.
    466 	if (__i == end() || key_comp()(__k, (*__i).first))
    467           __i = insert(__i, std::make_pair(std::move(__k), mapped_type()));
    468 	return (*__i).second;
    469       }
    470 #endif
    471 
    472       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    473       // DR 464. Suggestion for new member functions in standard containers.
    474       /**
    475        *  @brief  Access to %map data.
    476        *  @param  k  The key for which data should be retrieved.
    477        *  @return  A reference to the data whose key is equivalent to @a k, if
    478        *           such a data is present in the %map.
    479        *  @throw  std::out_of_range  If no such data is present.
    480        */
    481       mapped_type&
    482       at(const key_type& __k)
    483       {
    484 	iterator __i = lower_bound(__k);
    485 	if (__i == end() || key_comp()(__k, (*__i).first))
    486 	  __throw_out_of_range(__N("map::at"));
    487 	return (*__i).second;
    488       }
    489 
    490       const mapped_type&
    491       at(const key_type& __k) const
    492       {
    493 	const_iterator __i = lower_bound(__k);
    494 	if (__i == end() || key_comp()(__k, (*__i).first))
    495 	  __throw_out_of_range(__N("map::at"));
    496 	return (*__i).second;
    497       }
    498 
    499       // modifiers
    500       /**
    501        *  @brief Attempts to insert a std::pair into the %map.
    502 
    503        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
    504        *	     of pairs).
    505 
    506        *  @return  A pair, of which the first element is an iterator that
    507        *           points to the possibly inserted pair, and the second is
    508        *           a bool that is true if the pair was actually inserted.
    509        *
    510        *  This function attempts to insert a (key, value) %pair into the %map.
    511        *  A %map relies on unique keys and thus a %pair is only inserted if its
    512        *  first element (the key) is not already present in the %map.
    513        *
    514        *  Insertion requires logarithmic time.
    515        */
    516       std::pair<iterator, bool>
    517       insert(const value_type& __x)
    518       { return _M_t._M_insert_unique(__x); }
    519 
    520 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    521       template<typename _Pair, typename = typename
    522 	       std::enable_if<std::is_convertible<_Pair,
    523 						  value_type>::value>::type>
    524         std::pair<iterator, bool>
    525         insert(_Pair&& __x)
    526         { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
    527 #endif
    528 
    529 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    530       /**
    531        *  @brief Attempts to insert a list of std::pairs into the %map.
    532        *  @param  list  A std::initializer_list<value_type> of pairs to be
    533        *                inserted.
    534        *
    535        *  Complexity similar to that of the range constructor.
    536        */
    537       void
    538       insert(std::initializer_list<value_type> __list)
    539       { insert(__list.begin(), __list.end()); }
    540 #endif
    541 
    542       /**
    543        *  @brief Attempts to insert a std::pair into the %map.
    544        *  @param  position  An iterator that serves as a hint as to where the
    545        *                    pair should be inserted.
    546        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
    547        *             of pairs).
    548        *  @return  An iterator that points to the element with key of @a x (may
    549        *           or may not be the %pair passed in).
    550        *
    551 
    552        *  This function is not concerned about whether the insertion
    553        *  took place, and thus does not return a boolean like the
    554        *  single-argument insert() does.  Note that the first
    555        *  parameter is only a hint and can potentially improve the
    556        *  performance of the insertion process.  A bad hint would
    557        *  cause no gains in efficiency.
    558        *
    559        *  See
    560        *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
    561        *  for more on @a hinting.
    562        *
    563        *  Insertion requires logarithmic time (if the hint is not taken).
    564        */
    565       iterator
    566 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    567       insert(const_iterator __position, const value_type& __x)
    568 #else
    569       insert(iterator __position, const value_type& __x)
    570 #endif
    571       { return _M_t._M_insert_unique_(__position, __x); }
    572 
    573 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    574       template<typename _Pair, typename = typename
    575 	       std::enable_if<std::is_convertible<_Pair,
    576 						  value_type>::value>::type>
    577         iterator
    578         insert(const_iterator __position, _Pair&& __x)
    579         { return _M_t._M_insert_unique_(__position,
    580 					std::forward<_Pair>(__x)); }
    581 #endif
    582 
    583       /**
    584        *  @brief Template function that attempts to insert a range of elements.
    585        *  @param  first  Iterator pointing to the start of the range to be
    586        *                 inserted.
    587        *  @param  last  Iterator pointing to the end of the range.
    588        *
    589        *  Complexity similar to that of the range constructor.
    590        */
    591       template<typename _InputIterator>
    592         void
    593         insert(_InputIterator __first, _InputIterator __last)
    594         { _M_t._M_insert_unique(__first, __last); }
    595 
    596 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    597       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    598       // DR 130. Associative erase should return an iterator.
    599       /**
    600        *  @brief Erases an element from a %map.
    601        *  @param  position  An iterator pointing to the element to be erased.
    602        *  @return An iterator pointing to the element immediately following
    603        *          @a position prior to the element being erased. If no such
    604        *          element exists, end() is returned.
    605        *
    606        *  This function erases an element, pointed to by the given
    607        *  iterator, from a %map.  Note that this function only erases
    608        *  the element, and that if the element is itself a pointer,
    609        *  the pointed-to memory is not touched in any way.  Managing
    610        *  the pointer is the user's responsibility.
    611        */
    612       iterator
    613       erase(const_iterator __position)
    614       { return _M_t.erase(__position); }
    615 
    616       // LWG 2059.
    617       iterator
    618       erase(iterator __position)
    619       { return _M_t.erase(__position); }
    620 #else
    621       /**
    622        *  @brief Erases an element from a %map.
    623        *  @param  position  An iterator pointing to the element to be erased.
    624        *
    625        *  This function erases an element, pointed to by the given
    626        *  iterator, from a %map.  Note that this function only erases
    627        *  the element, and that if the element is itself a pointer,
    628        *  the pointed-to memory is not touched in any way.  Managing
    629        *  the pointer is the user's responsibility.
    630        */
    631       void
    632       erase(iterator __position)
    633       { _M_t.erase(__position); }
    634 #endif
    635 
    636       /**
    637        *  @brief Erases elements according to the provided key.
    638        *  @param  x  Key of element to be erased.
    639        *  @return  The number of elements erased.
    640        *
    641        *  This function erases all the elements located by the given key from
    642        *  a %map.
    643        *  Note that this function only erases the element, and that if
    644        *  the element is itself a pointer, the pointed-to memory is not touched
    645        *  in any way.  Managing the pointer is the user's responsibility.
    646        */
    647       size_type
    648       erase(const key_type& __x)
    649       { return _M_t.erase(__x); }
    650 
    651 #ifdef __GXX_EXPERIMENTAL_CXX0X__
    652       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    653       // DR 130. Associative erase should return an iterator.
    654       /**
    655        *  @brief Erases a [first,last) range of elements from a %map.
    656        *  @param  first  Iterator pointing to the start of the range to be
    657        *                 erased.
    658        *  @param  last  Iterator pointing to the end of the range to be erased.
    659        *  @return The iterator @a last.
    660        *
    661        *  This function erases a sequence of elements from a %map.
    662        *  Note that this function only erases the element, and that if
    663        *  the element is itself a pointer, the pointed-to memory is not touched
    664        *  in any way.  Managing the pointer is the user's responsibility.
    665        */
    666       iterator
    667       erase(const_iterator __first, const_iterator __last)
    668       { return _M_t.erase(__first, __last); }
    669 #else
    670       /**
    671        *  @brief Erases a [first,last) range of elements from a %map.
    672        *  @param  first  Iterator pointing to the start of the range to be
    673        *                 erased.
    674        *  @param  last  Iterator pointing to the end of the range to be erased.
    675        *
    676        *  This function erases a sequence of elements from a %map.
    677        *  Note that this function only erases the element, and that if
    678        *  the element is itself a pointer, the pointed-to memory is not touched
    679        *  in any way.  Managing the pointer is the user's responsibility.
    680        */
    681       void
    682       erase(iterator __first, iterator __last)
    683       { _M_t.erase(__first, __last); }
    684 #endif
    685 
    686       /**
    687        *  @brief  Swaps data with another %map.
    688        *  @param  x  A %map of the same element and allocator types.
    689        *
    690        *  This exchanges the elements between two maps in constant
    691        *  time.  (It is only swapping a pointer, an integer, and an
    692        *  instance of the @c Compare type (which itself is often
    693        *  stateless and empty), so it should be quite fast.)  Note
    694        *  that the global std::swap() function is specialized such
    695        *  that std::swap(m1,m2) will feed to this function.
    696        */
    697       void
    698       swap(map& __x)
    699       { _M_t.swap(__x._M_t); }
    700 
    701       /**
    702        *  Erases all elements in a %map.  Note that this function only
    703        *  erases the elements, and that if the elements themselves are
    704        *  pointers, the pointed-to memory is not touched in any way.
    705        *  Managing the pointer is the user's responsibility.
    706        */
    707       void
    708       clear()
    709       { _M_t.clear(); }
    710 
    711       // observers
    712       /**
    713        *  Returns the key comparison object out of which the %map was
    714        *  constructed.
    715        */
    716       key_compare
    717       key_comp() const
    718       { return _M_t.key_comp(); }
    719 
    720       /**
    721        *  Returns a value comparison object, built from the key comparison
    722        *  object out of which the %map was constructed.
    723        */
    724       value_compare
    725       value_comp() const
    726       { return value_compare(_M_t.key_comp()); }
    727 
    728       // [23.3.1.3] map operations
    729       /**
    730        *  @brief Tries to locate an element in a %map.
    731        *  @param  x  Key of (key, value) %pair to be located.
    732        *  @return  Iterator pointing to sought-after element, or end() if not
    733        *           found.
    734        *
    735        *  This function takes a key and tries to locate the element with which
    736        *  the key matches.  If successful the function returns an iterator
    737        *  pointing to the sought after %pair.  If unsuccessful it returns the
    738        *  past-the-end ( @c end() ) iterator.
    739        */
    740       iterator
    741       find(const key_type& __x)
    742       { return _M_t.find(__x); }
    743 
    744       /**
    745        *  @brief Tries to locate an element in a %map.
    746        *  @param  x  Key of (key, value) %pair to be located.
    747        *  @return  Read-only (constant) iterator pointing to sought-after
    748        *           element, or end() if not found.
    749        *
    750        *  This function takes a key and tries to locate the element with which
    751        *  the key matches.  If successful the function returns a constant
    752        *  iterator pointing to the sought after %pair. If unsuccessful it
    753        *  returns the past-the-end ( @c end() ) iterator.
    754        */
    755       const_iterator
    756       find(const key_type& __x) const
    757       { return _M_t.find(__x); }
    758 
    759       /**
    760        *  @brief  Finds the number of elements with given key.
    761        *  @param  x  Key of (key, value) pairs to be located.
    762        *  @return  Number of elements with specified key.
    763        *
    764        *  This function only makes sense for multimaps; for map the result will
    765        *  either be 0 (not present) or 1 (present).
    766        */
    767       size_type
    768       count(const key_type& __x) const
    769       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
    770 
    771       /**
    772        *  @brief Finds the beginning of a subsequence matching given key.
    773        *  @param  x  Key of (key, value) pair to be located.
    774        *  @return  Iterator pointing to first element equal to or greater
    775        *           than key, or end().
    776        *
    777        *  This function returns the first element of a subsequence of elements
    778        *  that matches the given key.  If unsuccessful it returns an iterator
    779        *  pointing to the first element that has a greater value than given key
    780        *  or end() if no such element exists.
    781        */
    782       iterator
    783       lower_bound(const key_type& __x)
    784       { return _M_t.lower_bound(__x); }
    785 
    786       /**
    787        *  @brief Finds the beginning of a subsequence matching given key.
    788        *  @param  x  Key of (key, value) pair to be located.
    789        *  @return  Read-only (constant) iterator pointing to first element
    790        *           equal to or greater than key, or end().
    791        *
    792        *  This function returns the first element of a subsequence of elements
    793        *  that matches the given key.  If unsuccessful it returns an iterator
    794        *  pointing to the first element that has a greater value than given key
    795        *  or end() if no such element exists.
    796        */
    797       const_iterator
    798       lower_bound(const key_type& __x) const
    799       { return _M_t.lower_bound(__x); }
    800 
    801       /**
    802        *  @brief Finds the end of a subsequence matching given key.
    803        *  @param  x  Key of (key, value) pair to be located.
    804        *  @return Iterator pointing to the first element
    805        *          greater than key, or end().
    806        */
    807       iterator
    808       upper_bound(const key_type& __x)
    809       { return _M_t.upper_bound(__x); }
    810 
    811       /**
    812        *  @brief Finds the end of a subsequence matching given key.
    813        *  @param  x  Key of (key, value) pair to be located.
    814        *  @return  Read-only (constant) iterator pointing to first iterator
    815        *           greater than key, or end().
    816        */
    817       const_iterator
    818       upper_bound(const key_type& __x) const
    819       { return _M_t.upper_bound(__x); }
    820 
    821       /**
    822        *  @brief Finds a subsequence matching given key.
    823        *  @param  x  Key of (key, value) pairs to be located.
    824        *  @return  Pair of iterators that possibly points to the subsequence
    825        *           matching given key.
    826        *
    827        *  This function is equivalent to
    828        *  @code
    829        *    std::make_pair(c.lower_bound(val),
    830        *                   c.upper_bound(val))
    831        *  @endcode
    832        *  (but is faster than making the calls separately).
    833        *
    834        *  This function probably only makes sense for multimaps.
    835        */
    836       std::pair<iterator, iterator>
    837       equal_range(const key_type& __x)
    838       { return _M_t.equal_range(__x); }
    839 
    840       /**
    841        *  @brief Finds a subsequence matching given key.
    842        *  @param  x  Key of (key, value) pairs to be located.
    843        *  @return  Pair of read-only (constant) iterators that possibly points
    844        *           to the subsequence matching given key.
    845        *
    846        *  This function is equivalent to
    847        *  @code
    848        *    std::make_pair(c.lower_bound(val),
    849        *                   c.upper_bound(val))
    850        *  @endcode
    851        *  (but is faster than making the calls separately).
    852        *
    853        *  This function probably only makes sense for multimaps.
    854        */
    855       std::pair<const_iterator, const_iterator>
    856       equal_range(const key_type& __x) const
    857       { return _M_t.equal_range(__x); }
    858 
    859       template<typename _K1, typename _T1, typename _C1, typename _A1>
    860         friend bool
    861         operator==(const map<_K1, _T1, _C1, _A1>&,
    862 		   const map<_K1, _T1, _C1, _A1>&);
    863 
    864       template<typename _K1, typename _T1, typename _C1, typename _A1>
    865         friend bool
    866         operator<(const map<_K1, _T1, _C1, _A1>&,
    867 		  const map<_K1, _T1, _C1, _A1>&);
    868     };
    869 
    870   /**
    871    *  @brief  Map equality comparison.
    872    *  @param  x  A %map.
    873    *  @param  y  A %map of the same type as @a x.
    874    *  @return  True iff the size and elements of the maps are equal.
    875    *
    876    *  This is an equivalence relation.  It is linear in the size of the
    877    *  maps.  Maps are considered equivalent if their sizes are equal,
    878    *  and if corresponding elements compare equal.
    879   */
    880   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    881     inline bool
    882     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    883                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    884     { return __x._M_t == __y._M_t; }
    885 
    886   /**
    887    *  @brief  Map ordering relation.
    888    *  @param  x  A %map.
    889    *  @param  y  A %map of the same type as @a x.
    890    *  @return  True iff @a x is lexicographically less than @a y.
    891    *
    892    *  This is a total ordering relation.  It is linear in the size of the
    893    *  maps.  The elements must be comparable with @c <.
    894    *
    895    *  See std::lexicographical_compare() for how the determination is made.
    896   */
    897   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    898     inline bool
    899     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    900               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    901     { return __x._M_t < __y._M_t; }
    902 
    903   /// Based on operator==
    904   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    905     inline bool
    906     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    907                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    908     { return !(__x == __y); }
    909 
    910   /// Based on operator<
    911   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    912     inline bool
    913     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    914               const map<_Key, _Tp, _Compare, _Alloc>& __y)
    915     { return __y < __x; }
    916 
    917   /// Based on operator<
    918   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    919     inline bool
    920     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    921                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    922     { return !(__y < __x); }
    923 
    924   /// Based on operator<
    925   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    926     inline bool
    927     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
    928                const map<_Key, _Tp, _Compare, _Alloc>& __y)
    929     { return !(__x < __y); }
    930 
    931   /// See std::map::swap().
    932   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
    933     inline void
    934     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
    935 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
    936     { __x.swap(__y); }
    937 
    938 _GLIBCXX_END_NAMESPACE_CONTAINER
    939 } // namespace std
    940 
    941 #endif /* _STL_MAP_H */
    942