Home | History | Annotate | Download | only in bits
      1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
      2 
      3 // Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
      4 //
      5 // This file is part of the GNU ISO C++ Library.  This library is free
      6 // software; you can redistribute it and/or modify it under the
      7 // terms of the GNU General Public License as published by the
      8 // Free Software Foundation; either version 3, or (at your option)
      9 // any later version.
     10 
     11 // This library is distributed in the hope that it will be useful,
     12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14 // GNU General Public License for more details.
     15 
     16 // Under Section 7 of GPL version 3, you are granted additional
     17 // permissions described in the GCC Runtime Library Exception, version
     18 // 3.1, as published by the Free Software Foundation.
     19 
     20 // You should have received a copy of the GNU General Public License and
     21 // a copy of the GCC Runtime Library Exception along with this program;
     22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     23 // <http://www.gnu.org/licenses/>.
     24 
     25 /** @file bits/hashtable_policy.h
     26  *  This is an internal header file, included by other library headers.
     27  *  Do not attempt to use it directly.
     28  *  @headername{unordered_map,unordered_set}
     29  */
     30 
     31 #ifndef _HASHTABLE_POLICY_H
     32 #define _HASHTABLE_POLICY_H 1
     33 
     34 namespace std _GLIBCXX_VISIBILITY(default)
     35 {
     36 namespace __detail
     37 {
     38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
     39 
     40   // Helper function: return distance(first, last) for forward
     41   // iterators, or 0 for input iterators.
     42   template<class _Iterator>
     43     inline typename std::iterator_traits<_Iterator>::difference_type
     44     __distance_fw(_Iterator __first, _Iterator __last,
     45 		  std::input_iterator_tag)
     46     { return 0; }
     47 
     48   template<class _Iterator>
     49     inline typename std::iterator_traits<_Iterator>::difference_type
     50     __distance_fw(_Iterator __first, _Iterator __last,
     51 		  std::forward_iterator_tag)
     52     { return std::distance(__first, __last); }
     53 
     54   template<class _Iterator>
     55     inline typename std::iterator_traits<_Iterator>::difference_type
     56     __distance_fw(_Iterator __first, _Iterator __last)
     57     {
     58       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
     59       return __distance_fw(__first, __last, _Tag());
     60     }
     61 
     62   // Helper type used to detect when the hash functor is noexcept qualified or
     63   // not
     64   template <typename _Key, typename _Hash>
     65     struct __is_noexcept_hash : std::integral_constant<bool,
     66 	noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
     67     {};
     68 
     69   // Auxiliary types used for all instantiations of _Hashtable: nodes
     70   // and iterators.
     71 
     72   // Nodes, used to wrap elements stored in the hash table.  A policy
     73   // template parameter of class template _Hashtable controls whether
     74   // nodes also store a hash code. In some cases (e.g. strings) this
     75   // may be a performance win.
     76   struct _Hash_node_base
     77   {
     78     _Hash_node_base* _M_nxt;
     79 
     80     _Hash_node_base()
     81       : _M_nxt() { }
     82     _Hash_node_base(_Hash_node_base* __next)
     83       : _M_nxt(__next) { }
     84   };
     85 
     86   template<typename _Value, bool __cache_hash_code>
     87     struct _Hash_node;
     88 
     89   template<typename _Value>
     90     struct _Hash_node<_Value, true> : _Hash_node_base
     91     {
     92       _Value       _M_v;
     93       std::size_t  _M_hash_code;
     94 
     95       template<typename... _Args>
     96 	_Hash_node(_Args&&... __args)
     97 	: _M_v(std::forward<_Args>(__args)...), _M_hash_code() { }
     98 
     99       _Hash_node* _M_next() const
    100       { return static_cast<_Hash_node*>(_M_nxt); }
    101     };
    102 
    103   template<typename _Value>
    104     struct _Hash_node<_Value, false> : _Hash_node_base
    105     {
    106       _Value       _M_v;
    107 
    108       template<typename... _Args>
    109 	_Hash_node(_Args&&... __args)
    110 	: _M_v(std::forward<_Args>(__args)...) { }
    111 
    112       _Hash_node* _M_next() const
    113       { return static_cast<_Hash_node*>(_M_nxt); }
    114     };
    115 
    116   // Node iterators, used to iterate through all the hashtable.
    117   template<typename _Value, bool __cache>
    118     struct _Node_iterator_base
    119     {
    120       _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
    121       : _M_cur(__p) { }
    122 
    123       void
    124       _M_incr()
    125       { _M_cur = _M_cur->_M_next(); }
    126 
    127       _Hash_node<_Value, __cache>*  _M_cur;
    128     };
    129 
    130   template<typename _Value, bool __cache>
    131     inline bool
    132     operator==(const _Node_iterator_base<_Value, __cache>& __x,
    133 	       const _Node_iterator_base<_Value, __cache>& __y)
    134     { return __x._M_cur == __y._M_cur; }
    135 
    136   template<typename _Value, bool __cache>
    137     inline bool
    138     operator!=(const _Node_iterator_base<_Value, __cache>& __x,
    139 	       const _Node_iterator_base<_Value, __cache>& __y)
    140     { return __x._M_cur != __y._M_cur; }
    141 
    142   template<typename _Value, bool __constant_iterators, bool __cache>
    143     struct _Node_iterator
    144     : public _Node_iterator_base<_Value, __cache>
    145     {
    146       typedef _Value                                   value_type;
    147       typedef typename std::conditional<__constant_iterators,
    148 					const _Value*, _Value*>::type
    149 						       pointer;
    150       typedef typename std::conditional<__constant_iterators,
    151 					const _Value&, _Value&>::type
    152 						       reference;
    153       typedef std::ptrdiff_t                           difference_type;
    154       typedef std::forward_iterator_tag                iterator_category;
    155 
    156       _Node_iterator()
    157       : _Node_iterator_base<_Value, __cache>(0) { }
    158 
    159       explicit
    160       _Node_iterator(_Hash_node<_Value, __cache>* __p)
    161       : _Node_iterator_base<_Value, __cache>(__p) { }
    162 
    163       reference
    164       operator*() const
    165       { return this->_M_cur->_M_v; }
    166 
    167       pointer
    168       operator->() const
    169       { return std::__addressof(this->_M_cur->_M_v); }
    170 
    171       _Node_iterator&
    172       operator++()
    173       {
    174 	this->_M_incr();
    175 	return *this;
    176       }
    177 
    178       _Node_iterator
    179       operator++(int)
    180       {
    181 	_Node_iterator __tmp(*this);
    182 	this->_M_incr();
    183 	return __tmp;
    184       }
    185     };
    186 
    187   template<typename _Value, bool __constant_iterators, bool __cache>
    188     struct _Node_const_iterator
    189     : public _Node_iterator_base<_Value, __cache>
    190     {
    191       typedef _Value                                   value_type;
    192       typedef const _Value*                            pointer;
    193       typedef const _Value&                            reference;
    194       typedef std::ptrdiff_t                           difference_type;
    195       typedef std::forward_iterator_tag                iterator_category;
    196 
    197       _Node_const_iterator()
    198       : _Node_iterator_base<_Value, __cache>(0) { }
    199 
    200       explicit
    201       _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
    202       : _Node_iterator_base<_Value, __cache>(__p) { }
    203 
    204       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
    205 			   __cache>& __x)
    206       : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
    207 
    208       reference
    209       operator*() const
    210       { return this->_M_cur->_M_v; }
    211 
    212       pointer
    213       operator->() const
    214       { return std::__addressof(this->_M_cur->_M_v); }
    215 
    216       _Node_const_iterator&
    217       operator++()
    218       {
    219 	this->_M_incr();
    220 	return *this;
    221       }
    222 
    223       _Node_const_iterator
    224       operator++(int)
    225       {
    226 	_Node_const_iterator __tmp(*this);
    227 	this->_M_incr();
    228 	return __tmp;
    229       }
    230     };
    231 
    232   // Many of class template _Hashtable's template parameters are policy
    233   // classes.  These are defaults for the policies.
    234 
    235   // Default range hashing function: use division to fold a large number
    236   // into the range [0, N).
    237   struct _Mod_range_hashing
    238   {
    239     typedef std::size_t first_argument_type;
    240     typedef std::size_t second_argument_type;
    241     typedef std::size_t result_type;
    242 
    243     result_type
    244     operator()(first_argument_type __num, second_argument_type __den) const
    245     { return __num % __den; }
    246   };
    247 
    248   // Default ranged hash function H.  In principle it should be a
    249   // function object composed from objects of type H1 and H2 such that
    250   // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
    251   // h1 and h2.  So instead we'll just use a tag to tell class template
    252   // hashtable to do that composition.
    253   struct _Default_ranged_hash { };
    254 
    255   // Default value for rehash policy.  Bucket size is (usually) the
    256   // smallest prime that keeps the load factor small enough.
    257   struct _Prime_rehash_policy
    258   {
    259     _Prime_rehash_policy(float __z = 1.0)
    260     : _M_max_load_factor(__z), _M_prev_resize(0), _M_next_resize(0) { }
    261 
    262     float
    263     max_load_factor() const noexcept
    264     { return _M_max_load_factor; }
    265 
    266     // Return a bucket size no smaller than n.
    267     std::size_t
    268     _M_next_bkt(std::size_t __n) const;
    269 
    270     // Return a bucket count appropriate for n elements
    271     std::size_t
    272     _M_bkt_for_elements(std::size_t __n) const;
    273 
    274     // __n_bkt is current bucket count, __n_elt is current element count,
    275     // and __n_ins is number of elements to be inserted.  Do we need to
    276     // increase bucket count?  If so, return make_pair(true, n), where n
    277     // is the new bucket count.  If not, return make_pair(false, 0).
    278     std::pair<bool, std::size_t>
    279     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
    280 		   std::size_t __n_ins) const;
    281 
    282     typedef std::pair<std::size_t, std::size_t> _State;
    283 
    284     _State
    285     _M_state() const
    286     { return std::make_pair(_M_prev_resize, _M_next_resize); }
    287 
    288     void
    289     _M_reset(const _State& __state)
    290     {
    291       _M_prev_resize = __state.first;
    292       _M_next_resize = __state.second;
    293     }
    294 
    295     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
    296 
    297     static const std::size_t _S_growth_factor = 2;
    298 
    299     float                _M_max_load_factor;
    300     mutable std::size_t  _M_prev_resize;
    301     mutable std::size_t  _M_next_resize;
    302   };
    303 
    304   extern const unsigned long __prime_list[];
    305 
    306   // XXX This is a hack.  There's no good reason for any of
    307   // _Prime_rehash_policy's member functions to be inline.
    308 
    309   // Return a prime no smaller than n.
    310   inline std::size_t
    311   _Prime_rehash_policy::
    312   _M_next_bkt(std::size_t __n) const
    313   {
    314     // Optimize lookups involving the first elements of __prime_list.
    315     // (useful to speed-up, eg, constructors)
    316     static const unsigned char __fast_bkt[12]
    317       = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 };
    318 
    319     const std::size_t __grown_n = __n * _S_growth_factor;
    320     if (__grown_n <= 11)
    321       {
    322 	_M_prev_resize = 0;
    323 	_M_next_resize
    324 	  = __builtin_ceil(__fast_bkt[__grown_n]
    325 			   * (long double)_M_max_load_factor);
    326 	return __fast_bkt[__grown_n];
    327       }
    328 
    329     const unsigned long* __next_bkt
    330       = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes,
    331 			 __grown_n);
    332     const unsigned long* __prev_bkt
    333       = std::lower_bound(__prime_list + 1, __next_bkt, __n / _S_growth_factor);
    334 
    335     _M_prev_resize
    336       = __builtin_floor(*(__prev_bkt - 1) * (long double)_M_max_load_factor);
    337     _M_next_resize
    338       = __builtin_ceil(*__next_bkt * (long double)_M_max_load_factor);
    339     return *__next_bkt;
    340   }
    341 
    342   // Return the smallest prime p such that alpha p >= n, where alpha
    343   // is the load factor.
    344   inline std::size_t
    345   _Prime_rehash_policy::
    346   _M_bkt_for_elements(std::size_t __n) const
    347   { return _M_next_bkt(__builtin_ceil(__n / (long double)_M_max_load_factor)); }
    348 
    349   // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
    350   // If p > __n_bkt, return make_pair(true, p); otherwise return
    351   // make_pair(false, 0).  In principle this isn't very different from
    352   // _M_bkt_for_elements.
    353 
    354   // The only tricky part is that we're caching the element count at
    355   // which we need to rehash, so we don't have to do a floating-point
    356   // multiply for every insertion.
    357 
    358   inline std::pair<bool, std::size_t>
    359   _Prime_rehash_policy::
    360   _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
    361 		 std::size_t __n_ins) const
    362   {
    363     if (__n_elt + __n_ins >= _M_next_resize)
    364       {
    365 	long double __min_bkts = (__n_elt + __n_ins)
    366 				 / (long double)_M_max_load_factor;
    367 	if (__min_bkts >= __n_bkt)
    368 	  return std::make_pair(true,
    369 				_M_next_bkt(__builtin_floor(__min_bkts) + 1));
    370 	else
    371 	  {
    372 	    _M_next_resize
    373 	      = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
    374 	    return std::make_pair(false, 0);
    375 	  }
    376       }
    377     else if (__n_elt + __n_ins < _M_prev_resize)
    378       {
    379 	long double __min_bkts = (__n_elt + __n_ins)
    380 				 / (long double)_M_max_load_factor;
    381 	return std::make_pair(true,
    382 			      _M_next_bkt(__builtin_floor(__min_bkts) + 1));
    383       }
    384     else
    385       return std::make_pair(false, 0);
    386   }
    387 
    388   // Base classes for std::_Hashtable.  We define these base classes
    389   // because in some cases we want to do different things depending
    390   // on the value of a policy class.  In some cases the policy class
    391   // affects which member functions and nested typedefs are defined;
    392   // we handle that by specializing base class templates.  Several of
    393   // the base class templates need to access other members of class
    394   // template _Hashtable, so we use the "curiously recurring template
    395   // pattern" for them.
    396 
    397   // class template _Map_base.  If the hashtable has a value type of
    398   // the form pair<T1, T2> and a key extraction policy that returns the
    399   // first part of the pair, the hashtable gets a mapped_type typedef.
    400   // If it satisfies those criteria and also has unique keys, then it
    401   // also gets an operator[].
    402   template<typename _Key, typename _Value, typename _Ex, bool __unique,
    403 	   typename _Hashtable>
    404     struct _Map_base { };
    405 
    406   template<typename _Key, typename _Pair, typename _Hashtable>
    407     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
    408     {
    409       typedef typename _Pair::second_type mapped_type;
    410     };
    411 
    412   template<typename _Key, typename _Pair, typename _Hashtable>
    413     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
    414     {
    415       typedef typename _Pair::second_type mapped_type;
    416 
    417       mapped_type&
    418       operator[](const _Key& __k);
    419 
    420       mapped_type&
    421       operator[](_Key&& __k);
    422 
    423       // _GLIBCXX_RESOLVE_LIB_DEFECTS
    424       // DR 761. unordered_map needs an at() member function.
    425       mapped_type&
    426       at(const _Key& __k);
    427 
    428       const mapped_type&
    429       at(const _Key& __k) const;
    430     };
    431 
    432   template<typename _Key, typename _Pair, typename _Hashtable>
    433     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
    434 		       true, _Hashtable>::mapped_type&
    435     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
    436     operator[](const _Key& __k)
    437     {
    438       _Hashtable* __h = static_cast<_Hashtable*>(this);
    439       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
    440       std::size_t __n = __h->_M_bucket_index(__k, __code);
    441 
    442       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
    443       if (!__p)
    444 	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
    445 				     __n, __code)->second;
    446       return (__p->_M_v).second;
    447     }
    448 
    449   template<typename _Key, typename _Pair, typename _Hashtable>
    450     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
    451 		       true, _Hashtable>::mapped_type&
    452     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
    453     operator[](_Key&& __k)
    454     {
    455       _Hashtable* __h = static_cast<_Hashtable*>(this);
    456       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
    457       std::size_t __n = __h->_M_bucket_index(__k, __code);
    458 
    459       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
    460       if (!__p)
    461 	return __h->_M_insert_bucket(std::make_pair(std::move(__k),
    462 						    mapped_type()),
    463 				     __n, __code)->second;
    464       return (__p->_M_v).second;
    465     }
    466 
    467   template<typename _Key, typename _Pair, typename _Hashtable>
    468     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
    469 		       true, _Hashtable>::mapped_type&
    470     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
    471     at(const _Key& __k)
    472     {
    473       _Hashtable* __h = static_cast<_Hashtable*>(this);
    474       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
    475       std::size_t __n = __h->_M_bucket_index(__k, __code);
    476 
    477       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
    478       if (!__p)
    479 	__throw_out_of_range(__N("_Map_base::at"));
    480       return (__p->_M_v).second;
    481     }
    482 
    483   template<typename _Key, typename _Pair, typename _Hashtable>
    484     const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
    485 			     true, _Hashtable>::mapped_type&
    486     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
    487     at(const _Key& __k) const
    488     {
    489       const _Hashtable* __h = static_cast<const _Hashtable*>(this);
    490       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
    491       std::size_t __n = __h->_M_bucket_index(__k, __code);
    492 
    493       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
    494       if (!__p)
    495 	__throw_out_of_range(__N("_Map_base::at"));
    496       return (__p->_M_v).second;
    497     }
    498 
    499   // class template _Rehash_base.  Give hashtable the max_load_factor
    500   // functions and reserve iff the rehash policy is _Prime_rehash_policy.
    501   template<typename _RehashPolicy, typename _Hashtable>
    502     struct _Rehash_base { };
    503 
    504   template<typename _Hashtable>
    505     struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
    506     {
    507       float
    508       max_load_factor() const noexcept
    509       {
    510 	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
    511 	return __this->__rehash_policy().max_load_factor();
    512       }
    513 
    514       void
    515       max_load_factor(float __z)
    516       {
    517 	_Hashtable* __this = static_cast<_Hashtable*>(this);
    518 	__this->__rehash_policy(_Prime_rehash_policy(__z));
    519       }
    520 
    521       void
    522       reserve(std::size_t __n)
    523       {
    524 	_Hashtable* __this = static_cast<_Hashtable*>(this);
    525 	__this->rehash(__builtin_ceil(__n / max_load_factor()));
    526       }
    527     };
    528 
    529   // Helper class using EBO when it is not forbidden, type is not final,
    530   // and when it worth it, type is empty.
    531   template<int _Nm, typename _Tp,
    532 	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
    533     struct _Hashtable_ebo_helper;
    534 
    535   // Specialization using EBO.
    536   template<int _Nm, typename _Tp>
    537     struct _Hashtable_ebo_helper<_Nm, _Tp, true>
    538     // See PR53067.
    539     : public _Tp
    540     {
    541       _Hashtable_ebo_helper() = default;
    542       _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp)
    543       { }
    544 
    545       static const _Tp&
    546       _S_cget(const _Hashtable_ebo_helper& __eboh)
    547       { return static_cast<const _Tp&>(__eboh); }
    548 
    549       static _Tp&
    550       _S_get(_Hashtable_ebo_helper& __eboh)
    551       { return static_cast<_Tp&>(__eboh); }
    552     };
    553 
    554   // Specialization not using EBO.
    555   template<int _Nm, typename _Tp>
    556     struct _Hashtable_ebo_helper<_Nm, _Tp, false>
    557     {
    558       _Hashtable_ebo_helper() = default;
    559       _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp)
    560       { }
    561 
    562       static const _Tp&
    563       _S_cget(const _Hashtable_ebo_helper& __eboh)
    564       { return __eboh._M_tp; }
    565 
    566       static _Tp&
    567       _S_get(_Hashtable_ebo_helper& __eboh)
    568       { return __eboh._M_tp; }
    569 
    570     private:
    571       _Tp _M_tp;
    572     };
    573 
    574   // Class template _Hash_code_base.  Encapsulates two policy issues that
    575   // aren't quite orthogonal.
    576   //   (1) the difference between using a ranged hash function and using
    577   //       the combination of a hash function and a range-hashing function.
    578   //       In the former case we don't have such things as hash codes, so
    579   //       we have a dummy type as placeholder.
    580   //   (2) Whether or not we cache hash codes.  Caching hash codes is
    581   //       meaningless if we have a ranged hash function.
    582   // We also put the key extraction objects here, for convenience.
    583   //
    584   // Each specialization derives from one or more of the template parameters to
    585   // benefit from Ebo. This is important as this type is inherited in some cases
    586   // by the _Local_iterator_base type used to implement local_iterator and
    587   // const_local_iterator. As with any iterator type we prefer to make it as
    588   // small as possible.
    589 
    590   // Primary template: unused except as a hook for specializations.
    591   template<typename _Key, typename _Value, typename _ExtractKey,
    592 	   typename _H1, typename _H2, typename _Hash,
    593 	   bool __cache_hash_code>
    594     struct _Hash_code_base;
    595 
    596   // Specialization: ranged hash function, no caching hash codes.  H1
    597   // and H2 are provided but ignored.  We define a dummy hash code type.
    598   template<typename _Key, typename _Value, typename _ExtractKey,
    599 	   typename _H1, typename _H2, typename _Hash>
    600     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
    601     // See PR53067.
    602     : public  _Hashtable_ebo_helper<0, _ExtractKey>,
    603       public  _Hashtable_ebo_helper<1, _Hash>
    604     {
    605     private:
    606       typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
    607       typedef _Hashtable_ebo_helper<1, _Hash> _EboHash;
    608 
    609     protected:
    610       // We need the default constructor for the local iterators.
    611       _Hash_code_base() = default;
    612       _Hash_code_base(const _ExtractKey& __ex,
    613 		      const _H1&, const _H2&, const _Hash& __h)
    614 	: _EboExtractKey(__ex), _EboHash(__h) { }
    615 
    616       typedef void* _Hash_code_type;
    617 
    618       _Hash_code_type
    619       _M_hash_code(const _Key& __key) const
    620       { return 0; }
    621 
    622       std::size_t
    623       _M_bucket_index(const _Key& __k, _Hash_code_type,
    624 		      std::size_t __n) const
    625       { return _M_ranged_hash()(__k, __n); }
    626 
    627       std::size_t
    628       _M_bucket_index(const _Hash_node<_Value, false>* __p,
    629 		      std::size_t __n) const
    630       { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); }
    631 
    632       void
    633       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
    634       { }
    635 
    636       void
    637       _M_copy_code(_Hash_node<_Value, false>*,
    638 		   const _Hash_node<_Value, false>*) const
    639       { }
    640 
    641       void
    642       _M_swap(_Hash_code_base& __x)
    643       {
    644 	std::swap(_M_extract(), __x._M_extract());
    645 	std::swap(_M_ranged_hash(), __x._M_ranged_hash());
    646       }
    647 
    648     protected:
    649       const _ExtractKey&
    650       _M_extract() const { return _EboExtractKey::_S_cget(*this); }
    651       _ExtractKey&
    652       _M_extract() { return _EboExtractKey::_S_get(*this); }
    653       const _Hash&
    654       _M_ranged_hash() const { return _EboHash::_S_cget(*this); }
    655       _Hash&
    656       _M_ranged_hash() { return _EboHash::_S_get(*this); }
    657     };
    658 
    659   // No specialization for ranged hash function while caching hash codes.
    660   // That combination is meaningless, and trying to do it is an error.
    661 
    662   // Specialization: ranged hash function, cache hash codes.  This
    663   // combination is meaningless, so we provide only a declaration
    664   // and no definition.
    665   template<typename _Key, typename _Value, typename _ExtractKey,
    666 	   typename _H1, typename _H2, typename _Hash>
    667     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
    668 
    669   // Specialization: hash function and range-hashing function, no
    670   // caching of hash codes.
    671   // Provides typedef and accessor required by TR1.
    672   template<typename _Key, typename _Value, typename _ExtractKey,
    673 	   typename _H1, typename _H2>
    674     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
    675 			   _Default_ranged_hash, false>
    676     // See PR53067.
    677     : public  _Hashtable_ebo_helper<0, _ExtractKey>,
    678       public  _Hashtable_ebo_helper<1, _H1>,
    679       public  _Hashtable_ebo_helper<2, _H2>
    680     {
    681     private:
    682       typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
    683       typedef _Hashtable_ebo_helper<1, _H1> _EboH1;
    684       typedef _Hashtable_ebo_helper<2, _H2> _EboH2;
    685 
    686     public:
    687       typedef _H1 hasher;
    688 
    689       hasher
    690       hash_function() const
    691       { return _M_h1(); }
    692 
    693     protected:
    694       // We need the default constructor for the local iterators.
    695       _Hash_code_base() = default;
    696       _Hash_code_base(const _ExtractKey& __ex,
    697 		      const _H1& __h1, const _H2& __h2,
    698 		      const _Default_ranged_hash&)
    699       : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
    700 
    701       typedef std::size_t _Hash_code_type;
    702 
    703       _Hash_code_type
    704       _M_hash_code(const _Key& __k) const
    705       { return _M_h1()(__k); }
    706 
    707       std::size_t
    708       _M_bucket_index(const _Key&, _Hash_code_type __c,
    709 		      std::size_t __n) const
    710       { return _M_h2()(__c, __n); }
    711 
    712       std::size_t
    713       _M_bucket_index(const _Hash_node<_Value, false>* __p,
    714 		      std::size_t __n) const
    715       { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); }
    716 
    717       void
    718       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
    719       { }
    720 
    721       void
    722       _M_copy_code(_Hash_node<_Value, false>*,
    723 		   const _Hash_node<_Value, false>*) const
    724       { }
    725 
    726       void
    727       _M_swap(_Hash_code_base& __x)
    728       {
    729 	std::swap(_M_extract(), __x._M_extract());
    730 	std::swap(_M_h1(), __x._M_h1());
    731 	std::swap(_M_h2(), __x._M_h2());
    732       }
    733 
    734     protected:
    735       const _ExtractKey&
    736       _M_extract() const { return _EboExtractKey::_S_cget(*this); }
    737       _ExtractKey&
    738       _M_extract() { return _EboExtractKey::_S_get(*this); }
    739       const _H1&
    740       _M_h1() const { return _EboH1::_S_cget(*this); }
    741       _H1&
    742       _M_h1() { return _EboH1::_S_get(*this); }
    743       const _H2&
    744       _M_h2() const { return _EboH2::_S_cget(*this); }
    745       _H2&
    746       _M_h2() { return _EboH2::_S_get(*this); }
    747     };
    748 
    749   // Specialization: hash function and range-hashing function,
    750   // caching hash codes.  H is provided but ignored.  Provides
    751   // typedef and accessor required by TR1.
    752   template<typename _Key, typename _Value, typename _ExtractKey,
    753 	   typename _H1, typename _H2>
    754     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
    755 			   _Default_ranged_hash, true>
    756     // See PR53067.
    757     : public  _Hashtable_ebo_helper<0, _ExtractKey>,
    758       public  _Hashtable_ebo_helper<1, _H1>,
    759       public  _Hashtable_ebo_helper<2, _H2>
    760     {
    761     private:
    762       typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
    763       typedef _Hashtable_ebo_helper<1, _H1> _EboH1;
    764       typedef _Hashtable_ebo_helper<2, _H2> _EboH2;
    765 
    766     public:
    767       typedef _H1 hasher;
    768 
    769       hasher
    770       hash_function() const
    771       { return _M_h1(); }
    772 
    773     protected:
    774       _Hash_code_base(const _ExtractKey& __ex,
    775 		      const _H1& __h1, const _H2& __h2,
    776 		      const _Default_ranged_hash&)
    777       : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
    778 
    779       typedef std::size_t _Hash_code_type;
    780 
    781       _Hash_code_type
    782       _M_hash_code(const _Key& __k) const
    783       { return _M_h1()(__k); }
    784 
    785       std::size_t
    786       _M_bucket_index(const _Key&, _Hash_code_type __c,
    787 		      std::size_t __n) const
    788       { return _M_h2()(__c, __n); }
    789 
    790       std::size_t
    791       _M_bucket_index(const _Hash_node<_Value, true>* __p,
    792 		      std::size_t __n) const
    793       { return _M_h2()(__p->_M_hash_code, __n); }
    794 
    795       void
    796       _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
    797       { __n->_M_hash_code = __c; }
    798 
    799       void
    800       _M_copy_code(_Hash_node<_Value, true>* __to,
    801 		   const _Hash_node<_Value, true>* __from) const
    802       { __to->_M_hash_code = __from->_M_hash_code; }
    803 
    804       void
    805       _M_swap(_Hash_code_base& __x)
    806       {
    807 	std::swap(_M_extract(), __x._M_extract());
    808 	std::swap(_M_h1(), __x._M_h1());
    809 	std::swap(_M_h2(), __x._M_h2());
    810       }
    811 
    812     protected:
    813       const _ExtractKey&
    814       _M_extract() const { return _EboExtractKey::_S_cget(*this); }
    815       _ExtractKey&
    816       _M_extract() { return _EboExtractKey::_S_get(*this); }
    817       const _H1&
    818       _M_h1() const { return _EboH1::_S_cget(*this); }
    819       _H1&
    820       _M_h1() { return _EboH1::_S_get(*this); }
    821       const _H2&
    822       _M_h2() const { return _EboH2::_S_cget(*this); }
    823       _H2&
    824       _M_h2() { return _EboH2::_S_get(*this); }
    825     };
    826 
    827   template <typename _Key, typename _Value, typename _ExtractKey,
    828 	    typename _Equal, typename _HashCodeType,
    829 	    bool __cache_hash_code>
    830   struct _Equal_helper;
    831 
    832   template<typename _Key, typename _Value, typename _ExtractKey,
    833 	   typename _Equal, typename _HashCodeType>
    834   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
    835   {
    836     static bool
    837     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
    838 	      const _Key& __k, _HashCodeType __c,
    839 	      _Hash_node<_Value, true>* __n)
    840     { return __c == __n->_M_hash_code
    841 	     && __eq(__k, __extract(__n->_M_v)); }
    842   };
    843 
    844   template<typename _Key, typename _Value, typename _ExtractKey,
    845 	   typename _Equal, typename _HashCodeType>
    846   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
    847   {
    848     static bool
    849     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
    850 	      const _Key& __k, _HashCodeType,
    851 	      _Hash_node<_Value, false>* __n)
    852     { return __eq(__k, __extract(__n->_M_v)); }
    853   };
    854 
    855   // Helper class adding management of _Equal functor to _Hash_code_base
    856   // type.
    857   template<typename _Key, typename _Value,
    858 	   typename _ExtractKey, typename _Equal,
    859 	   typename _H1, typename _H2, typename _Hash,
    860 	   bool __cache_hash_code>
    861   struct _Hashtable_base
    862   // See PR53067.
    863   : public  _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
    864 			    __cache_hash_code>,
    865     public _Hashtable_ebo_helper<0, _Equal>
    866   {
    867   private:
    868     typedef _Hashtable_ebo_helper<0, _Equal> _EboEqual;
    869 
    870   protected:
    871     typedef _Hash_code_base<_Key, _Value, _ExtractKey,
    872 			    _H1, _H2, _Hash, __cache_hash_code> _HCBase;
    873     typedef typename _HCBase::_Hash_code_type _Hash_code_type;
    874 
    875     _Hashtable_base(const _ExtractKey& __ex,
    876 		    const _H1& __h1, const _H2& __h2,
    877 		    const _Hash& __hash, const _Equal& __eq)
    878       : _HCBase(__ex, __h1, __h2, __hash), _EboEqual(__eq) { }
    879 
    880     bool
    881     _M_equals(const _Key& __k, _Hash_code_type __c,
    882 	      _Hash_node<_Value, __cache_hash_code>* __n) const
    883     {
    884       typedef _Equal_helper<_Key, _Value, _ExtractKey,
    885 			   _Equal, _Hash_code_type,
    886 			   __cache_hash_code> _EqualHelper;
    887       return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
    888 				     __k, __c, __n);
    889     }
    890 
    891     void
    892     _M_swap(_Hashtable_base& __x)
    893     {
    894       _HCBase::_M_swap(__x);
    895       std::swap(_M_eq(), __x._M_eq());
    896     }
    897 
    898   protected:
    899     const _Equal&
    900     _M_eq() const { return _EboEqual::_S_cget(*this); }
    901     _Equal&
    902     _M_eq() { return _EboEqual::_S_get(*this); }
    903   };
    904 
    905   // Local iterators, used to iterate within a bucket but not between
    906   // buckets.
    907   template<typename _Key, typename _Value, typename _ExtractKey,
    908 	   typename _H1, typename _H2, typename _Hash,
    909 	   bool __cache_hash_code>
    910     struct _Local_iterator_base;
    911 
    912   template<typename _Key, typename _Value, typename _ExtractKey,
    913 	   typename _H1, typename _H2, typename _Hash>
    914     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
    915 				_H1, _H2, _Hash, true>
    916     // See PR53067.
    917     : public _H2
    918     {
    919       _Local_iterator_base() = default;
    920       _Local_iterator_base(_Hash_node<_Value, true>* __p,
    921 			   std::size_t __bkt, std::size_t __bkt_count)
    922       : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
    923 
    924       void
    925       _M_incr()
    926       {
    927 	_M_cur = _M_cur->_M_next();
    928 	if (_M_cur)
    929 	  {
    930 	    std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count);
    931 	    if (__bkt != _M_bucket)
    932 	      _M_cur = nullptr;
    933 	  }
    934       }
    935 
    936       const _H2& _M_h2() const
    937       { return *this; }
    938 
    939       _Hash_node<_Value, true>*  _M_cur;
    940       std::size_t _M_bucket;
    941       std::size_t _M_bucket_count;
    942     };
    943 
    944   template<typename _Key, typename _Value, typename _ExtractKey,
    945 	   typename _H1, typename _H2, typename _Hash>
    946     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
    947 				_H1, _H2, _Hash, false>
    948     // See PR53067.
    949     : public _Hash_code_base<_Key, _Value, _ExtractKey,
    950 			     _H1, _H2, _Hash, false>
    951     {
    952       _Local_iterator_base() = default;
    953       _Local_iterator_base(_Hash_node<_Value, false>* __p,
    954 			   std::size_t __bkt, std::size_t __bkt_count)
    955       : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
    956 
    957       void
    958       _M_incr()
    959       {
    960 	_M_cur = _M_cur->_M_next();
    961 	if (_M_cur)
    962 	  {
    963 	    std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count);
    964 	    if (__bkt != _M_bucket)
    965 	      _M_cur = nullptr;
    966 	  }
    967       }
    968 
    969       _Hash_node<_Value, false>*  _M_cur;
    970       std::size_t _M_bucket;
    971       std::size_t _M_bucket_count;
    972     };
    973 
    974   template<typename _Key, typename _Value, typename _ExtractKey,
    975 	   typename _H1, typename _H2, typename _Hash, bool __cache>
    976     inline bool
    977     operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
    978 					  _H1, _H2, _Hash, __cache>& __x,
    979 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
    980 					  _H1, _H2, _Hash, __cache>& __y)
    981     { return __x._M_cur == __y._M_cur; }
    982 
    983   template<typename _Key, typename _Value, typename _ExtractKey,
    984 	   typename _H1, typename _H2, typename _Hash, bool __cache>
    985     inline bool
    986     operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
    987 					  _H1, _H2, _Hash, __cache>& __x,
    988 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
    989 					  _H1, _H2, _Hash, __cache>& __y)
    990     { return __x._M_cur != __y._M_cur; }
    991 
    992   template<typename _Key, typename _Value, typename _ExtractKey,
    993 	   typename _H1, typename _H2, typename _Hash,
    994 	   bool __constant_iterators, bool __cache>
    995     struct _Local_iterator
    996     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
    997 				  _H1, _H2, _Hash, __cache>
    998     {
    999       typedef _Value                                   value_type;
   1000       typedef typename std::conditional<__constant_iterators,
   1001 					const _Value*, _Value*>::type
   1002 						       pointer;
   1003       typedef typename std::conditional<__constant_iterators,
   1004 					const _Value&, _Value&>::type
   1005 						       reference;
   1006       typedef std::ptrdiff_t                           difference_type;
   1007       typedef std::forward_iterator_tag                iterator_category;
   1008 
   1009       _Local_iterator() = default;
   1010 
   1011       explicit
   1012       _Local_iterator(_Hash_node<_Value, __cache>* __p,
   1013 		      std::size_t __bkt, std::size_t __bkt_count)
   1014       : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
   1015 			     __cache>(__p, __bkt, __bkt_count)
   1016       { }
   1017 
   1018       reference
   1019       operator*() const
   1020       { return this->_M_cur->_M_v; }
   1021 
   1022       pointer
   1023       operator->() const
   1024       { return std::__addressof(this->_M_cur->_M_v); }
   1025 
   1026       _Local_iterator&
   1027       operator++()
   1028       {
   1029 	this->_M_incr();
   1030 	return *this;
   1031       }
   1032 
   1033       _Local_iterator
   1034       operator++(int)
   1035       {
   1036 	_Local_iterator __tmp(*this);
   1037 	this->_M_incr();
   1038 	return __tmp;
   1039       }
   1040     };
   1041 
   1042   template<typename _Key, typename _Value, typename _ExtractKey,
   1043 	   typename _H1, typename _H2, typename _Hash,
   1044 	   bool __constant_iterators, bool __cache>
   1045     struct _Local_const_iterator
   1046     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
   1047 				  _H1, _H2, _Hash, __cache>
   1048     {
   1049       typedef _Value                                   value_type;
   1050       typedef const _Value*                            pointer;
   1051       typedef const _Value&                            reference;
   1052       typedef std::ptrdiff_t                           difference_type;
   1053       typedef std::forward_iterator_tag                iterator_category;
   1054 
   1055       _Local_const_iterator() = default;
   1056 
   1057       explicit
   1058       _Local_const_iterator(_Hash_node<_Value, __cache>* __p,
   1059 			    std::size_t __bkt, std::size_t __bkt_count)
   1060       : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
   1061 			     __cache>(__p, __bkt, __bkt_count)
   1062       { }
   1063 
   1064       _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
   1065 						  _H1, _H2, _Hash,
   1066 						  __constant_iterators,
   1067 						  __cache>& __x)
   1068       : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
   1069 			     __cache>(__x._M_cur, __x._M_bucket,
   1070 				      __x._M_bucket_count)
   1071       { }
   1072 
   1073       reference
   1074       operator*() const
   1075       { return this->_M_cur->_M_v; }
   1076 
   1077       pointer
   1078       operator->() const
   1079       { return std::__addressof(this->_M_cur->_M_v); }
   1080 
   1081       _Local_const_iterator&
   1082       operator++()
   1083       {
   1084 	this->_M_incr();
   1085 	return *this;
   1086       }
   1087 
   1088       _Local_const_iterator
   1089       operator++(int)
   1090       {
   1091 	_Local_const_iterator __tmp(*this);
   1092 	this->_M_incr();
   1093 	return __tmp;
   1094       }
   1095     };
   1096 
   1097 
   1098   // Class template _Equality_base.  This is for implementing equality
   1099   // comparison for unordered containers, per N3068, by John Lakos and
   1100   // Pablo Halpern.  Algorithmically, we follow closely the reference
   1101   // implementations therein.
   1102   template<typename _ExtractKey, bool __unique_keys,
   1103 	   typename _Hashtable>
   1104     struct _Equality_base;
   1105 
   1106   template<typename _ExtractKey, typename _Hashtable>
   1107     struct _Equality_base<_ExtractKey, true, _Hashtable>
   1108     {
   1109       bool _M_equal(const _Hashtable&) const;
   1110     };
   1111 
   1112   template<typename _ExtractKey, typename _Hashtable>
   1113     bool
   1114     _Equality_base<_ExtractKey, true, _Hashtable>::
   1115     _M_equal(const _Hashtable& __other) const
   1116     {
   1117       const _Hashtable* __this = static_cast<const _Hashtable*>(this);
   1118 
   1119       if (__this->size() != __other.size())
   1120 	return false;
   1121 
   1122       for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
   1123 	{
   1124 	  const auto __ity = __other.find(_ExtractKey()(*__itx));
   1125 	  if (__ity == __other.end() || !bool(*__ity == *__itx))
   1126 	    return false;
   1127 	}
   1128       return true;
   1129     }
   1130 
   1131   template<typename _ExtractKey, typename _Hashtable>
   1132     struct _Equality_base<_ExtractKey, false, _Hashtable>
   1133     {
   1134       bool _M_equal(const _Hashtable&) const;
   1135 
   1136     private:
   1137       template<typename _Uiterator>
   1138 	static bool
   1139 	_S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
   1140     };
   1141 
   1142   // See std::is_permutation in N3068.
   1143   template<typename _ExtractKey, typename _Hashtable>
   1144     template<typename _Uiterator>
   1145       bool
   1146       _Equality_base<_ExtractKey, false, _Hashtable>::
   1147       _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
   1148 			_Uiterator __first2)
   1149       {
   1150 	for (; __first1 != __last1; ++__first1, ++__first2)
   1151 	  if (!(*__first1 == *__first2))
   1152 	    break;
   1153 
   1154 	if (__first1 == __last1)
   1155 	  return true;
   1156 
   1157 	_Uiterator __last2 = __first2;
   1158 	std::advance(__last2, std::distance(__first1, __last1));
   1159 
   1160 	for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
   1161 	  {
   1162 	    _Uiterator __tmp =  __first1;
   1163 	    while (__tmp != __it1 && !bool(*__tmp == *__it1))
   1164 	      ++__tmp;
   1165 
   1166 	    // We've seen this one before.
   1167 	    if (__tmp != __it1)
   1168 	      continue;
   1169 
   1170 	    std::ptrdiff_t __n2 = 0;
   1171 	    for (__tmp = __first2; __tmp != __last2; ++__tmp)
   1172 	      if (*__tmp == *__it1)
   1173 		++__n2;
   1174 
   1175 	    if (!__n2)
   1176 	      return false;
   1177 
   1178 	    std::ptrdiff_t __n1 = 0;
   1179 	    for (__tmp = __it1; __tmp != __last1; ++__tmp)
   1180 	      if (*__tmp == *__it1)
   1181 		++__n1;
   1182 
   1183 	    if (__n1 != __n2)
   1184 	      return false;
   1185 	  }
   1186 	return true;
   1187       }
   1188 
   1189   template<typename _ExtractKey, typename _Hashtable>
   1190     bool
   1191     _Equality_base<_ExtractKey, false, _Hashtable>::
   1192     _M_equal(const _Hashtable& __other) const
   1193     {
   1194       const _Hashtable* __this = static_cast<const _Hashtable*>(this);
   1195 
   1196       if (__this->size() != __other.size())
   1197 	return false;
   1198 
   1199       for (auto __itx = __this->begin(); __itx != __this->end();)
   1200 	{
   1201 	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
   1202 	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
   1203 
   1204 	  if (std::distance(__xrange.first, __xrange.second)
   1205 	      != std::distance(__yrange.first, __yrange.second))
   1206 	    return false;
   1207 
   1208 	  if (!_S_is_permutation(__xrange.first,
   1209 				 __xrange.second,
   1210 				 __yrange.first))
   1211 	    return false;
   1212 
   1213 	  __itx = __xrange.second;
   1214 	}
   1215       return true;
   1216     }
   1217 
   1218 _GLIBCXX_END_NAMESPACE_VERSION
   1219 } // namespace __detail
   1220 } // namespace std
   1221 
   1222 #endif // _HASHTABLE_POLICY_H
   1223