1 /* 2 * Copyright (c) 2012, The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * * Neither the name of Google, Inc. nor the names of its contributors 15 * may be used to endorse or promote products derived from this 16 * software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 21 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 22 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 28 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <stdio.h> 33 #include <stdlib.h> 34 #include <unistd.h> 35 36 #define MAX_BUF_SIZE 64 37 38 struct freq_info { 39 unsigned freq; 40 long unsigned time; 41 }; 42 43 struct cpu_info { 44 long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime; 45 struct freq_info *freqs; 46 int freq_count; 47 }; 48 49 #define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); } 50 51 static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus; 52 static int cpu_count, delay, iterations; 53 static char minimal, aggregate_freq_stats; 54 55 static int get_cpu_count(); 56 static int get_cpu_count_from_file(char *filename); 57 static long unsigned get_cpu_total_time(struct cpu_info *cpu); 58 static int get_freq_scales_count(int cpu); 59 static void print_stats(); 60 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu, 61 char print_freq); 62 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu); 63 static void read_stats(); 64 static void read_freq_stats(int cpu); 65 static char should_aggregate_freq_stats(); 66 static char should_print_freq_stats(); 67 static void usage(char *cmd); 68 69 int main(int argc, char *argv[]) { 70 struct cpu_info *tmp_cpus, tmp_total_cpu; 71 int i, freq_count; 72 73 delay = 3; 74 iterations = -1; 75 minimal = 0; 76 aggregate_freq_stats = 0; 77 78 for (i = 0; i < argc; i++) { 79 if (!strcmp(argv[i], "-n")) { 80 if (i + 1 >= argc) { 81 fprintf(stderr, "Option -n expects an argument.\n"); 82 usage(argv[0]); 83 exit(EXIT_FAILURE); 84 } 85 iterations = atoi(argv[++i]); 86 continue; 87 } 88 if (!strcmp(argv[i], "-d")) { 89 if (i + 1 >= argc) { 90 fprintf(stderr, "Option -d expects an argument.\n"); 91 usage(argv[0]); 92 exit(EXIT_FAILURE); 93 } 94 delay = atoi(argv[++i]); 95 continue; 96 } 97 if (!strcmp(argv[i], "-m")) { 98 minimal = 1; 99 } 100 if (!strcmp(argv[i], "-h")) { 101 usage(argv[0]); 102 exit(EXIT_SUCCESS); 103 } 104 } 105 106 cpu_count = get_cpu_count(); 107 108 old_cpus = malloc(sizeof(struct cpu_info) * cpu_count); 109 if (!old_cpus) die("Could not allocate struct cpu_info\n"); 110 new_cpus = malloc(sizeof(struct cpu_info) * cpu_count); 111 if (!new_cpus) die("Could not allocate struct cpu_info\n"); 112 113 for (i = 0; i < cpu_count; i++) { 114 old_cpus[i].freq_count = new_cpus[i].freq_count = get_freq_scales_count(i); 115 new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count); 116 if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n"); 117 old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count); 118 if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n"); 119 } 120 121 // Read stats without aggregating freq stats in the total cpu 122 read_stats(); 123 124 aggregate_freq_stats = should_aggregate_freq_stats(); 125 if (aggregate_freq_stats) { 126 old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count; 127 new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count); 128 if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n"); 129 old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count); 130 if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n"); 131 132 // Read stats again with aggregating freq stats in the total cpu 133 read_stats(); 134 } 135 136 while ((iterations == -1) || (iterations-- > 0)) { 137 // Swap new and old cpu buffers; 138 tmp_total_cpu = old_total_cpu; 139 old_total_cpu = new_total_cpu; 140 new_total_cpu = tmp_total_cpu; 141 142 tmp_cpus = old_cpus; 143 old_cpus = new_cpus; 144 new_cpus = tmp_cpus; 145 146 sleep(delay); 147 read_stats(); 148 print_stats(); 149 } 150 151 // Clean up 152 if (aggregate_freq_stats) { 153 free(new_total_cpu.freqs); 154 free(old_total_cpu.freqs); 155 } 156 for (i = 0; i < cpu_count; i++) { 157 free(new_cpus[i].freqs); 158 free(old_cpus[i].freqs); 159 } 160 free(new_cpus); 161 free(old_cpus); 162 163 return 0; 164 } 165 166 /* 167 * Get the number of CPUs of the system. 168 * 169 * Uses the two files /sys/devices/system/cpu/present and 170 * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the 171 * format of both files to be either 0 or 0-N where N+1 is the number of CPUs. 172 * 173 * Exits if the present CPUs is not equal to the online CPUs 174 */ 175 static int get_cpu_count() { 176 int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present"); 177 if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) { 178 die("present cpus != online cpus\n"); 179 } 180 return cpu_count; 181 } 182 183 /* 184 * Get the number of CPUs from a given filename. 185 */ 186 static int get_cpu_count_from_file(char *filename) { 187 FILE *file; 188 char line[MAX_BUF_SIZE]; 189 int cpu_count; 190 191 file = fopen(filename, "r"); 192 if (!file) die("Could not open %s\n", filename); 193 if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename); 194 fclose(file); 195 196 if (strcmp(line, "0\n") == 0) { 197 return 1; 198 } 199 200 if (1 == sscanf(line, "0-%d\n", &cpu_count)) { 201 return cpu_count + 1; 202 } 203 204 die("Unexpected input in file %s (%s).\n", filename, line); 205 return -1; 206 } 207 208 /* 209 * Get the number of frequency states a given CPU can be scaled to. 210 */ 211 static int get_freq_scales_count(int cpu) { 212 FILE *file; 213 char filename[MAX_BUF_SIZE]; 214 long unsigned freq; 215 int count = 0; 216 217 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu); 218 file = fopen(filename, "r"); 219 if (!file) die("Could not open %s\n", filename); 220 do { 221 freq = 0; 222 fscanf(file, "%lu %*d\n", &freq); 223 if (freq) count++; 224 } while(freq); 225 fclose(file); 226 227 return count; 228 } 229 230 /* 231 * Read the CPU and frequency stats for all cpus. 232 */ 233 static void read_stats() { 234 FILE *file; 235 char scanline[MAX_BUF_SIZE]; 236 int i; 237 238 file = fopen("/proc/stat", "r"); 239 if (!file) die("Could not open /proc/stat.\n"); 240 fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n", 241 &new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime, 242 &new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime); 243 if (aggregate_freq_stats) { 244 for (i = 0; i < new_total_cpu.freq_count; i++) { 245 new_total_cpu.freqs[i].time = 0; 246 } 247 } 248 249 for (i = 0; i < cpu_count; i++) { 250 sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i); 251 fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime, 252 &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime, 253 &new_cpus[i].sirqtime); 254 read_freq_stats(i); 255 } 256 fclose(file); 257 } 258 259 /* 260 * Read the frequency stats for a given cpu. 261 */ 262 static void read_freq_stats(int cpu) { 263 FILE *file; 264 char filename[MAX_BUF_SIZE]; 265 int i; 266 267 sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu); 268 file = fopen(filename, "r"); 269 if (!file) die("Could not open %s\n", filename); 270 for (i = 0; i < new_cpus[cpu].freq_count; i++) { 271 fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq, 272 &new_cpus[cpu].freqs[i].time); 273 if (aggregate_freq_stats) { 274 new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq; 275 new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time; 276 } 277 } 278 fclose(file); 279 } 280 281 /* 282 * Get the sum of the cpu time from all categories. 283 */ 284 static long unsigned get_cpu_total_time(struct cpu_info *cpu) { 285 return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime + 286 cpu->sirqtime); 287 } 288 289 /* 290 * Print the stats for all CPUs. 291 */ 292 static void print_stats() { 293 char label[8]; 294 int i, j; 295 char print_freq; 296 297 print_freq = should_print_freq_stats(); 298 299 print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1); 300 for (i = 0; i < cpu_count; i++) { 301 sprintf(label, "cpu%d", i); 302 print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq); 303 } 304 printf("\n"); 305 } 306 307 /* 308 * Print the stats for a single CPU. 309 */ 310 static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu, 311 char print_freq) { 312 long int total_delta_time; 313 314 if (!minimal) { 315 total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu); 316 printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = " 317 "%ld\n", label, 318 new_cpu->utime - old_cpu->utime, 319 new_cpu->ntime - old_cpu->ntime, 320 new_cpu->stime - old_cpu->stime, 321 new_cpu->itime - old_cpu->itime, 322 new_cpu->iowtime - old_cpu->iowtime, 323 new_cpu->irqtime - old_cpu->irqtime, 324 new_cpu->sirqtime - old_cpu->sirqtime, 325 total_delta_time); 326 if (print_freq) { 327 print_freq_stats(new_cpu, old_cpu); 328 } 329 } else { 330 printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label, 331 new_cpu->utime - old_cpu->utime, 332 new_cpu->ntime - old_cpu->ntime, 333 new_cpu->stime - old_cpu->stime, 334 new_cpu->itime - old_cpu->itime, 335 new_cpu->iowtime - old_cpu->iowtime, 336 new_cpu->irqtime - old_cpu->irqtime, 337 new_cpu->sirqtime - old_cpu->sirqtime); 338 print_freq_stats(new_cpu, old_cpu); 339 printf("\n"); 340 } 341 } 342 343 /* 344 * Print the CPU stats for a single CPU. 345 */ 346 static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) { 347 long int delta_time, total_delta_time; 348 int i; 349 350 if (new_cpu->freq_count > 0) { 351 if (!minimal) { 352 total_delta_time = 0; 353 printf(" "); 354 for (i = 0; i < new_cpu->freq_count; i++) { 355 delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time; 356 total_delta_time += delta_time; 357 printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time); 358 if (i + 1 != new_cpu->freq_count) { 359 printf(" + \n "); 360 } else { 361 printf(" = "); 362 } 363 } 364 printf("%ld\n", total_delta_time); 365 } else { 366 for (i = 0; i < new_cpu->freq_count; i++) { 367 printf(",%u,%ld", new_cpu->freqs[i].freq, 368 new_cpu->freqs[i].time - old_cpu->freqs[i].time); 369 } 370 } 371 } 372 } 373 374 /* 375 * Determine if frequency stats should be printed. 376 * 377 * If the frequency stats are different between CPUs, the stats should be 378 * printed for each CPU, else only the aggregate frequency stats should be 379 * printed. 380 */ 381 static char should_print_freq_stats() { 382 int i, j; 383 384 for (i = 1; i < cpu_count; i++) { 385 for (j = 0; j < new_cpus[i].freq_count; j++) { 386 if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time != 387 new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) { 388 return 1; 389 } 390 } 391 } 392 return 0; 393 } 394 395 /* 396 * Determine if the frequency stats should be aggregated. 397 * 398 * Only aggregate the frequency stats in the total cpu stats if the frequencies 399 * reported by all CPUs are identical. Must be called after read_stats() has 400 * been called once. 401 */ 402 static char should_aggregate_freq_stats() { 403 int i, j; 404 405 for (i = 1; i < cpu_count; i++) { 406 if (new_cpus[i].freq_count != new_cpus[0].freq_count) { 407 return 0; 408 } 409 for (j = 0; j < new_cpus[i].freq_count; j++) { 410 if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) { 411 return 0; 412 } 413 } 414 } 415 416 return 1; 417 } 418 419 /* 420 * Print the usage message. 421 */ 422 static void usage(char *cmd) { 423 fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n" 424 " -n num Updates to show before exiting.\n" 425 " -d num Seconds to wait between updates.\n" 426 " -m Display minimal output.\n" 427 " -h Display this help screen.\n", 428 cmd); 429 } 430