Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009, 2010
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/hypergeometric.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  Do not attempt to use it directly. @headername{tr1/cmath}
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 // Written by Edward Smith-Rowland based:
     36 //   (1) Handbook of Mathematical Functions,
     37 //       ed. Milton Abramowitz and Irene A. Stegun,
     38 //       Dover Publications,
     39 //       Section 6, pp. 555-566
     40 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     41 
     42 #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
     43 #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
     44 
     45 namespace std _GLIBCXX_VISIBILITY(default)
     46 {
     47 namespace tr1
     48 {
     49   // [5.2] Special functions
     50 
     51   // Implementation-space details.
     52   namespace __detail
     53   {
     54   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     55 
     56     /**
     57      *   @brief This routine returns the confluent hypergeometric function
     58      *          by series expansion.
     59      * 
     60      *   @f[
     61      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
     62      *                      \sum_{n=0}^{\infty}
     63      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)}
     64      *                      \frac{x^n}{n!}
     65      *   @f]
     66      * 
     67      *   If a and b are integers and a < 0 and either b > 0 or b < a
     68      *   then the series is a polynomial with a finite number of
     69      *   terms.  If b is an integer and b <= 0 the confluent
     70      *   hypergeometric function is undefined.
     71      *
     72      *   @param  __a  The "numerator" parameter.
     73      *   @param  __c  The "denominator" parameter.
     74      *   @param  __x  The argument of the confluent hypergeometric function.
     75      *   @return  The confluent hypergeometric function.
     76      */
     77     template<typename _Tp>
     78     _Tp
     79     __conf_hyperg_series(const _Tp __a, const _Tp __c, const _Tp __x)
     80     {
     81       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
     82 
     83       _Tp __term = _Tp(1);
     84       _Tp __Fac = _Tp(1);
     85       const unsigned int __max_iter = 100000;
     86       unsigned int __i;
     87       for (__i = 0; __i < __max_iter; ++__i)
     88         {
     89           __term *= (__a + _Tp(__i)) * __x
     90                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
     91           if (std::abs(__term) < __eps)
     92             {
     93               break;
     94             }
     95           __Fac += __term;
     96         }
     97       if (__i == __max_iter)
     98         std::__throw_runtime_error(__N("Series failed to converge "
     99                                        "in __conf_hyperg_series."));
    100 
    101       return __Fac;
    102     }
    103 
    104 
    105     /**
    106      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
    107      *          by an iterative procedure described in
    108      *          Luke, Algorithms for the Computation of Mathematical Functions.
    109      *
    110      *  Like the case of the 2F1 rational approximations, these are 
    111      *  probably guaranteed to converge for x < 0, barring gross    
    112      *  numerical instability in the pre-asymptotic regime.         
    113      */
    114     template<typename _Tp>
    115     _Tp
    116     __conf_hyperg_luke(const _Tp __a, const _Tp __c, const _Tp __xin)
    117     {
    118       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
    119       const int __nmax = 20000;
    120       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    121       const _Tp __x  = -__xin;
    122       const _Tp __x3 = __x * __x * __x;
    123       const _Tp __t0 = __a / __c;
    124       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
    125       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
    126       _Tp __F = _Tp(1);
    127       _Tp __prec;
    128 
    129       _Tp __Bnm3 = _Tp(1);
    130       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
    131       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
    132 
    133       _Tp __Anm3 = _Tp(1);
    134       _Tp __Anm2 = __Bnm2 - __t0 * __x;
    135       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
    136                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
    137 
    138       int __n = 3;
    139       while(1)
    140         {
    141           _Tp __npam1 = _Tp(__n - 1) + __a;
    142           _Tp __npcm1 = _Tp(__n - 1) + __c;
    143           _Tp __npam2 = _Tp(__n - 2) + __a;
    144           _Tp __npcm2 = _Tp(__n - 2) + __c;
    145           _Tp __tnm1  = _Tp(2 * __n - 1);
    146           _Tp __tnm3  = _Tp(2 * __n - 3);
    147           _Tp __tnm5  = _Tp(2 * __n - 5);
    148           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
    149           _Tp __F2 =  (_Tp(__n) + __a) * __npam1
    150                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
    151           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
    152                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
    153                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
    154           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c)
    155                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
    156 
    157           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
    158                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
    159           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
    160                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
    161           _Tp __r = __An / __Bn;
    162 
    163           __prec = std::abs((__F - __r) / __F);
    164           __F = __r;
    165 
    166           if (__prec < __eps || __n > __nmax)
    167             break;
    168 
    169           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
    170             {
    171               __An   /= __big;
    172               __Bn   /= __big;
    173               __Anm1 /= __big;
    174               __Bnm1 /= __big;
    175               __Anm2 /= __big;
    176               __Bnm2 /= __big;
    177               __Anm3 /= __big;
    178               __Bnm3 /= __big;
    179             }
    180           else if (std::abs(__An) < _Tp(1) / __big
    181                 || std::abs(__Bn) < _Tp(1) / __big)
    182             {
    183               __An   *= __big;
    184               __Bn   *= __big;
    185               __Anm1 *= __big;
    186               __Bnm1 *= __big;
    187               __Anm2 *= __big;
    188               __Bnm2 *= __big;
    189               __Anm3 *= __big;
    190               __Bnm3 *= __big;
    191             }
    192 
    193           ++__n;
    194           __Bnm3 = __Bnm2;
    195           __Bnm2 = __Bnm1;
    196           __Bnm1 = __Bn;
    197           __Anm3 = __Anm2;
    198           __Anm2 = __Anm1;
    199           __Anm1 = __An;
    200         }
    201 
    202       if (__n >= __nmax)
    203         std::__throw_runtime_error(__N("Iteration failed to converge "
    204                                        "in __conf_hyperg_luke."));
    205 
    206       return __F;
    207     }
    208 
    209 
    210     /**
    211      *   @brief  Return the confluent hypogeometric function
    212      *           @f$ _1F_1(a;c;x) @f$.
    213      * 
    214      *   @todo  Handle b == nonpositive integer blowup - return NaN.
    215      *
    216      *   @param  __a  The @a numerator parameter.
    217      *   @param  __c  The @a denominator parameter.
    218      *   @param  __x  The argument of the confluent hypergeometric function.
    219      *   @return  The confluent hypergeometric function.
    220      */
    221     template<typename _Tp>
    222     inline _Tp
    223     __conf_hyperg(const _Tp __a, const _Tp __c, const _Tp __x)
    224     {
    225 #if _GLIBCXX_USE_C99_MATH_TR1
    226       const _Tp __c_nint = std::tr1::nearbyint(__c);
    227 #else
    228       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
    229 #endif
    230       if (__isnan(__a) || __isnan(__c) || __isnan(__x))
    231         return std::numeric_limits<_Tp>::quiet_NaN();
    232       else if (__c_nint == __c && __c_nint <= 0)
    233         return std::numeric_limits<_Tp>::infinity();
    234       else if (__a == _Tp(0))
    235         return _Tp(1);
    236       else if (__c == __a)
    237         return std::exp(__x);
    238       else if (__x < _Tp(0))
    239         return __conf_hyperg_luke(__a, __c, __x);
    240       else
    241         return __conf_hyperg_series(__a, __c, __x);
    242     }
    243 
    244 
    245     /**
    246      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
    247      *   by series expansion.
    248      * 
    249      *   The hypogeometric function is defined by
    250      *   @f[
    251      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
    252      *                      \sum_{n=0}^{\infty}
    253      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
    254      *                      \frac{x^n}{n!}
    255      *   @f]
    256      * 
    257      *   This works and it's pretty fast.
    258      *
    259      *   @param  __a  The first @a numerator parameter.
    260      *   @param  __a  The second @a numerator parameter.
    261      *   @param  __c  The @a denominator parameter.
    262      *   @param  __x  The argument of the confluent hypergeometric function.
    263      *   @return  The confluent hypergeometric function.
    264      */
    265     template<typename _Tp>
    266     _Tp
    267     __hyperg_series(const _Tp __a, const _Tp __b,
    268                     const _Tp __c, const _Tp __x)
    269     {
    270       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    271 
    272       _Tp __term = _Tp(1);
    273       _Tp __Fabc = _Tp(1);
    274       const unsigned int __max_iter = 100000;
    275       unsigned int __i;
    276       for (__i = 0; __i < __max_iter; ++__i)
    277         {
    278           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
    279                   / ((__c + _Tp(__i)) * _Tp(1 + __i));
    280           if (std::abs(__term) < __eps)
    281             {
    282               break;
    283             }
    284           __Fabc += __term;
    285         }
    286       if (__i == __max_iter)
    287         std::__throw_runtime_error(__N("Series failed to converge "
    288                                        "in __hyperg_series."));
    289 
    290       return __Fabc;
    291     }
    292 
    293 
    294     /**
    295      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
    296      *           by an iterative procedure described in
    297      *           Luke, Algorithms for the Computation of Mathematical Functions.
    298      */
    299     template<typename _Tp>
    300     _Tp
    301     __hyperg_luke(const _Tp __a, const _Tp __b, const _Tp __c,
    302                   const _Tp __xin)
    303     {
    304       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
    305       const int __nmax = 20000;
    306       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    307       const _Tp __x  = -__xin;
    308       const _Tp __x3 = __x * __x * __x;
    309       const _Tp __t0 = __a * __b / __c;
    310       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
    311       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
    312                      / (_Tp(2) * (__c + _Tp(1)));
    313 
    314       _Tp __F = _Tp(1);
    315 
    316       _Tp __Bnm3 = _Tp(1);
    317       _Tp __Bnm2 = _Tp(1) + __t1 * __x;
    318       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
    319 
    320       _Tp __Anm3 = _Tp(1);
    321       _Tp __Anm2 = __Bnm2 - __t0 * __x;
    322       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
    323                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
    324 
    325       int __n = 3;
    326       while (1)
    327         {
    328           const _Tp __npam1 = _Tp(__n - 1) + __a;
    329           const _Tp __npbm1 = _Tp(__n - 1) + __b;
    330           const _Tp __npcm1 = _Tp(__n - 1) + __c;
    331           const _Tp __npam2 = _Tp(__n - 2) + __a;
    332           const _Tp __npbm2 = _Tp(__n - 2) + __b;
    333           const _Tp __npcm2 = _Tp(__n - 2) + __c;
    334           const _Tp __tnm1  = _Tp(2 * __n - 1);
    335           const _Tp __tnm3  = _Tp(2 * __n - 3);
    336           const _Tp __tnm5  = _Tp(2 * __n - 5);
    337           const _Tp __n2 = __n * __n;
    338           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
    339                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
    340                          / (_Tp(2) * __tnm3 * __npcm1);
    341           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
    342                          + _Tp(2) - __a * __b) * __npam1 * __npbm1
    343                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
    344           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
    345                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
    346                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5
    347                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
    348           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
    349                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
    350 
    351           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
    352                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
    353           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
    354                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
    355           const _Tp __r = __An / __Bn;
    356 
    357           const _Tp __prec = std::abs((__F - __r) / __F);
    358           __F = __r;
    359 
    360           if (__prec < __eps || __n > __nmax)
    361             break;
    362 
    363           if (std::abs(__An) > __big || std::abs(__Bn) > __big)
    364             {
    365               __An   /= __big;
    366               __Bn   /= __big;
    367               __Anm1 /= __big;
    368               __Bnm1 /= __big;
    369               __Anm2 /= __big;
    370               __Bnm2 /= __big;
    371               __Anm3 /= __big;
    372               __Bnm3 /= __big;
    373             }
    374           else if (std::abs(__An) < _Tp(1) / __big
    375                 || std::abs(__Bn) < _Tp(1) / __big)
    376             {
    377               __An   *= __big;
    378               __Bn   *= __big;
    379               __Anm1 *= __big;
    380               __Bnm1 *= __big;
    381               __Anm2 *= __big;
    382               __Bnm2 *= __big;
    383               __Anm3 *= __big;
    384               __Bnm3 *= __big;
    385             }
    386 
    387           ++__n;
    388           __Bnm3 = __Bnm2;
    389           __Bnm2 = __Bnm1;
    390           __Bnm1 = __Bn;
    391           __Anm3 = __Anm2;
    392           __Anm2 = __Anm1;
    393           __Anm1 = __An;
    394         }
    395 
    396       if (__n >= __nmax)
    397         std::__throw_runtime_error(__N("Iteration failed to converge "
    398                                        "in __hyperg_luke."));
    399 
    400       return __F;
    401     }
    402 
    403 
    404     /**
    405      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ 
    406      *  by the reflection formulae in Abramowitz & Stegun formula
    407      *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for
    408      *  d = c - a - b integral.  This assumes a, b, c != negative
    409      *  integer.
    410      *
    411      *   The hypogeometric function is defined by
    412      *   @f[
    413      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
    414      *                      \sum_{n=0}^{\infty}
    415      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
    416      *                      \frac{x^n}{n!}
    417      *   @f]
    418      *
    419      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
    420      *   @f[
    421      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
    422      *                            _2F_1(a,b;1-d;1-x)
    423      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
    424      *                            _2F_1(c-a,c-b;1+d;1-x)
    425      *   @f]
    426      *
    427      *   The reflection formula for integral @f$ m = c - a - b @f$ is:
    428      *   @f[
    429      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
    430      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
    431      *                      - 
    432      *   @f]
    433      */
    434     template<typename _Tp>
    435     _Tp
    436     __hyperg_reflect(const _Tp __a, const _Tp __b, const _Tp __c,
    437                      const _Tp __x)
    438     {
    439       const _Tp __d = __c - __a - __b;
    440       const int __intd  = std::floor(__d + _Tp(0.5L));
    441       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
    442       const _Tp __toler = _Tp(1000) * __eps;
    443       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
    444       const bool __d_integer = (std::abs(__d - __intd) < __toler);
    445 
    446       if (__d_integer)
    447         {
    448           const _Tp __ln_omx = std::log(_Tp(1) - __x);
    449           const _Tp __ad = std::abs(__d);
    450           _Tp __F1, __F2;
    451 
    452           _Tp __d1, __d2;
    453           if (__d >= _Tp(0))
    454             {
    455               __d1 = __d;
    456               __d2 = _Tp(0);
    457             }
    458           else
    459             {
    460               __d1 = _Tp(0);
    461               __d2 = __d;
    462             }
    463 
    464           const _Tp __lng_c = __log_gamma(__c);
    465 
    466           //  Evaluate F1.
    467           if (__ad < __eps)
    468             {
    469               //  d = c - a - b = 0.
    470               __F1 = _Tp(0);
    471             }
    472           else
    473             {
    474 
    475               bool __ok_d1 = true;
    476               _Tp __lng_ad, __lng_ad1, __lng_bd1;
    477               __try
    478                 {
    479                   __lng_ad = __log_gamma(__ad);
    480                   __lng_ad1 = __log_gamma(__a + __d1);
    481                   __lng_bd1 = __log_gamma(__b + __d1);
    482                 }
    483               __catch(...)
    484                 {
    485                   __ok_d1 = false;
    486                 }
    487 
    488               if (__ok_d1)
    489                 {
    490                   /* Gamma functions in the denominator are ok.
    491                    * Proceed with evaluation.
    492                    */
    493                   _Tp __sum1 = _Tp(1);
    494                   _Tp __term = _Tp(1);
    495                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
    496                                 - __lng_ad1 - __lng_bd1;
    497 
    498                   /* Do F1 sum.
    499                    */
    500                   for (int __i = 1; __i < __ad; ++__i)
    501                     {
    502                       const int __j = __i - 1;
    503                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j)
    504                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
    505                       __sum1 += __term;
    506                     }
    507 
    508                   if (__ln_pre1 > __log_max)
    509                     std::__throw_runtime_error(__N("Overflow of gamma functions"
    510                                                    " in __hyperg_luke."));
    511                   else
    512                     __F1 = std::exp(__ln_pre1) * __sum1;
    513                 }
    514               else
    515                 {
    516                   //  Gamma functions in the denominator were not ok.
    517                   //  So the F1 term is zero.
    518                   __F1 = _Tp(0);
    519                 }
    520             } // end F1 evaluation
    521 
    522           // Evaluate F2.
    523           bool __ok_d2 = true;
    524           _Tp __lng_ad2, __lng_bd2;
    525           __try
    526             {
    527               __lng_ad2 = __log_gamma(__a + __d2);
    528               __lng_bd2 = __log_gamma(__b + __d2);
    529             }
    530           __catch(...)
    531             {
    532               __ok_d2 = false;
    533             }
    534 
    535           if (__ok_d2)
    536             {
    537               //  Gamma functions in the denominator are ok.
    538               //  Proceed with evaluation.
    539               const int __maxiter = 2000;
    540               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
    541               const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
    542               const _Tp __psi_apd1 = __psi(__a + __d1);
    543               const _Tp __psi_bpd1 = __psi(__b + __d1);
    544 
    545               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
    546                              - __psi_bpd1 - __ln_omx;
    547               _Tp __fact = _Tp(1);
    548               _Tp __sum2 = __psi_term;
    549               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
    550                             - __lng_ad2 - __lng_bd2;
    551 
    552               // Do F2 sum.
    553               int __j;
    554               for (__j = 1; __j < __maxiter; ++__j)
    555                 {
    556                   //  Values for psi functions use recurrence;
    557                   //  Abramowitz & Stegun 6.3.5
    558                   const _Tp __term1 = _Tp(1) / _Tp(__j)
    559                                     + _Tp(1) / (__ad + __j);
    560                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
    561                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1));
    562                   __psi_term += __term1 - __term2;
    563                   __fact *= (__a + __d1 + _Tp(__j - 1))
    564                           * (__b + __d1 + _Tp(__j - 1))
    565                           / ((__ad + __j) * __j) * (_Tp(1) - __x);
    566                   const _Tp __delta = __fact * __psi_term;
    567                   __sum2 += __delta;
    568                   if (std::abs(__delta) < __eps * std::abs(__sum2))
    569                     break;
    570                 }
    571               if (__j == __maxiter)
    572                 std::__throw_runtime_error(__N("Sum F2 failed to converge "
    573                                                "in __hyperg_reflect"));
    574 
    575               if (__sum2 == _Tp(0))
    576                 __F2 = _Tp(0);
    577               else
    578                 __F2 = std::exp(__ln_pre2) * __sum2;
    579             }
    580           else
    581             {
    582               // Gamma functions in the denominator not ok.
    583               // So the F2 term is zero.
    584               __F2 = _Tp(0);
    585             } // end F2 evaluation
    586 
    587           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
    588           const _Tp __F = __F1 + __sgn_2 * __F2;
    589 
    590           return __F;
    591         }
    592       else
    593         {
    594           //  d = c - a - b not an integer.
    595 
    596           //  These gamma functions appear in the denominator, so we
    597           //  catch their harmless domain errors and set the terms to zero.
    598           bool __ok1 = true;
    599           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
    600           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
    601           __try
    602             {
    603               __sgn_g1ca = __log_gamma_sign(__c - __a);
    604               __ln_g1ca = __log_gamma(__c - __a);
    605               __sgn_g1cb = __log_gamma_sign(__c - __b);
    606               __ln_g1cb = __log_gamma(__c - __b);
    607             }
    608           __catch(...)
    609             {
    610               __ok1 = false;
    611             }
    612 
    613           bool __ok2 = true;
    614           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
    615           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
    616           __try
    617             {
    618               __sgn_g2a = __log_gamma_sign(__a);
    619               __ln_g2a = __log_gamma(__a);
    620               __sgn_g2b = __log_gamma_sign(__b);
    621               __ln_g2b = __log_gamma(__b);
    622             }
    623           __catch(...)
    624             {
    625               __ok2 = false;
    626             }
    627 
    628           const _Tp __sgn_gc = __log_gamma_sign(__c);
    629           const _Tp __ln_gc = __log_gamma(__c);
    630           const _Tp __sgn_gd = __log_gamma_sign(__d);
    631           const _Tp __ln_gd = __log_gamma(__d);
    632           const _Tp __sgn_gmd = __log_gamma_sign(-__d);
    633           const _Tp __ln_gmd = __log_gamma(-__d);
    634 
    635           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb;
    636           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b;
    637 
    638           _Tp __pre1, __pre2;
    639           if (__ok1 && __ok2)
    640             {
    641               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb;
    642               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b
    643                             + __d * std::log(_Tp(1) - __x);
    644               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
    645                 {
    646                   __pre1 = std::exp(__ln_pre1);
    647                   __pre2 = std::exp(__ln_pre2);
    648                   __pre1 *= __sgn1;
    649                   __pre2 *= __sgn2;
    650                 }
    651               else
    652                 {
    653                   std::__throw_runtime_error(__N("Overflow of gamma functions "
    654                                                  "in __hyperg_reflect"));
    655                 }
    656             }
    657           else if (__ok1 && !__ok2)
    658             {
    659               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
    660               if (__ln_pre1 < __log_max)
    661                 {
    662                   __pre1 = std::exp(__ln_pre1);
    663                   __pre1 *= __sgn1;
    664                   __pre2 = _Tp(0);
    665                 }
    666               else
    667                 {
    668                   std::__throw_runtime_error(__N("Overflow of gamma functions "
    669                                                  "in __hyperg_reflect"));
    670                 }
    671             }
    672           else if (!__ok1 && __ok2)
    673             {
    674               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
    675                             + __d * std::log(_Tp(1) - __x);
    676               if (__ln_pre2 < __log_max)
    677                 {
    678                   __pre1 = _Tp(0);
    679                   __pre2 = std::exp(__ln_pre2);
    680                   __pre2 *= __sgn2;
    681                 }
    682               else
    683                 {
    684                   std::__throw_runtime_error(__N("Overflow of gamma functions "
    685                                                  "in __hyperg_reflect"));
    686                 }
    687             }
    688           else
    689             {
    690               __pre1 = _Tp(0);
    691               __pre2 = _Tp(0);
    692               std::__throw_runtime_error(__N("Underflow of gamma functions "
    693                                              "in __hyperg_reflect"));
    694             }
    695 
    696           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
    697                                            _Tp(1) - __x);
    698           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
    699                                            _Tp(1) - __x);
    700 
    701           const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
    702 
    703           return __F;
    704         }
    705     }
    706 
    707 
    708     /**
    709      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
    710      *
    711      *   The hypogeometric function is defined by
    712      *   @f[
    713      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
    714      *                      \sum_{n=0}^{\infty}
    715      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
    716      *                      \frac{x^n}{n!}
    717      *   @f]
    718      *
    719      *   @param  __a  The first @a numerator parameter.
    720      *   @param  __a  The second @a numerator parameter.
    721      *   @param  __c  The @a denominator parameter.
    722      *   @param  __x  The argument of the confluent hypergeometric function.
    723      *   @return  The confluent hypergeometric function.
    724      */
    725     template<typename _Tp>
    726     inline _Tp
    727     __hyperg(const _Tp __a, const _Tp __b, const _Tp __c, const _Tp __x)
    728     {
    729 #if _GLIBCXX_USE_C99_MATH_TR1
    730       const _Tp __a_nint = std::tr1::nearbyint(__a);
    731       const _Tp __b_nint = std::tr1::nearbyint(__b);
    732       const _Tp __c_nint = std::tr1::nearbyint(__c);
    733 #else
    734       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
    735       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
    736       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
    737 #endif
    738       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
    739       if (std::abs(__x) >= _Tp(1))
    740         std::__throw_domain_error(__N("Argument outside unit circle "
    741                                       "in __hyperg."));
    742       else if (__isnan(__a) || __isnan(__b)
    743             || __isnan(__c) || __isnan(__x))
    744         return std::numeric_limits<_Tp>::quiet_NaN();
    745       else if (__c_nint == __c && __c_nint <= _Tp(0))
    746         return std::numeric_limits<_Tp>::infinity();
    747       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
    748         return std::pow(_Tp(1) - __x, __c - __a - __b);
    749       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
    750             && __x >= _Tp(0) && __x < _Tp(0.995L))
    751         return __hyperg_series(__a, __b, __c, __x);
    752       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
    753         {
    754           //  For integer a and b the hypergeometric function is a
    755           //  finite polynomial.
    756           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler)
    757             return __hyperg_series(__a_nint, __b, __c, __x);
    758           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler)
    759             return __hyperg_series(__a, __b_nint, __c, __x);
    760           else if (__x < -_Tp(0.25L))
    761             return __hyperg_luke(__a, __b, __c, __x);
    762           else if (__x < _Tp(0.5L))
    763             return __hyperg_series(__a, __b, __c, __x);
    764           else
    765             if (std::abs(__c) > _Tp(10))
    766               return __hyperg_series(__a, __b, __c, __x);
    767             else
    768               return __hyperg_reflect(__a, __b, __c, __x);
    769         }
    770       else
    771         return __hyperg_luke(__a, __b, __c, __x);
    772     }
    773 
    774   _GLIBCXX_END_NAMESPACE_VERSION
    775   } // namespace std::tr1::__detail
    776 }
    777 }
    778 
    779 #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
    780