Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/poly_laguerre.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  You should not attempt to use it directly.
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 // Written by Edward Smith-Rowland based on:
     36 //   (1) Handbook of Mathematical Functions,
     37 //       Ed. Milton Abramowitz and Irene A. Stegun,
     38 //       Dover Publications,
     39 //       Section 13, pp. 509-510, Section 22 pp. 773-802
     40 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     41 
     42 #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
     43 #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
     44 
     45 namespace std
     46 {
     47 namespace tr1
     48 {
     49 
     50   // [5.2] Special functions
     51 
     52   // Implementation-space details.
     53   namespace __detail
     54   {
     55 
     56 
     57     /**
     58      *   @brief This routine returns the associated Laguerre polynomial 
     59      *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
     60      *   Abramowitz & Stegun, 13.5.21
     61      *
     62      *   @param __n The order of the Laguerre function.
     63      *   @param __alpha The degree of the Laguerre function.
     64      *   @param __x The argument of the Laguerre function.
     65      *   @return The value of the Laguerre function of order n,
     66      *           degree @f$ \alpha @f$, and argument x.
     67      *
     68      *  This is from the GNU Scientific Library.
     69      */
     70     template<typename _Tpa, typename _Tp>
     71     _Tp
     72     __poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1,
     73                             const _Tp __x)
     74     {
     75       const _Tp __a = -_Tp(__n);
     76       const _Tp __b = _Tp(__alpha1) + _Tp(1);
     77       const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
     78       const _Tp __cos2th = __x / __eta;
     79       const _Tp __sin2th = _Tp(1) - __cos2th;
     80       const _Tp __th = std::acos(std::sqrt(__cos2th));
     81       const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
     82                         * __numeric_constants<_Tp>::__pi_2()
     83                         * __eta * __eta * __cos2th * __sin2th;
     84 
     85 #if _GLIBCXX_USE_C99_MATH_TR1
     86       const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
     87       const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
     88 #else
     89       const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
     90       const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
     91 #endif
     92 
     93       _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
     94                       * std::log(_Tp(0.25L) * __x * __eta);
     95       _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
     96       _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
     97                       + __pre_term1 - __pre_term2;
     98       _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
     99       _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
    100                               * (_Tp(2) * __th
    101                                - std::sin(_Tp(2) * __th))
    102                                + __numeric_constants<_Tp>::__pi_4());
    103       _Tp __ser = __ser_term1 + __ser_term2;
    104 
    105       return std::exp(__lnpre) * __ser;
    106     }
    107 
    108 
    109     /**
    110      *  @brief  Evaluate the polynomial based on the confluent hypergeometric
    111      *          function in a safe way, with no restriction on the arguments.
    112      *
    113      *   The associated Laguerre function is defined by
    114      *   @f[
    115      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
    116      *                       _1F_1(-n; \alpha + 1; x)
    117      *   @f]
    118      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
    119      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
    120      *
    121      *  This function assumes x != 0.
    122      *
    123      *  This is from the GNU Scientific Library.
    124      */
    125     template<typename _Tpa, typename _Tp>
    126     _Tp
    127     __poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1,
    128 			   const _Tp __x)
    129     {
    130       const _Tp __b = _Tp(__alpha1) + _Tp(1);
    131       const _Tp __mx = -__x;
    132       const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
    133                          : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
    134       //  Get |x|^n/n!
    135       _Tp __tc = _Tp(1);
    136       const _Tp __ax = std::abs(__x);
    137       for (unsigned int __k = 1; __k <= __n; ++__k)
    138         __tc *= (__ax / __k);
    139 
    140       _Tp __term = __tc * __tc_sgn;
    141       _Tp __sum = __term;
    142       for (int __k = int(__n) - 1; __k >= 0; --__k)
    143         {
    144           __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
    145                   * _Tp(__k + 1) / __mx;
    146           __sum += __term;
    147         }
    148 
    149       return __sum;
    150     }
    151 
    152 
    153     /**
    154      *   @brief This routine returns the associated Laguerre polynomial 
    155      *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
    156      *          by recursion.
    157      *
    158      *   The associated Laguerre function is defined by
    159      *   @f[
    160      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
    161      *                       _1F_1(-n; \alpha + 1; x)
    162      *   @f]
    163      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
    164      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
    165      *
    166      *   The associated Laguerre polynomial is defined for integral
    167      *   @f$ \alpha = m @f$ by:
    168      *   @f[
    169      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
    170      *   @f]
    171      *   where the Laguerre polynomial is defined by:
    172      *   @f[
    173      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    174      *   @f]
    175      *
    176      *   @param __n The order of the Laguerre function.
    177      *   @param __alpha The degree of the Laguerre function.
    178      *   @param __x The argument of the Laguerre function.
    179      *   @return The value of the Laguerre function of order n,
    180      *           degree @f$ \alpha @f$, and argument x.
    181      */
    182     template<typename _Tpa, typename _Tp>
    183     _Tp
    184     __poly_laguerre_recursion(const unsigned int __n,
    185                               const _Tpa __alpha1, const _Tp __x)
    186     {
    187       //   Compute l_0.
    188       _Tp __l_0 = _Tp(1);
    189       if  (__n == 0)
    190         return __l_0;
    191 
    192       //  Compute l_1^alpha.
    193       _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
    194       if  (__n == 1)
    195         return __l_1;
    196 
    197       //  Compute l_n^alpha by recursion on n.
    198       _Tp __l_n2 = __l_0;
    199       _Tp __l_n1 = __l_1;
    200       _Tp __l_n = _Tp(0);
    201       for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
    202         {
    203             __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
    204                   * __l_n1 / _Tp(__nn)
    205                   - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
    206             __l_n2 = __l_n1;
    207             __l_n1 = __l_n;
    208         }
    209 
    210       return __l_n;
    211     }
    212 
    213 
    214     /**
    215      *   @brief This routine returns the associated Laguerre polynomial
    216      *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
    217      *
    218      *   The associated Laguerre function is defined by
    219      *   @f[
    220      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
    221      *                       _1F_1(-n; \alpha + 1; x)
    222      *   @f]
    223      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
    224      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
    225      *
    226      *   The associated Laguerre polynomial is defined for integral
    227      *   @f$ \alpha = m @f$ by:
    228      *   @f[
    229      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
    230      *   @f]
    231      *   where the Laguerre polynomial is defined by:
    232      *   @f[
    233      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    234      *   @f]
    235      *
    236      *   @param __n The order of the Laguerre function.
    237      *   @param __alpha The degree of the Laguerre function.
    238      *   @param __x The argument of the Laguerre function.
    239      *   @return The value of the Laguerre function of order n,
    240      *           degree @f$ \alpha @f$, and argument x.
    241      */
    242     template<typename _Tpa, typename _Tp>
    243     inline _Tp
    244     __poly_laguerre(const unsigned int __n, const _Tpa __alpha1,
    245                     const _Tp __x)
    246     {
    247       if (__x < _Tp(0))
    248         std::__throw_domain_error(__N("Negative argument "
    249                                       "in __poly_laguerre."));
    250       //  Return NaN on NaN input.
    251       else if (__isnan(__x))
    252         return std::numeric_limits<_Tp>::quiet_NaN();
    253       else if (__n == 0)
    254         return _Tp(1);
    255       else if (__n == 1)
    256         return _Tp(1) + _Tp(__alpha1) - __x;
    257       else if (__x == _Tp(0))
    258         {
    259           _Tp __prod = _Tp(__alpha1) + _Tp(1);
    260           for (unsigned int __k = 2; __k <= __n; ++__k)
    261             __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
    262           return __prod;
    263         }
    264       else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
    265             && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
    266         return __poly_laguerre_large_n(__n, __alpha1, __x);
    267       else if (_Tp(__alpha1) >= _Tp(0)
    268            || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
    269         return __poly_laguerre_recursion(__n, __alpha1, __x);
    270       else
    271         return __poly_laguerre_hyperg(__n, __alpha1, __x);
    272     }
    273 
    274 
    275     /**
    276      *   @brief This routine returns the associated Laguerre polynomial
    277      *          of order n, degree m: @f$ L_n^m(x) @f$.
    278      *
    279      *   The associated Laguerre polynomial is defined for integral
    280      *   @f$ \alpha = m @f$ by:
    281      *   @f[
    282      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
    283      *   @f]
    284      *   where the Laguerre polynomial is defined by:
    285      *   @f[
    286      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    287      *   @f]
    288      *
    289      *   @param __n The order of the Laguerre polynomial.
    290      *   @param __m The degree of the Laguerre polynomial.
    291      *   @param __x The argument of the Laguerre polynomial.
    292      *   @return The value of the associated Laguerre polynomial of order n,
    293      *           degree m, and argument x.
    294      */
    295     template<typename _Tp>
    296     inline _Tp
    297     __assoc_laguerre(const unsigned int __n, const unsigned int __m,
    298                      const _Tp __x)
    299     {
    300       return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x);
    301     }
    302 
    303 
    304     /**
    305      *   @brief This routine returns the Laguerre polynomial
    306      *          of order n: @f$ L_n(x) @f$.
    307      *
    308      *   The Laguerre polynomial is defined by:
    309      *   @f[
    310      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    311      *   @f]
    312      *
    313      *   @param __n The order of the Laguerre polynomial.
    314      *   @param __x The argument of the Laguerre polynomial.
    315      *   @return The value of the Laguerre polynomial of order n
    316      *           and argument x.
    317      */
    318     template<typename _Tp>
    319     inline _Tp
    320     __laguerre(const unsigned int __n, const _Tp __x)
    321     {
    322       return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x);
    323     }
    324 
    325   } // namespace std::tr1::__detail
    326 }
    327 }
    328 
    329 #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
    330