Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/exp_integral.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  You should not attempt to use it directly.
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 //  Written by Edward Smith-Rowland based on:
     36 //
     37 //   (1) Handbook of Mathematical Functions,
     38 //       Ed. by Milton Abramowitz and Irene A. Stegun,
     39 //       Dover Publications, New-York, Section 5, pp. 228-251.
     40 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     41 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
     42 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
     43 //       2nd ed, pp. 222-225.
     44 //
     45 
     46 #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
     47 #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
     48 
     49 #include "special_function_util.h"
     50 
     51 namespace std
     52 {
     53 namespace tr1
     54 {
     55 
     56   // [5.2] Special functions
     57 
     58   // Implementation-space details.
     59   namespace __detail
     60   {
     61 
     62     /**
     63      *   @brief Return the exponential integral @f$ E_1(x) @f$
     64      *          by series summation.  This should be good
     65      *          for @f$ x < 1 @f$.
     66      * 
     67      *   The exponential integral is given by
     68      *          \f[
     69      *            E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
     70      *          \f]
     71      * 
     72      *   @param  __x  The argument of the exponential integral function.
     73      *   @return  The exponential integral.
     74      */
     75     template<typename _Tp>
     76     _Tp
     77     __expint_E1_series(const _Tp __x)
     78     {
     79       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
     80       _Tp __term = _Tp(1);
     81       _Tp __esum = _Tp(0);
     82       _Tp __osum = _Tp(0);
     83       const unsigned int __max_iter = 100;
     84       for (unsigned int __i = 1; __i < __max_iter; ++__i)
     85         {
     86           __term *= - __x / __i;
     87           if (std::abs(__term) < __eps)
     88             break;
     89           if (__term >= _Tp(0))
     90             __esum += __term / __i;
     91           else
     92             __osum += __term / __i;
     93         }
     94 
     95       return - __esum - __osum
     96              - __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
     97     }
     98 
     99 
    100     /**
    101      *   @brief Return the exponential integral @f$ E_1(x) @f$
    102      *          by asymptotic expansion.
    103      * 
    104      *   The exponential integral is given by
    105      *          \f[
    106      *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
    107      *          \f]
    108      * 
    109      *   @param  __x  The argument of the exponential integral function.
    110      *   @return  The exponential integral.
    111      */
    112     template<typename _Tp>
    113     _Tp
    114     __expint_E1_asymp(const _Tp __x)
    115     {
    116       _Tp __term = _Tp(1);
    117       _Tp __esum = _Tp(1);
    118       _Tp __osum = _Tp(0);
    119       const unsigned int __max_iter = 1000;
    120       for (unsigned int __i = 1; __i < __max_iter; ++__i)
    121         {
    122           _Tp __prev = __term;
    123           __term *= - __i / __x;
    124           if (std::abs(__term) > std::abs(__prev))
    125             break;
    126           if (__term >= _Tp(0))
    127             __esum += __term;
    128           else
    129             __osum += __term;
    130         }
    131 
    132       return std::exp(- __x) * (__esum + __osum) / __x;
    133     }
    134 
    135 
    136     /**
    137      *   @brief Return the exponential integral @f$ E_n(x) @f$
    138      *          by series summation.
    139      * 
    140      *   The exponential integral is given by
    141      *          \f[
    142      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
    143      *          \f]
    144      * 
    145      *   @param  __n  The order of the exponential integral function.
    146      *   @param  __x  The argument of the exponential integral function.
    147      *   @return  The exponential integral.
    148      */
    149     template<typename _Tp>
    150     _Tp
    151     __expint_En_series(const unsigned int __n, const _Tp __x)
    152     {
    153       const unsigned int __max_iter = 100;
    154       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    155       const int __nm1 = __n - 1;
    156       _Tp __ans = (__nm1 != 0
    157                 ? _Tp(1) / __nm1 : -std::log(__x)
    158                                    - __numeric_constants<_Tp>::__gamma_e());
    159       _Tp __fact = _Tp(1);
    160       for (int __i = 1; __i <= __max_iter; ++__i)
    161         {
    162           __fact *= -__x / _Tp(__i);
    163           _Tp __del;
    164           if ( __i != __nm1 )
    165             __del = -__fact / _Tp(__i - __nm1);
    166           else
    167             {
    168               _Tp __psi = -_TR1_GAMMA_TCC;
    169               for (int __ii = 1; __ii <= __nm1; ++__ii)
    170                 __psi += _Tp(1) / _Tp(__ii);
    171               __del = __fact * (__psi - std::log(__x)); 
    172             }
    173           __ans += __del;
    174           if (std::abs(__del) < __eps * std::abs(__ans))
    175             return __ans;
    176         }
    177       std::__throw_runtime_error(__N("Series summation failed "
    178                                      "in __expint_En_series."));
    179     }
    180 
    181 
    182     /**
    183      *   @brief Return the exponential integral @f$ E_n(x) @f$
    184      *          by continued fractions.
    185      * 
    186      *   The exponential integral is given by
    187      *          \f[
    188      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
    189      *          \f]
    190      * 
    191      *   @param  __n  The order of the exponential integral function.
    192      *   @param  __x  The argument of the exponential integral function.
    193      *   @return  The exponential integral.
    194      */
    195     template<typename _Tp>
    196     _Tp
    197     __expint_En_cont_frac(const unsigned int __n, const _Tp __x)
    198     {
    199       const unsigned int __max_iter = 100;
    200       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    201       const _Tp __fp_min = std::numeric_limits<_Tp>::min();
    202       const int __nm1 = __n - 1;
    203       _Tp __b = __x + _Tp(__n);
    204       _Tp __c = _Tp(1) / __fp_min;
    205       _Tp __d = _Tp(1) / __b;
    206       _Tp __h = __d;
    207       for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
    208         {
    209           _Tp __a = -_Tp(__i * (__nm1 + __i));
    210           __b += _Tp(2);
    211           __d = _Tp(1) / (__a * __d + __b);
    212           __c = __b + __a / __c;
    213           const _Tp __del = __c * __d;
    214           __h *= __del;
    215           if (std::abs(__del - _Tp(1)) < __eps)
    216             {
    217               const _Tp __ans = __h * std::exp(-__x);
    218               return __ans;
    219             }
    220         }
    221       std::__throw_runtime_error(__N("Continued fraction failed "
    222                                      "in __expint_En_cont_frac."));
    223     }
    224 
    225 
    226     /**
    227      *   @brief Return the exponential integral @f$ E_n(x) @f$
    228      *          by recursion.  Use upward recursion for @f$ x < n @f$
    229      *          and downward recursion (Miller's algorithm) otherwise.
    230      * 
    231      *   The exponential integral is given by
    232      *          \f[
    233      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
    234      *          \f]
    235      * 
    236      *   @param  __n  The order of the exponential integral function.
    237      *   @param  __x  The argument of the exponential integral function.
    238      *   @return  The exponential integral.
    239      */
    240     template<typename _Tp>
    241     _Tp
    242     __expint_En_recursion(const unsigned int __n, const _Tp __x)
    243     {
    244       _Tp __En;
    245       _Tp __E1 = __expint_E1(__x);
    246       if (__x < _Tp(__n))
    247         {
    248           //  Forward recursion is stable only for n < x.
    249           __En = __E1;
    250           for (unsigned int __j = 2; __j < __n; ++__j)
    251             __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
    252         }
    253       else
    254         {
    255           //  Backward recursion is stable only for n >= x.
    256           __En = _Tp(1);
    257           const int __N = __n + 20;  //  TODO: Check this starting number.
    258           _Tp __save = _Tp(0);
    259           for (int __j = __N; __j > 0; --__j)
    260             {
    261               __En = (std::exp(-__x) - __j * __En) / __x;
    262               if (__j == __n)
    263                 __save = __En;
    264             }
    265             _Tp __norm = __En / __E1;
    266             __En /= __norm;
    267         }
    268 
    269       return __En;
    270     }
    271 
    272     /**
    273      *   @brief Return the exponential integral @f$ Ei(x) @f$
    274      *          by series summation.
    275      * 
    276      *   The exponential integral is given by
    277      *          \f[
    278      *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
    279      *          \f]
    280      * 
    281      *   @param  __x  The argument of the exponential integral function.
    282      *   @return  The exponential integral.
    283      */
    284     template<typename _Tp>
    285     _Tp
    286     __expint_Ei_series(const _Tp __x)
    287     {
    288       _Tp __term = _Tp(1);
    289       _Tp __sum = _Tp(0);
    290       const unsigned int __max_iter = 1000;
    291       for (unsigned int __i = 1; __i < __max_iter; ++__i)
    292         {
    293           __term *= __x / __i;
    294           __sum += __term / __i;
    295           if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
    296             break;
    297         }
    298 
    299       return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
    300     }
    301 
    302 
    303     /**
    304      *   @brief Return the exponential integral @f$ Ei(x) @f$
    305      *          by asymptotic expansion.
    306      * 
    307      *   The exponential integral is given by
    308      *          \f[
    309      *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
    310      *          \f]
    311      * 
    312      *   @param  __x  The argument of the exponential integral function.
    313      *   @return  The exponential integral.
    314      */
    315     template<typename _Tp>
    316     _Tp
    317     __expint_Ei_asymp(const _Tp __x)
    318     {
    319       _Tp __term = _Tp(1);
    320       _Tp __sum = _Tp(1);
    321       const unsigned int __max_iter = 1000;
    322       for (unsigned int __i = 1; __i < __max_iter; ++__i)
    323         {
    324           _Tp __prev = __term;
    325           __term *= __i / __x;
    326           if (__term < std::numeric_limits<_Tp>::epsilon())
    327             break;
    328           if (__term >= __prev)
    329             break;
    330           __sum += __term;
    331         }
    332 
    333       return std::exp(__x) * __sum / __x;
    334     }
    335 
    336 
    337     /**
    338      *   @brief Return the exponential integral @f$ Ei(x) @f$.
    339      * 
    340      *   The exponential integral is given by
    341      *          \f[
    342      *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
    343      *          \f]
    344      * 
    345      *   @param  __x  The argument of the exponential integral function.
    346      *   @return  The exponential integral.
    347      */
    348     template<typename _Tp>
    349     _Tp
    350     __expint_Ei(const _Tp __x)
    351     {
    352       if (__x < _Tp(0))
    353         return -__expint_E1(-__x);
    354       else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
    355         return __expint_Ei_series(__x);
    356       else
    357         return __expint_Ei_asymp(__x);
    358     }
    359 
    360 
    361     /**
    362      *   @brief Return the exponential integral @f$ E_1(x) @f$.
    363      * 
    364      *   The exponential integral is given by
    365      *          \f[
    366      *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
    367      *          \f]
    368      * 
    369      *   @param  __x  The argument of the exponential integral function.
    370      *   @return  The exponential integral.
    371      */
    372     template<typename _Tp>
    373     _Tp
    374     __expint_E1(const _Tp __x)
    375     {
    376       if (__x < _Tp(0))
    377         return -__expint_Ei(-__x);
    378       else if (__x < _Tp(1))
    379         return __expint_E1_series(__x);
    380       else if (__x < _Tp(100))  //  TODO: Find a good asymptotic switch point.
    381         return __expint_En_cont_frac(1, __x);
    382       else
    383         return __expint_E1_asymp(__x);
    384     }
    385 
    386 
    387     /**
    388      *   @brief Return the exponential integral @f$ E_n(x) @f$
    389      *          for large argument.
    390      * 
    391      *   The exponential integral is given by
    392      *          \f[
    393      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
    394      *          \f]
    395      * 
    396      *   This is something of an extension.
    397      * 
    398      *   @param  __n  The order of the exponential integral function.
    399      *   @param  __x  The argument of the exponential integral function.
    400      *   @return  The exponential integral.
    401      */
    402     template<typename _Tp>
    403     _Tp
    404     __expint_asymp(const unsigned int __n, const _Tp __x)
    405     {
    406       _Tp __term = _Tp(1);
    407       _Tp __sum = _Tp(1);
    408       for (unsigned int __i = 1; __i <= __n; ++__i)
    409         {
    410           _Tp __prev = __term;
    411           __term *= -(__n - __i + 1) / __x;
    412           if (std::abs(__term) > std::abs(__prev))
    413             break;
    414           __sum += __term;
    415         }
    416 
    417       return std::exp(-__x) * __sum / __x;
    418     }
    419 
    420 
    421     /**
    422      *   @brief Return the exponential integral @f$ E_n(x) @f$
    423      *          for large order.
    424      * 
    425      *   The exponential integral is given by
    426      *          \f[
    427      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
    428      *          \f]
    429      *        
    430      *   This is something of an extension.
    431      * 
    432      *   @param  __n  The order of the exponential integral function.
    433      *   @param  __x  The argument of the exponential integral function.
    434      *   @return  The exponential integral.
    435      */
    436     template<typename _Tp>
    437     _Tp
    438     __expint_large_n(const unsigned int __n, const _Tp __x)
    439     {
    440       const _Tp __xpn = __x + __n;
    441       const _Tp __xpn2 = __xpn * __xpn;
    442       _Tp __term = _Tp(1);
    443       _Tp __sum = _Tp(1);
    444       for (unsigned int __i = 1; __i <= __n; ++__i)
    445         {
    446           _Tp __prev = __term;
    447           __term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
    448           if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
    449             break;
    450           __sum += __term;
    451         }
    452 
    453       return std::exp(-__x) * __sum / __xpn;
    454     }
    455 
    456 
    457     /**
    458      *   @brief Return the exponential integral @f$ E_n(x) @f$.
    459      * 
    460      *   The exponential integral is given by
    461      *          \f[
    462      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
    463      *          \f]
    464      *   This is something of an extension.
    465      * 
    466      *   @param  __n  The order of the exponential integral function.
    467      *   @param  __x  The argument of the exponential integral function.
    468      *   @return  The exponential integral.
    469      */
    470     template<typename _Tp>
    471     _Tp
    472     __expint(const unsigned int __n, const _Tp __x)
    473     {
    474       //  Return NaN on NaN input.
    475       if (__isnan(__x))
    476         return std::numeric_limits<_Tp>::quiet_NaN();
    477       else if (__n <= 1 && __x == _Tp(0))
    478         return std::numeric_limits<_Tp>::infinity();
    479       else
    480         {
    481           _Tp __E0 = std::exp(__x) / __x;
    482           if (__n == 0)
    483             return __E0;
    484 
    485           _Tp __E1 = __expint_E1(__x);
    486           if (__n == 1)
    487             return __E1;
    488 
    489           if (__x == _Tp(0))
    490             return _Tp(1) / static_cast<_Tp>(__n - 1);
    491 
    492           _Tp __En = __expint_En_recursion(__n, __x);
    493 
    494           return __En;
    495         }
    496     }
    497 
    498 
    499     /**
    500      *   @brief Return the exponential integral @f$ Ei(x) @f$.
    501      * 
    502      *   The exponential integral is given by
    503      *   \f[
    504      *     Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
    505      *   \f]
    506      * 
    507      *   @param  __x  The argument of the exponential integral function.
    508      *   @return  The exponential integral.
    509      */
    510     template<typename _Tp>
    511     inline _Tp
    512     __expint(const _Tp __x)
    513     {
    514       if (__isnan(__x))
    515         return std::numeric_limits<_Tp>::quiet_NaN();
    516       else
    517         return __expint_Ei(__x);
    518     }
    519 
    520   } // namespace std::tr1::__detail
    521 }
    522 }
    523 
    524 #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC
    525