Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009, 2010
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/gamma.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  Do not attempt to use it directly. @headername{tr1/cmath}
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 // Written by Edward Smith-Rowland based on:
     36 //   (1) Handbook of Mathematical Functions,
     37 //       ed. Milton Abramowitz and Irene A. Stegun,
     38 //       Dover Publications,
     39 //       Section 6, pp. 253-266
     40 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     41 //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
     42 //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
     43 //       2nd ed, pp. 213-216
     44 //   (4) Gamma, Exploring Euler's Constant, Julian Havil,
     45 //       Princeton, 2003.
     46 
     47 #ifndef _GLIBCXX_TR1_GAMMA_TCC
     48 #define _GLIBCXX_TR1_GAMMA_TCC 1
     49 
     50 #include "special_function_util.h"
     51 
     52 namespace std _GLIBCXX_VISIBILITY(default)
     53 {
     54 namespace tr1
     55 {
     56   // Implementation-space details.
     57   namespace __detail
     58   {
     59   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     60 
     61     /**
     62      *   @brief This returns Bernoulli numbers from a table or by summation
     63      *          for larger values.
     64      *
     65      *   Recursion is unstable.
     66      *
     67      *   @param __n the order n of the Bernoulli number.
     68      *   @return  The Bernoulli number of order n.
     69      */
     70     template <typename _Tp>
     71     _Tp __bernoulli_series(unsigned int __n)
     72     {
     73 
     74       static const _Tp __num[28] = {
     75         _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
     76         _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
     77         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
     78         _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
     79         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
     80         _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
     81         -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
     82         _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
     83         -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
     84         _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
     85         -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
     86         _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
     87         -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
     88         _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
     89       };
     90 
     91       if (__n == 0)
     92         return _Tp(1);
     93 
     94       if (__n == 1)
     95         return -_Tp(1) / _Tp(2);
     96 
     97       //  Take care of the rest of the odd ones.
     98       if (__n % 2 == 1)
     99         return _Tp(0);
    100 
    101       //  Take care of some small evens that are painful for the series.
    102       if (__n < 28)
    103         return __num[__n];
    104 
    105 
    106       _Tp __fact = _Tp(1);
    107       if ((__n / 2) % 2 == 0)
    108         __fact *= _Tp(-1);
    109       for (unsigned int __k = 1; __k <= __n; ++__k)
    110         __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
    111       __fact *= _Tp(2);
    112 
    113       _Tp __sum = _Tp(0);
    114       for (unsigned int __i = 1; __i < 1000; ++__i)
    115         {
    116           _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
    117           if (__term < std::numeric_limits<_Tp>::epsilon())
    118             break;
    119           __sum += __term;
    120         }
    121 
    122       return __fact * __sum;
    123     }
    124 
    125 
    126     /**
    127      *   @brief This returns Bernoulli number \f$B_n\f$.
    128      *
    129      *   @param __n the order n of the Bernoulli number.
    130      *   @return  The Bernoulli number of order n.
    131      */
    132     template<typename _Tp>
    133     inline _Tp
    134     __bernoulli(const int __n)
    135     {
    136       return __bernoulli_series<_Tp>(__n);
    137     }
    138 
    139 
    140     /**
    141      *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
    142      *          with Bernoulli number coefficients.  This is like
    143      *          Sterling's approximation.
    144      *
    145      *   @param __x The argument of the log of the gamma function.
    146      *   @return  The logarithm of the gamma function.
    147      */
    148     template<typename _Tp>
    149     _Tp
    150     __log_gamma_bernoulli(const _Tp __x)
    151     {
    152       _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
    153                + _Tp(0.5L) * std::log(_Tp(2)
    154                * __numeric_constants<_Tp>::__pi());
    155 
    156       const _Tp __xx = __x * __x;
    157       _Tp __help = _Tp(1) / __x;
    158       for ( unsigned int __i = 1; __i < 20; ++__i )
    159         {
    160           const _Tp __2i = _Tp(2 * __i);
    161           __help /= __2i * (__2i - _Tp(1)) * __xx;
    162           __lg += __bernoulli<_Tp>(2 * __i) * __help;
    163         }
    164 
    165       return __lg;
    166     }
    167 
    168 
    169     /**
    170      *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
    171      *          This method dominates all others on the positive axis I think.
    172      *
    173      *   @param __x The argument of the log of the gamma function.
    174      *   @return  The logarithm of the gamma function.
    175      */
    176     template<typename _Tp>
    177     _Tp
    178     __log_gamma_lanczos(const _Tp __x)
    179     {
    180       const _Tp __xm1 = __x - _Tp(1);
    181 
    182       static const _Tp __lanczos_cheb_7[9] = {
    183        _Tp( 0.99999999999980993227684700473478L),
    184        _Tp( 676.520368121885098567009190444019L),
    185        _Tp(-1259.13921672240287047156078755283L),
    186        _Tp( 771.3234287776530788486528258894L),
    187        _Tp(-176.61502916214059906584551354L),
    188        _Tp( 12.507343278686904814458936853L),
    189        _Tp(-0.13857109526572011689554707L),
    190        _Tp( 9.984369578019570859563e-6L),
    191        _Tp( 1.50563273514931155834e-7L)
    192       };
    193 
    194       static const _Tp __LOGROOT2PI
    195           = _Tp(0.9189385332046727417803297364056176L);
    196 
    197       _Tp __sum = __lanczos_cheb_7[0];
    198       for(unsigned int __k = 1; __k < 9; ++__k)
    199         __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
    200 
    201       const _Tp __term1 = (__xm1 + _Tp(0.5L))
    202                         * std::log((__xm1 + _Tp(7.5L))
    203                        / __numeric_constants<_Tp>::__euler());
    204       const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
    205       const _Tp __result = __term1 + (__term2 - _Tp(7));
    206 
    207       return __result;
    208     }
    209 
    210 
    211     /**
    212      *   @brief Return \f$ log(|\Gamma(x)|) \f$.
    213      *          This will return values even for \f$ x < 0 \f$.
    214      *          To recover the sign of \f$ \Gamma(x) \f$ for
    215      *          any argument use @a __log_gamma_sign.
    216      *
    217      *   @param __x The argument of the log of the gamma function.
    218      *   @return  The logarithm of the gamma function.
    219      */
    220     template<typename _Tp>
    221     _Tp
    222     __log_gamma(const _Tp __x)
    223     {
    224       if (__x > _Tp(0.5L))
    225         return __log_gamma_lanczos(__x);
    226       else
    227         {
    228           const _Tp __sin_fact
    229                  = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
    230           if (__sin_fact == _Tp(0))
    231             std::__throw_domain_error(__N("Argument is nonpositive integer "
    232                                           "in __log_gamma"));
    233           return __numeric_constants<_Tp>::__lnpi()
    234                      - std::log(__sin_fact)
    235                      - __log_gamma_lanczos(_Tp(1) - __x);
    236         }
    237     }
    238 
    239 
    240     /**
    241      *   @brief Return the sign of \f$ \Gamma(x) \f$.
    242      *          At nonpositive integers zero is returned.
    243      *
    244      *   @param __x The argument of the gamma function.
    245      *   @return  The sign of the gamma function.
    246      */
    247     template<typename _Tp>
    248     _Tp
    249     __log_gamma_sign(const _Tp __x)
    250     {
    251       if (__x > _Tp(0))
    252         return _Tp(1);
    253       else
    254         {
    255           const _Tp __sin_fact
    256                   = std::sin(__numeric_constants<_Tp>::__pi() * __x);
    257           if (__sin_fact > _Tp(0))
    258             return (1);
    259           else if (__sin_fact < _Tp(0))
    260             return -_Tp(1);
    261           else
    262             return _Tp(0);
    263         }
    264     }
    265 
    266 
    267     /**
    268      *   @brief Return the logarithm of the binomial coefficient.
    269      *   The binomial coefficient is given by:
    270      *   @f[
    271      *   \left(  \right) = \frac{n!}{(n-k)! k!}
    272      *   @f]
    273      *
    274      *   @param __n The first argument of the binomial coefficient.
    275      *   @param __k The second argument of the binomial coefficient.
    276      *   @return  The binomial coefficient.
    277      */
    278     template<typename _Tp>
    279     _Tp
    280     __log_bincoef(const unsigned int __n, const unsigned int __k)
    281     {
    282       //  Max e exponent before overflow.
    283       static const _Tp __max_bincoeff
    284                       = std::numeric_limits<_Tp>::max_exponent10
    285                       * std::log(_Tp(10)) - _Tp(1);
    286 #if _GLIBCXX_USE_C99_MATH_TR1
    287       _Tp __coeff =  std::tr1::lgamma(_Tp(1 + __n))
    288                   - std::tr1::lgamma(_Tp(1 + __k))
    289                   - std::tr1::lgamma(_Tp(1 + __n - __k));
    290 #else
    291       _Tp __coeff =  __log_gamma(_Tp(1 + __n))
    292                   - __log_gamma(_Tp(1 + __k))
    293                   - __log_gamma(_Tp(1 + __n - __k));
    294 #endif
    295     }
    296 
    297 
    298     /**
    299      *   @brief Return the binomial coefficient.
    300      *   The binomial coefficient is given by:
    301      *   @f[
    302      *   \left(  \right) = \frac{n!}{(n-k)! k!}
    303      *   @f]
    304      *
    305      *   @param __n The first argument of the binomial coefficient.
    306      *   @param __k The second argument of the binomial coefficient.
    307      *   @return  The binomial coefficient.
    308      */
    309     template<typename _Tp>
    310     _Tp
    311     __bincoef(const unsigned int __n, const unsigned int __k)
    312     {
    313       //  Max e exponent before overflow.
    314       static const _Tp __max_bincoeff
    315                       = std::numeric_limits<_Tp>::max_exponent10
    316                       * std::log(_Tp(10)) - _Tp(1);
    317 
    318       const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
    319       if (__log_coeff > __max_bincoeff)
    320         return std::numeric_limits<_Tp>::quiet_NaN();
    321       else
    322         return std::exp(__log_coeff);
    323     }
    324 
    325 
    326     /**
    327      *   @brief Return \f$ \Gamma(x) \f$.
    328      *
    329      *   @param __x The argument of the gamma function.
    330      *   @return  The gamma function.
    331      */
    332     template<typename _Tp>
    333     inline _Tp
    334     __gamma(const _Tp __x)
    335     {
    336       return std::exp(__log_gamma(__x));
    337     }
    338 
    339 
    340     /**
    341      *   @brief  Return the digamma function by series expansion.
    342      *   The digamma or @f$ \psi(x) @f$ function is defined by
    343      *   @f[
    344      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
    345      *   @f]
    346      *
    347      *   The series is given by:
    348      *   @f[
    349      *     \psi(x) = -\gamma_E - \frac{1}{x}
    350      *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
    351      *   @f]
    352      */
    353     template<typename _Tp>
    354     _Tp
    355     __psi_series(const _Tp __x)
    356     {
    357       _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
    358       const unsigned int __max_iter = 100000;
    359       for (unsigned int __k = 1; __k < __max_iter; ++__k)
    360         {
    361           const _Tp __term = __x / (__k * (__k + __x));
    362           __sum += __term;
    363           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
    364             break;
    365         }
    366       return __sum;
    367     }
    368 
    369 
    370     /**
    371      *   @brief  Return the digamma function for large argument.
    372      *   The digamma or @f$ \psi(x) @f$ function is defined by
    373      *   @f[
    374      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
    375      *   @f]
    376      *
    377      *   The asymptotic series is given by:
    378      *   @f[
    379      *     \psi(x) = \ln(x) - \frac{1}{2x}
    380      *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
    381      *   @f]
    382      */
    383     template<typename _Tp>
    384     _Tp
    385     __psi_asymp(const _Tp __x)
    386     {
    387       _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
    388       const _Tp __xx = __x * __x;
    389       _Tp __xp = __xx;
    390       const unsigned int __max_iter = 100;
    391       for (unsigned int __k = 1; __k < __max_iter; ++__k)
    392         {
    393           const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
    394           __sum -= __term;
    395           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
    396             break;
    397           __xp *= __xx;
    398         }
    399       return __sum;
    400     }
    401 
    402 
    403     /**
    404      *   @brief  Return the digamma function.
    405      *   The digamma or @f$ \psi(x) @f$ function is defined by
    406      *   @f[
    407      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
    408      *   @f]
    409      *   For negative argument the reflection formula is used:
    410      *   @f[
    411      *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
    412      *   @f]
    413      */
    414     template<typename _Tp>
    415     _Tp
    416     __psi(const _Tp __x)
    417     {
    418       const int __n = static_cast<int>(__x + 0.5L);
    419       const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
    420       if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
    421         return std::numeric_limits<_Tp>::quiet_NaN();
    422       else if (__x < _Tp(0))
    423         {
    424           const _Tp __pi = __numeric_constants<_Tp>::__pi();
    425           return __psi(_Tp(1) - __x)
    426                - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
    427         }
    428       else if (__x > _Tp(100))
    429         return __psi_asymp(__x);
    430       else
    431         return __psi_series(__x);
    432     }
    433 
    434 
    435     /**
    436      *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
    437      * 
    438      *   The polygamma function is related to the Hurwitz zeta function:
    439      *   @f[
    440      *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
    441      *   @f]
    442      */
    443     template<typename _Tp>
    444     _Tp
    445     __psi(const unsigned int __n, const _Tp __x)
    446     {
    447       if (__x <= _Tp(0))
    448         std::__throw_domain_error(__N("Argument out of range "
    449                                       "in __psi"));
    450       else if (__n == 0)
    451         return __psi(__x);
    452       else
    453         {
    454           const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
    455 #if _GLIBCXX_USE_C99_MATH_TR1
    456           const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
    457 #else
    458           const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
    459 #endif
    460           _Tp __result = std::exp(__ln_nfact) * __hzeta;
    461           if (__n % 2 == 1)
    462             __result = -__result;
    463           return __result;
    464         }
    465     }
    466 
    467   _GLIBCXX_END_NAMESPACE_VERSION
    468   } // namespace std::tr1::__detail
    469 }
    470 }
    471 
    472 #endif // _GLIBCXX_TR1_GAMMA_TCC
    473 
    474