Home | History | Annotate | Download | only in tr1
      1 // Special functions -*- C++ -*-
      2 
      3 // Copyright (C) 2006, 2007, 2008, 2009, 2010
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 //
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 //
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file tr1/poly_laguerre.tcc
     27  *  This is an internal header file, included by other library headers.
     28  *  Do not attempt to use it directly. @headername{tr1/cmath}
     29  */
     30 
     31 //
     32 // ISO C++ 14882 TR1: 5.2  Special functions
     33 //
     34 
     35 // Written by Edward Smith-Rowland based on:
     36 //   (1) Handbook of Mathematical Functions,
     37 //       Ed. Milton Abramowitz and Irene A. Stegun,
     38 //       Dover Publications,
     39 //       Section 13, pp. 509-510, Section 22 pp. 773-802
     40 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
     41 
     42 #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
     43 #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
     44 
     45 namespace std _GLIBCXX_VISIBILITY(default)
     46 {
     47 namespace tr1
     48 {
     49   // [5.2] Special functions
     50 
     51   // Implementation-space details.
     52   namespace __detail
     53   {
     54   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     55 
     56     /**
     57      *   @brief This routine returns the associated Laguerre polynomial 
     58      *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
     59      *   Abramowitz & Stegun, 13.5.21
     60      *
     61      *   @param __n The order of the Laguerre function.
     62      *   @param __alpha The degree of the Laguerre function.
     63      *   @param __x The argument of the Laguerre function.
     64      *   @return The value of the Laguerre function of order n,
     65      *           degree @f$ \alpha @f$, and argument x.
     66      *
     67      *  This is from the GNU Scientific Library.
     68      */
     69     template<typename _Tpa, typename _Tp>
     70     _Tp
     71     __poly_laguerre_large_n(const unsigned __n, const _Tpa __alpha1,
     72                             const _Tp __x)
     73     {
     74       const _Tp __a = -_Tp(__n);
     75       const _Tp __b = _Tp(__alpha1) + _Tp(1);
     76       const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
     77       const _Tp __cos2th = __x / __eta;
     78       const _Tp __sin2th = _Tp(1) - __cos2th;
     79       const _Tp __th = std::acos(std::sqrt(__cos2th));
     80       const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
     81                         * __numeric_constants<_Tp>::__pi_2()
     82                         * __eta * __eta * __cos2th * __sin2th;
     83 
     84 #if _GLIBCXX_USE_C99_MATH_TR1
     85       const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
     86       const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
     87 #else
     88       const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
     89       const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
     90 #endif
     91 
     92       _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
     93                       * std::log(_Tp(0.25L) * __x * __eta);
     94       _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
     95       _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
     96                       + __pre_term1 - __pre_term2;
     97       _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
     98       _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
     99                               * (_Tp(2) * __th
    100                                - std::sin(_Tp(2) * __th))
    101                                + __numeric_constants<_Tp>::__pi_4());
    102       _Tp __ser = __ser_term1 + __ser_term2;
    103 
    104       return std::exp(__lnpre) * __ser;
    105     }
    106 
    107 
    108     /**
    109      *  @brief  Evaluate the polynomial based on the confluent hypergeometric
    110      *          function in a safe way, with no restriction on the arguments.
    111      *
    112      *   The associated Laguerre function is defined by
    113      *   @f[
    114      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
    115      *                       _1F_1(-n; \alpha + 1; x)
    116      *   @f]
    117      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
    118      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
    119      *
    120      *  This function assumes x != 0.
    121      *
    122      *  This is from the GNU Scientific Library.
    123      */
    124     template<typename _Tpa, typename _Tp>
    125     _Tp
    126     __poly_laguerre_hyperg(const unsigned int __n, const _Tpa __alpha1,
    127 			   const _Tp __x)
    128     {
    129       const _Tp __b = _Tp(__alpha1) + _Tp(1);
    130       const _Tp __mx = -__x;
    131       const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
    132                          : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
    133       //  Get |x|^n/n!
    134       _Tp __tc = _Tp(1);
    135       const _Tp __ax = std::abs(__x);
    136       for (unsigned int __k = 1; __k <= __n; ++__k)
    137         __tc *= (__ax / __k);
    138 
    139       _Tp __term = __tc * __tc_sgn;
    140       _Tp __sum = __term;
    141       for (int __k = int(__n) - 1; __k >= 0; --__k)
    142         {
    143           __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
    144                   * _Tp(__k + 1) / __mx;
    145           __sum += __term;
    146         }
    147 
    148       return __sum;
    149     }
    150 
    151 
    152     /**
    153      *   @brief This routine returns the associated Laguerre polynomial 
    154      *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
    155      *          by recursion.
    156      *
    157      *   The associated Laguerre function is defined by
    158      *   @f[
    159      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
    160      *                       _1F_1(-n; \alpha + 1; x)
    161      *   @f]
    162      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
    163      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
    164      *
    165      *   The associated Laguerre polynomial is defined for integral
    166      *   @f$ \alpha = m @f$ by:
    167      *   @f[
    168      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
    169      *   @f]
    170      *   where the Laguerre polynomial is defined by:
    171      *   @f[
    172      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    173      *   @f]
    174      *
    175      *   @param __n The order of the Laguerre function.
    176      *   @param __alpha The degree of the Laguerre function.
    177      *   @param __x The argument of the Laguerre function.
    178      *   @return The value of the Laguerre function of order n,
    179      *           degree @f$ \alpha @f$, and argument x.
    180      */
    181     template<typename _Tpa, typename _Tp>
    182     _Tp
    183     __poly_laguerre_recursion(const unsigned int __n,
    184                               const _Tpa __alpha1, const _Tp __x)
    185     {
    186       //   Compute l_0.
    187       _Tp __l_0 = _Tp(1);
    188       if  (__n == 0)
    189         return __l_0;
    190 
    191       //  Compute l_1^alpha.
    192       _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
    193       if  (__n == 1)
    194         return __l_1;
    195 
    196       //  Compute l_n^alpha by recursion on n.
    197       _Tp __l_n2 = __l_0;
    198       _Tp __l_n1 = __l_1;
    199       _Tp __l_n = _Tp(0);
    200       for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
    201         {
    202             __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
    203                   * __l_n1 / _Tp(__nn)
    204                   - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
    205             __l_n2 = __l_n1;
    206             __l_n1 = __l_n;
    207         }
    208 
    209       return __l_n;
    210     }
    211 
    212 
    213     /**
    214      *   @brief This routine returns the associated Laguerre polynomial
    215      *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
    216      *
    217      *   The associated Laguerre function is defined by
    218      *   @f[
    219      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
    220      *                       _1F_1(-n; \alpha + 1; x)
    221      *   @f]
    222      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
    223      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
    224      *
    225      *   The associated Laguerre polynomial is defined for integral
    226      *   @f$ \alpha = m @f$ by:
    227      *   @f[
    228      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
    229      *   @f]
    230      *   where the Laguerre polynomial is defined by:
    231      *   @f[
    232      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    233      *   @f]
    234      *
    235      *   @param __n The order of the Laguerre function.
    236      *   @param __alpha The degree of the Laguerre function.
    237      *   @param __x The argument of the Laguerre function.
    238      *   @return The value of the Laguerre function of order n,
    239      *           degree @f$ \alpha @f$, and argument x.
    240      */
    241     template<typename _Tpa, typename _Tp>
    242     inline _Tp
    243     __poly_laguerre(const unsigned int __n, const _Tpa __alpha1,
    244                     const _Tp __x)
    245     {
    246       if (__x < _Tp(0))
    247         std::__throw_domain_error(__N("Negative argument "
    248                                       "in __poly_laguerre."));
    249       //  Return NaN on NaN input.
    250       else if (__isnan(__x))
    251         return std::numeric_limits<_Tp>::quiet_NaN();
    252       else if (__n == 0)
    253         return _Tp(1);
    254       else if (__n == 1)
    255         return _Tp(1) + _Tp(__alpha1) - __x;
    256       else if (__x == _Tp(0))
    257         {
    258           _Tp __prod = _Tp(__alpha1) + _Tp(1);
    259           for (unsigned int __k = 2; __k <= __n; ++__k)
    260             __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
    261           return __prod;
    262         }
    263       else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
    264             && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
    265         return __poly_laguerre_large_n(__n, __alpha1, __x);
    266       else if (_Tp(__alpha1) >= _Tp(0)
    267            || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
    268         return __poly_laguerre_recursion(__n, __alpha1, __x);
    269       else
    270         return __poly_laguerre_hyperg(__n, __alpha1, __x);
    271     }
    272 
    273 
    274     /**
    275      *   @brief This routine returns the associated Laguerre polynomial
    276      *          of order n, degree m: @f$ L_n^m(x) @f$.
    277      *
    278      *   The associated Laguerre polynomial is defined for integral
    279      *   @f$ \alpha = m @f$ by:
    280      *   @f[
    281      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
    282      *   @f]
    283      *   where the Laguerre polynomial is defined by:
    284      *   @f[
    285      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    286      *   @f]
    287      *
    288      *   @param __n The order of the Laguerre polynomial.
    289      *   @param __m The degree of the Laguerre polynomial.
    290      *   @param __x The argument of the Laguerre polynomial.
    291      *   @return The value of the associated Laguerre polynomial of order n,
    292      *           degree m, and argument x.
    293      */
    294     template<typename _Tp>
    295     inline _Tp
    296     __assoc_laguerre(const unsigned int __n, const unsigned int __m,
    297                      const _Tp __x)
    298     {
    299       return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x);
    300     }
    301 
    302 
    303     /**
    304      *   @brief This routine returns the Laguerre polynomial
    305      *          of order n: @f$ L_n(x) @f$.
    306      *
    307      *   The Laguerre polynomial is defined by:
    308      *   @f[
    309      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
    310      *   @f]
    311      *
    312      *   @param __n The order of the Laguerre polynomial.
    313      *   @param __x The argument of the Laguerre polynomial.
    314      *   @return The value of the Laguerre polynomial of order n
    315      *           and argument x.
    316      */
    317     template<typename _Tp>
    318     inline _Tp
    319     __laguerre(const unsigned int __n, const _Tp __x)
    320     {
    321       return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x);
    322     }
    323 
    324   _GLIBCXX_END_NAMESPACE_VERSION
    325   } // namespace std::tr1::__detail
    326 }
    327 }
    328 
    329 #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
    330