Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009, 2010
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/ell_integral.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  Do not attempt to use it directly. @headername{tr1/cmath}
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 // Written by Edward Smith-Rowland based on:
     36 //   (1)  B. C. Carlson Numer. Math. 33, 1 (1979)
     37 //   (2)  B. C. Carlson, Special Functions of Applied Mathematics (1977)
     38 //   (3)  The Gnu Scientific Library, http://www.gnu.org/software/gsl
     39 //   (4)  Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
     40 //        W. T. Vetterling, B. P. Flannery, Cambridge University Press
     41 //        (1992), pp. 261-269
     42 
     43 #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
     44 #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
     45 
     46 namespace std _GLIBCXX_VISIBILITY(default)
     47 {
     48 namespace tr1
     49 {
     50   // [5.2] Special functions
     51 
     52   // Implementation-space details.
     53   namespace __detail
     54   {
     55   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     56 
     57     /**
     58      *   @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
     59      *          of the first kind.
     60      * 
     61      *   The Carlson elliptic function of the first kind is defined by:
     62      *   @f[
     63      *       R_F(x,y,z) = \frac{1}{2} \int_0^\infty
     64      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
     65      *   @f]
     66      *
     67      *   @param  __x  The first of three symmetric arguments.
     68      *   @param  __y  The second of three symmetric arguments.
     69      *   @param  __z  The third of three symmetric arguments.
     70      *   @return  The Carlson elliptic function of the first kind.
     71      */
     72     template<typename _Tp>
     73     _Tp
     74     __ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z)
     75     {
     76       const _Tp __min = std::numeric_limits<_Tp>::min();
     77       const _Tp __max = std::numeric_limits<_Tp>::max();
     78       const _Tp __lolim = _Tp(5) * __min;
     79       const _Tp __uplim = __max / _Tp(5);
     80 
     81       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
     82         std::__throw_domain_error(__N("Argument less than zero "
     83                                       "in __ellint_rf."));
     84       else if (__x + __y < __lolim || __x + __z < __lolim
     85             || __y + __z < __lolim)
     86         std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
     87       else
     88         {
     89           const _Tp __c0 = _Tp(1) / _Tp(4);
     90           const _Tp __c1 = _Tp(1) / _Tp(24);
     91           const _Tp __c2 = _Tp(1) / _Tp(10);
     92           const _Tp __c3 = _Tp(3) / _Tp(44);
     93           const _Tp __c4 = _Tp(1) / _Tp(14);
     94 
     95           _Tp __xn = __x;
     96           _Tp __yn = __y;
     97           _Tp __zn = __z;
     98 
     99           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    100           const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
    101           _Tp __mu;
    102           _Tp __xndev, __yndev, __zndev;
    103 
    104           const unsigned int __max_iter = 100;
    105           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
    106             {
    107               __mu = (__xn + __yn + __zn) / _Tp(3);
    108               __xndev = 2 - (__mu + __xn) / __mu;
    109               __yndev = 2 - (__mu + __yn) / __mu;
    110               __zndev = 2 - (__mu + __zn) / __mu;
    111               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
    112               __epsilon = std::max(__epsilon, std::abs(__zndev));
    113               if (__epsilon < __errtol)
    114                 break;
    115               const _Tp __xnroot = std::sqrt(__xn);
    116               const _Tp __ynroot = std::sqrt(__yn);
    117               const _Tp __znroot = std::sqrt(__zn);
    118               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
    119                                  + __ynroot * __znroot;
    120               __xn = __c0 * (__xn + __lambda);
    121               __yn = __c0 * (__yn + __lambda);
    122               __zn = __c0 * (__zn + __lambda);
    123             }
    124 
    125           const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
    126           const _Tp __e3 = __xndev * __yndev * __zndev;
    127           const _Tp __s  = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
    128                    + __c4 * __e3;
    129 
    130           return __s / std::sqrt(__mu);
    131         }
    132     }
    133 
    134 
    135     /**
    136      *   @brief Return the complete elliptic integral of the first kind
    137      *          @f$ K(k) @f$ by series expansion.
    138      * 
    139      *   The complete elliptic integral of the first kind is defined as
    140      *   @f[
    141      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
    142      *                              {\sqrt{1 - k^2sin^2\theta}}
    143      *   @f]
    144      * 
    145      *   This routine is not bad as long as |k| is somewhat smaller than 1
    146      *   but is not is good as the Carlson elliptic integral formulation.
    147      * 
    148      *   @param  __k  The argument of the complete elliptic function.
    149      *   @return  The complete elliptic function of the first kind.
    150      */
    151     template<typename _Tp>
    152     _Tp
    153     __comp_ellint_1_series(const _Tp __k)
    154     {
    155 
    156       const _Tp __kk = __k * __k;
    157 
    158       _Tp __term = __kk / _Tp(4);
    159       _Tp __sum = _Tp(1) + __term;
    160 
    161       const unsigned int __max_iter = 1000;
    162       for (unsigned int __i = 2; __i < __max_iter; ++__i)
    163         {
    164           __term *= (2 * __i - 1) * __kk / (2 * __i);
    165           if (__term < std::numeric_limits<_Tp>::epsilon())
    166             break;
    167           __sum += __term;
    168         }
    169 
    170       return __numeric_constants<_Tp>::__pi_2() * __sum;
    171     }
    172 
    173 
    174     /**
    175      *   @brief  Return the complete elliptic integral of the first kind
    176      *           @f$ K(k) @f$ using the Carlson formulation.
    177      * 
    178      *   The complete elliptic integral of the first kind is defined as
    179      *   @f[
    180      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
    181      *                                           {\sqrt{1 - k^2 sin^2\theta}}
    182      *   @f]
    183      *   where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
    184      *   first kind.
    185      * 
    186      *   @param  __k  The argument of the complete elliptic function.
    187      *   @return  The complete elliptic function of the first kind.
    188      */
    189     template<typename _Tp>
    190     _Tp
    191     __comp_ellint_1(const _Tp __k)
    192     {
    193 
    194       if (__isnan(__k))
    195         return std::numeric_limits<_Tp>::quiet_NaN();
    196       else if (std::abs(__k) >= _Tp(1))
    197         return std::numeric_limits<_Tp>::quiet_NaN();
    198       else
    199         return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
    200     }
    201 
    202 
    203     /**
    204      *   @brief  Return the incomplete elliptic integral of the first kind
    205      *           @f$ F(k,\phi) @f$ using the Carlson formulation.
    206      * 
    207      *   The incomplete elliptic integral of the first kind is defined as
    208      *   @f[
    209      *     F(k,\phi) = \int_0^{\phi}\frac{d\theta}
    210      *                                   {\sqrt{1 - k^2 sin^2\theta}}
    211      *   @f]
    212      * 
    213      *   @param  __k  The argument of the elliptic function.
    214      *   @param  __phi  The integral limit argument of the elliptic function.
    215      *   @return  The elliptic function of the first kind.
    216      */
    217     template<typename _Tp>
    218     _Tp
    219     __ellint_1(const _Tp __k, const _Tp __phi)
    220     {
    221 
    222       if (__isnan(__k) || __isnan(__phi))
    223         return std::numeric_limits<_Tp>::quiet_NaN();
    224       else if (std::abs(__k) > _Tp(1))
    225         std::__throw_domain_error(__N("Bad argument in __ellint_1."));
    226       else
    227         {
    228           //  Reduce phi to -pi/2 < phi < +pi/2.
    229           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
    230                                    + _Tp(0.5L));
    231           const _Tp __phi_red = __phi
    232                               - __n * __numeric_constants<_Tp>::__pi();
    233 
    234           const _Tp __s = std::sin(__phi_red);
    235           const _Tp __c = std::cos(__phi_red);
    236 
    237           const _Tp __F = __s
    238                         * __ellint_rf(__c * __c,
    239                                 _Tp(1) - __k * __k * __s * __s, _Tp(1));
    240 
    241           if (__n == 0)
    242             return __F;
    243           else
    244             return __F + _Tp(2) * __n * __comp_ellint_1(__k);
    245         }
    246     }
    247 
    248 
    249     /**
    250      *   @brief Return the complete elliptic integral of the second kind
    251      *          @f$ E(k) @f$ by series expansion.
    252      * 
    253      *   The complete elliptic integral of the second kind is defined as
    254      *   @f[
    255      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
    256      *   @f]
    257      * 
    258      *   This routine is not bad as long as |k| is somewhat smaller than 1
    259      *   but is not is good as the Carlson elliptic integral formulation.
    260      * 
    261      *   @param  __k  The argument of the complete elliptic function.
    262      *   @return  The complete elliptic function of the second kind.
    263      */
    264     template<typename _Tp>
    265     _Tp
    266     __comp_ellint_2_series(const _Tp __k)
    267     {
    268 
    269       const _Tp __kk = __k * __k;
    270 
    271       _Tp __term = __kk;
    272       _Tp __sum = __term;
    273 
    274       const unsigned int __max_iter = 1000;
    275       for (unsigned int __i = 2; __i < __max_iter; ++__i)
    276         {
    277           const _Tp __i2m = 2 * __i - 1;
    278           const _Tp __i2 = 2 * __i;
    279           __term *= __i2m * __i2m * __kk / (__i2 * __i2);
    280           if (__term < std::numeric_limits<_Tp>::epsilon())
    281             break;
    282           __sum += __term / __i2m;
    283         }
    284 
    285       return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
    286     }
    287 
    288 
    289     /**
    290      *   @brief  Return the Carlson elliptic function of the second kind
    291      *           @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
    292      *           @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
    293      *           of the third kind.
    294      * 
    295      *   The Carlson elliptic function of the second kind is defined by:
    296      *   @f[
    297      *       R_D(x,y,z) = \frac{3}{2} \int_0^\infty
    298      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
    299      *   @f]
    300      *
    301      *   Based on Carlson's algorithms:
    302      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
    303      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
    304      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
    305      *      by Press, Teukolsky, Vetterling, Flannery (1992)
    306      *
    307      *   @param  __x  The first of two symmetric arguments.
    308      *   @param  __y  The second of two symmetric arguments.
    309      *   @param  __z  The third argument.
    310      *   @return  The Carlson elliptic function of the second kind.
    311      */
    312     template<typename _Tp>
    313     _Tp
    314     __ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z)
    315     {
    316       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    317       const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
    318       const _Tp __min = std::numeric_limits<_Tp>::min();
    319       const _Tp __max = std::numeric_limits<_Tp>::max();
    320       const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
    321       const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
    322 
    323       if (__x < _Tp(0) || __y < _Tp(0))
    324         std::__throw_domain_error(__N("Argument less than zero "
    325                                       "in __ellint_rd."));
    326       else if (__x + __y < __lolim || __z < __lolim)
    327         std::__throw_domain_error(__N("Argument too small "
    328                                       "in __ellint_rd."));
    329       else
    330         {
    331           const _Tp __c0 = _Tp(1) / _Tp(4);
    332           const _Tp __c1 = _Tp(3) / _Tp(14);
    333           const _Tp __c2 = _Tp(1) / _Tp(6);
    334           const _Tp __c3 = _Tp(9) / _Tp(22);
    335           const _Tp __c4 = _Tp(3) / _Tp(26);
    336 
    337           _Tp __xn = __x;
    338           _Tp __yn = __y;
    339           _Tp __zn = __z;
    340           _Tp __sigma = _Tp(0);
    341           _Tp __power4 = _Tp(1);
    342 
    343           _Tp __mu;
    344           _Tp __xndev, __yndev, __zndev;
    345 
    346           const unsigned int __max_iter = 100;
    347           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
    348             {
    349               __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
    350               __xndev = (__mu - __xn) / __mu;
    351               __yndev = (__mu - __yn) / __mu;
    352               __zndev = (__mu - __zn) / __mu;
    353               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
    354               __epsilon = std::max(__epsilon, std::abs(__zndev));
    355               if (__epsilon < __errtol)
    356                 break;
    357               _Tp __xnroot = std::sqrt(__xn);
    358               _Tp __ynroot = std::sqrt(__yn);
    359               _Tp __znroot = std::sqrt(__zn);
    360               _Tp __lambda = __xnroot * (__ynroot + __znroot)
    361                            + __ynroot * __znroot;
    362               __sigma += __power4 / (__znroot * (__zn + __lambda));
    363               __power4 *= __c0;
    364               __xn = __c0 * (__xn + __lambda);
    365               __yn = __c0 * (__yn + __lambda);
    366               __zn = __c0 * (__zn + __lambda);
    367             }
    368 
    369 	  // Note: __ea is an SPU badname.
    370           _Tp __eaa = __xndev * __yndev;
    371           _Tp __eb = __zndev * __zndev;
    372           _Tp __ec = __eaa - __eb;
    373           _Tp __ed = __eaa - _Tp(6) * __eb;
    374           _Tp __ef = __ed + __ec + __ec;
    375           _Tp __s1 = __ed * (-__c1 + __c3 * __ed
    376                                    / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
    377                                    / _Tp(2));
    378           _Tp __s2 = __zndev
    379                    * (__c2 * __ef
    380                     + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
    381 
    382           return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
    383                                         / (__mu * std::sqrt(__mu));
    384         }
    385     }
    386 
    387 
    388     /**
    389      *   @brief  Return the complete elliptic integral of the second kind
    390      *           @f$ E(k) @f$ using the Carlson formulation.
    391      * 
    392      *   The complete elliptic integral of the second kind is defined as
    393      *   @f[
    394      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
    395      *   @f]
    396      * 
    397      *   @param  __k  The argument of the complete elliptic function.
    398      *   @return  The complete elliptic function of the second kind.
    399      */
    400     template<typename _Tp>
    401     _Tp
    402     __comp_ellint_2(const _Tp __k)
    403     {
    404 
    405       if (__isnan(__k))
    406         return std::numeric_limits<_Tp>::quiet_NaN();
    407       else if (std::abs(__k) == 1)
    408         return _Tp(1);
    409       else if (std::abs(__k) > _Tp(1))
    410         std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
    411       else
    412         {
    413           const _Tp __kk = __k * __k;
    414 
    415           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
    416                - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
    417         }
    418     }
    419 
    420 
    421     /**
    422      *   @brief  Return the incomplete elliptic integral of the second kind
    423      *           @f$ E(k,\phi) @f$ using the Carlson formulation.
    424      * 
    425      *   The incomplete elliptic integral of the second kind is defined as
    426      *   @f[
    427      *     E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
    428      *   @f]
    429      * 
    430      *   @param  __k  The argument of the elliptic function.
    431      *   @param  __phi  The integral limit argument of the elliptic function.
    432      *   @return  The elliptic function of the second kind.
    433      */
    434     template<typename _Tp>
    435     _Tp
    436     __ellint_2(const _Tp __k, const _Tp __phi)
    437     {
    438 
    439       if (__isnan(__k) || __isnan(__phi))
    440         return std::numeric_limits<_Tp>::quiet_NaN();
    441       else if (std::abs(__k) > _Tp(1))
    442         std::__throw_domain_error(__N("Bad argument in __ellint_2."));
    443       else
    444         {
    445           //  Reduce phi to -pi/2 < phi < +pi/2.
    446           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
    447                                    + _Tp(0.5L));
    448           const _Tp __phi_red = __phi
    449                               - __n * __numeric_constants<_Tp>::__pi();
    450 
    451           const _Tp __kk = __k * __k;
    452           const _Tp __s = std::sin(__phi_red);
    453           const _Tp __ss = __s * __s;
    454           const _Tp __sss = __ss * __s;
    455           const _Tp __c = std::cos(__phi_red);
    456           const _Tp __cc = __c * __c;
    457 
    458           const _Tp __E = __s
    459                         * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
    460                         - __kk * __sss
    461                         * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
    462                         / _Tp(3);
    463 
    464           if (__n == 0)
    465             return __E;
    466           else
    467             return __E + _Tp(2) * __n * __comp_ellint_2(__k);
    468         }
    469     }
    470 
    471 
    472     /**
    473      *   @brief  Return the Carlson elliptic function
    474      *           @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
    475      *           is the Carlson elliptic function of the first kind.
    476      * 
    477      *   The Carlson elliptic function is defined by:
    478      *   @f[
    479      *       R_C(x,y) = \frac{1}{2} \int_0^\infty
    480      *                 \frac{dt}{(t + x)^{1/2}(t + y)}
    481      *   @f]
    482      *
    483      *   Based on Carlson's algorithms:
    484      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
    485      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
    486      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
    487      *      by Press, Teukolsky, Vetterling, Flannery (1992)
    488      *
    489      *   @param  __x  The first argument.
    490      *   @param  __y  The second argument.
    491      *   @return  The Carlson elliptic function.
    492      */
    493     template<typename _Tp>
    494     _Tp
    495     __ellint_rc(const _Tp __x, const _Tp __y)
    496     {
    497       const _Tp __min = std::numeric_limits<_Tp>::min();
    498       const _Tp __max = std::numeric_limits<_Tp>::max();
    499       const _Tp __lolim = _Tp(5) * __min;
    500       const _Tp __uplim = __max / _Tp(5);
    501 
    502       if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
    503         std::__throw_domain_error(__N("Argument less than zero "
    504                                       "in __ellint_rc."));
    505       else
    506         {
    507           const _Tp __c0 = _Tp(1) / _Tp(4);
    508           const _Tp __c1 = _Tp(1) / _Tp(7);
    509           const _Tp __c2 = _Tp(9) / _Tp(22);
    510           const _Tp __c3 = _Tp(3) / _Tp(10);
    511           const _Tp __c4 = _Tp(3) / _Tp(8);
    512 
    513           _Tp __xn = __x;
    514           _Tp __yn = __y;
    515 
    516           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    517           const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
    518           _Tp __mu;
    519           _Tp __sn;
    520 
    521           const unsigned int __max_iter = 100;
    522           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
    523             {
    524               __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
    525               __sn = (__yn + __mu) / __mu - _Tp(2);
    526               if (std::abs(__sn) < __errtol)
    527                 break;
    528               const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
    529                              + __yn;
    530               __xn = __c0 * (__xn + __lambda);
    531               __yn = __c0 * (__yn + __lambda);
    532             }
    533 
    534           _Tp __s = __sn * __sn
    535                   * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
    536 
    537           return (_Tp(1) + __s) / std::sqrt(__mu);
    538         }
    539     }
    540 
    541 
    542     /**
    543      *   @brief  Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
    544      *           of the third kind.
    545      * 
    546      *   The Carlson elliptic function of the third kind is defined by:
    547      *   @f[
    548      *       R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
    549      *       \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
    550      *   @f]
    551      *
    552      *   Based on Carlson's algorithms:
    553      *   -  B. C. Carlson Numer. Math. 33, 1 (1979)
    554      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977)
    555      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269,
    556      *      by Press, Teukolsky, Vetterling, Flannery (1992)
    557      *
    558      *   @param  __x  The first of three symmetric arguments.
    559      *   @param  __y  The second of three symmetric arguments.
    560      *   @param  __z  The third of three symmetric arguments.
    561      *   @param  __p  The fourth argument.
    562      *   @return  The Carlson elliptic function of the fourth kind.
    563      */
    564     template<typename _Tp>
    565     _Tp
    566     __ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p)
    567     {
    568       const _Tp __min = std::numeric_limits<_Tp>::min();
    569       const _Tp __max = std::numeric_limits<_Tp>::max();
    570       const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
    571       const _Tp __uplim = _Tp(0.3L)
    572                         * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
    573 
    574       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
    575         std::__throw_domain_error(__N("Argument less than zero "
    576                                       "in __ellint_rj."));
    577       else if (__x + __y < __lolim || __x + __z < __lolim
    578             || __y + __z < __lolim || __p < __lolim)
    579         std::__throw_domain_error(__N("Argument too small "
    580                                       "in __ellint_rj"));
    581       else
    582         {
    583           const _Tp __c0 = _Tp(1) / _Tp(4);
    584           const _Tp __c1 = _Tp(3) / _Tp(14);
    585           const _Tp __c2 = _Tp(1) / _Tp(3);
    586           const _Tp __c3 = _Tp(3) / _Tp(22);
    587           const _Tp __c4 = _Tp(3) / _Tp(26);
    588 
    589           _Tp __xn = __x;
    590           _Tp __yn = __y;
    591           _Tp __zn = __z;
    592           _Tp __pn = __p;
    593           _Tp __sigma = _Tp(0);
    594           _Tp __power4 = _Tp(1);
    595 
    596           const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    597           const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
    598 
    599           _Tp __lambda, __mu;
    600           _Tp __xndev, __yndev, __zndev, __pndev;
    601 
    602           const unsigned int __max_iter = 100;
    603           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
    604             {
    605               __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
    606               __xndev = (__mu - __xn) / __mu;
    607               __yndev = (__mu - __yn) / __mu;
    608               __zndev = (__mu - __zn) / __mu;
    609               __pndev = (__mu - __pn) / __mu;
    610               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
    611               __epsilon = std::max(__epsilon, std::abs(__zndev));
    612               __epsilon = std::max(__epsilon, std::abs(__pndev));
    613               if (__epsilon < __errtol)
    614                 break;
    615               const _Tp __xnroot = std::sqrt(__xn);
    616               const _Tp __ynroot = std::sqrt(__yn);
    617               const _Tp __znroot = std::sqrt(__zn);
    618               const _Tp __lambda = __xnroot * (__ynroot + __znroot)
    619                                  + __ynroot * __znroot;
    620               const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
    621                                 + __xnroot * __ynroot * __znroot;
    622               const _Tp __alpha2 = __alpha1 * __alpha1;
    623               const _Tp __beta = __pn * (__pn + __lambda)
    624                                       * (__pn + __lambda);
    625               __sigma += __power4 * __ellint_rc(__alpha2, __beta);
    626               __power4 *= __c0;
    627               __xn = __c0 * (__xn + __lambda);
    628               __yn = __c0 * (__yn + __lambda);
    629               __zn = __c0 * (__zn + __lambda);
    630               __pn = __c0 * (__pn + __lambda);
    631             }
    632 
    633 	  // Note: __ea is an SPU badname.
    634           _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
    635           _Tp __eb = __xndev * __yndev * __zndev;
    636           _Tp __ec = __pndev * __pndev;
    637           _Tp __e2 = __eaa - _Tp(3) * __ec;
    638           _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
    639           _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
    640                             - _Tp(3) * __c4 * __e3 / _Tp(2));
    641           _Tp __s2 = __eb * (__c2 / _Tp(2)
    642                    + __pndev * (-__c3 - __c3 + __pndev * __c4));
    643           _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
    644                    - __c2 * __pndev * __ec;
    645 
    646           return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
    647                                              / (__mu * std::sqrt(__mu));
    648         }
    649     }
    650 
    651 
    652     /**
    653      *   @brief Return the complete elliptic integral of the third kind
    654      *          @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
    655      *          Carlson formulation.
    656      * 
    657      *   The complete elliptic integral of the third kind is defined as
    658      *   @f[
    659      *     \Pi(k,\nu) = \int_0^{\pi/2}
    660      *                   \frac{d\theta}
    661      *                 {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
    662      *   @f]
    663      * 
    664      *   @param  __k  The argument of the elliptic function.
    665      *   @param  __nu  The second argument of the elliptic function.
    666      *   @return  The complete elliptic function of the third kind.
    667      */
    668     template<typename _Tp>
    669     _Tp
    670     __comp_ellint_3(const _Tp __k, const _Tp __nu)
    671     {
    672 
    673       if (__isnan(__k) || __isnan(__nu))
    674         return std::numeric_limits<_Tp>::quiet_NaN();
    675       else if (__nu == _Tp(1))
    676         return std::numeric_limits<_Tp>::infinity();
    677       else if (std::abs(__k) > _Tp(1))
    678         std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
    679       else
    680         {
    681           const _Tp __kk = __k * __k;
    682 
    683           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
    684                - __nu
    685                * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
    686                / _Tp(3);
    687         }
    688     }
    689 
    690 
    691     /**
    692      *   @brief Return the incomplete elliptic integral of the third kind
    693      *          @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
    694      * 
    695      *   The incomplete elliptic integral of the third kind is defined as
    696      *   @f[
    697      *     \Pi(k,\nu,\phi) = \int_0^{\phi}
    698      *                       \frac{d\theta}
    699      *                            {(1 - \nu \sin^2\theta)
    700      *                             \sqrt{1 - k^2 \sin^2\theta}}
    701      *   @f]
    702      * 
    703      *   @param  __k  The argument of the elliptic function.
    704      *   @param  __nu  The second argument of the elliptic function.
    705      *   @param  __phi  The integral limit argument of the elliptic function.
    706      *   @return  The elliptic function of the third kind.
    707      */
    708     template<typename _Tp>
    709     _Tp
    710     __ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi)
    711     {
    712 
    713       if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
    714         return std::numeric_limits<_Tp>::quiet_NaN();
    715       else if (std::abs(__k) > _Tp(1))
    716         std::__throw_domain_error(__N("Bad argument in __ellint_3."));
    717       else
    718         {
    719           //  Reduce phi to -pi/2 < phi < +pi/2.
    720           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
    721                                    + _Tp(0.5L));
    722           const _Tp __phi_red = __phi
    723                               - __n * __numeric_constants<_Tp>::__pi();
    724 
    725           const _Tp __kk = __k * __k;
    726           const _Tp __s = std::sin(__phi_red);
    727           const _Tp __ss = __s * __s;
    728           const _Tp __sss = __ss * __s;
    729           const _Tp __c = std::cos(__phi_red);
    730           const _Tp __cc = __c * __c;
    731 
    732           const _Tp __Pi = __s
    733                          * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
    734                          - __nu * __sss
    735                          * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
    736                                        _Tp(1) + __nu * __ss) / _Tp(3);
    737 
    738           if (__n == 0)
    739             return __Pi;
    740           else
    741             return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
    742         }
    743     }
    744 
    745   _GLIBCXX_END_NAMESPACE_VERSION
    746   } // namespace std::tr1::__detail
    747 }
    748 }
    749 
    750 #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
    751 
    752