Home | History | Annotate | Download | only in ext4_utils
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <sys/stat.h>
     18 #include <string.h>
     19 #include <stdio.h>
     20 
     21 #ifdef HAVE_ANDROID_OS
     22 #include <linux/capability.h>
     23 #else
     24 #include <private/android_filesystem_capability.h>
     25 #endif
     26 
     27 #define XATTR_SELINUX_SUFFIX "selinux"
     28 #define XATTR_CAPS_SUFFIX "capability"
     29 
     30 #include "ext4_utils.h"
     31 #include "ext4.h"
     32 #include "make_ext4fs.h"
     33 #include "allocate.h"
     34 #include "contents.h"
     35 #include "extent.h"
     36 #include "indirect.h"
     37 #include "xattr.h"
     38 
     39 #ifdef USE_MINGW
     40 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
     41 #endif
     42 
     43 static u32 dentry_size(u32 entries, struct dentry *dentries)
     44 {
     45 	u32 len = 24;
     46 	unsigned int i;
     47 	unsigned int dentry_len;
     48 
     49 	for (i = 0; i < entries; i++) {
     50 		dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4);
     51 		if (len % info.block_size + dentry_len > info.block_size)
     52 			len += info.block_size - (len % info.block_size);
     53 		len += dentry_len;
     54 	}
     55 
     56 	return len;
     57 }
     58 
     59 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
     60 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
     61 		u8 file_type)
     62 {
     63 	u8 name_len = strlen(name);
     64 	u16 rec_len = 8 + ALIGN(name_len, 4);
     65 	struct ext4_dir_entry_2 *dentry;
     66 
     67 	u32 start_block = *offset / info.block_size;
     68 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
     69 	if (start_block != end_block) {
     70 		/* Adding this dentry will cross a block boundary, so pad the previous
     71 		   dentry to the block boundary */
     72 		if (!prev)
     73 			critical_error("no prev");
     74 		prev->rec_len += end_block * info.block_size - *offset;
     75 		*offset = end_block * info.block_size;
     76 	}
     77 
     78 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
     79 	dentry->inode = inode;
     80 	dentry->rec_len = rec_len;
     81 	dentry->name_len = name_len;
     82 	dentry->file_type = file_type;
     83 	memcpy(dentry->name, name, name_len);
     84 
     85 	*offset += rec_len;
     86 	return dentry;
     87 }
     88 
     89 /* Creates a directory structure for an array of directory entries, dentries,
     90    and stores the location of the structure in an inode.  The new inode's
     91    .. link is set to dir_inode_num.  Stores the location of the inode number
     92    of each directory entry into dentries[i].inode, to be filled in later
     93    when the inode for the entry is allocated.  Returns the inode number of the
     94    new directory */
     95 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
     96 	u32 dirs)
     97 {
     98 	struct ext4_inode *inode;
     99 	u32 blocks;
    100 	u32 len;
    101 	u32 offset = 0;
    102 	u32 inode_num;
    103 	u8 *data;
    104 	unsigned int i;
    105 	struct ext4_dir_entry_2 *dentry;
    106 
    107 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
    108 	len = blocks * info.block_size;
    109 
    110 	if (dir_inode_num) {
    111 		inode_num = allocate_inode(info);
    112 	} else {
    113 		dir_inode_num = EXT4_ROOT_INO;
    114 		inode_num = EXT4_ROOT_INO;
    115 	}
    116 
    117 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    118 		error("failed to allocate inode\n");
    119 		return EXT4_ALLOCATE_FAILED;
    120 	}
    121 
    122 	add_directory(inode_num);
    123 
    124 	inode = get_inode(inode_num);
    125 	if (inode == NULL) {
    126 		error("failed to get inode %u", inode_num);
    127 		return EXT4_ALLOCATE_FAILED;
    128 	}
    129 
    130 	data = inode_allocate_data_extents(inode, len, len);
    131 	if (data == NULL) {
    132 		error("failed to allocate %u extents", len);
    133 		return EXT4_ALLOCATE_FAILED;
    134 	}
    135 
    136 	inode->i_mode = S_IFDIR;
    137 	inode->i_links_count = dirs + 2;
    138 	inode->i_flags |= aux_info.default_i_flags;
    139 
    140 	dentry = NULL;
    141 
    142 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
    143 	if (!dentry) {
    144 		error("failed to add . directory");
    145 		return EXT4_ALLOCATE_FAILED;
    146 	}
    147 
    148 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
    149 	if (!dentry) {
    150 		error("failed to add .. directory");
    151 		return EXT4_ALLOCATE_FAILED;
    152 	}
    153 
    154 	for (i = 0; i < entries; i++) {
    155 		dentry = add_dentry(data, &offset, dentry, 0,
    156 				dentries[i].filename, dentries[i].file_type);
    157 		if (offset > len || (offset == len && i != entries - 1))
    158 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
    159 				dentries[i].filename, offset, len);
    160 		dentries[i].inode = &dentry->inode;
    161 		if (!dentry) {
    162 			error("failed to add directory");
    163 			return EXT4_ALLOCATE_FAILED;
    164 		}
    165 	}
    166 
    167 	/* pad the last dentry out to the end of the block */
    168 	dentry->rec_len += len - offset;
    169 
    170 	return inode_num;
    171 }
    172 
    173 /* Creates a file on disk.  Returns the inode number of the new file */
    174 u32 make_file(const char *filename, u64 len)
    175 {
    176 	struct ext4_inode *inode;
    177 	u32 inode_num;
    178 
    179 	inode_num = allocate_inode(info);
    180 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    181 		error("failed to allocate inode\n");
    182 		return EXT4_ALLOCATE_FAILED;
    183 	}
    184 
    185 	inode = get_inode(inode_num);
    186 	if (inode == NULL) {
    187 		error("failed to get inode %u", inode_num);
    188 		return EXT4_ALLOCATE_FAILED;
    189 	}
    190 
    191 	if (len > 0)
    192 		inode_allocate_file_extents(inode, len, filename);
    193 
    194 	inode->i_mode = S_IFREG;
    195 	inode->i_links_count = 1;
    196 	inode->i_flags |= aux_info.default_i_flags;
    197 
    198 	return inode_num;
    199 }
    200 
    201 /* Creates a file on disk.  Returns the inode number of the new file */
    202 u32 make_link(const char *link)
    203 {
    204 	struct ext4_inode *inode;
    205 	u32 inode_num;
    206 	u32 len = strlen(link);
    207 
    208 	inode_num = allocate_inode(info);
    209 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    210 		error("failed to allocate inode\n");
    211 		return EXT4_ALLOCATE_FAILED;
    212 	}
    213 
    214 	inode = get_inode(inode_num);
    215 	if (inode == NULL) {
    216 		error("failed to get inode %u", inode_num);
    217 		return EXT4_ALLOCATE_FAILED;
    218 	}
    219 
    220 	inode->i_mode = S_IFLNK;
    221 	inode->i_links_count = 1;
    222 	inode->i_flags |= aux_info.default_i_flags;
    223 	inode->i_size_lo = len;
    224 
    225 	if (len + 1 <= sizeof(inode->i_block)) {
    226 		/* Fast symlink */
    227 		memcpy((char*)inode->i_block, link, len);
    228 	} else {
    229 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
    230 		memcpy(data, link, len);
    231 		inode->i_blocks_lo = info.block_size / 512;
    232 	}
    233 
    234 	return inode_num;
    235 }
    236 
    237 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
    238 {
    239 	struct ext4_inode *inode = get_inode(inode_num);
    240 
    241 	if (!inode)
    242 		return -1;
    243 
    244 	inode->i_mode |= mode;
    245 	inode->i_uid = uid;
    246 	inode->i_gid = gid;
    247 	inode->i_mtime = mtime;
    248 	inode->i_atime = mtime;
    249 	inode->i_ctime = mtime;
    250 
    251 	return 0;
    252 }
    253 
    254 /*
    255  * Returns the amount of free space available in the specified
    256  * xattr region
    257  */
    258 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
    259 {
    260 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
    261 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
    262 		entry  = EXT4_XATTR_NEXT(entry);
    263 	}
    264 
    265 	if (((char *) entry) > end) {
    266 		error("unexpected read beyond end of xattr space");
    267 		return 0;
    268 	}
    269 
    270 	return end - ((char *) entry);
    271 }
    272 
    273 /*
    274  * Returns a pointer to the free space immediately after the
    275  * last xattr element
    276  */
    277 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
    278 {
    279 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    280 		// skip entry
    281 	}
    282 	return entry;
    283 }
    284 
    285 /*
    286  * assert that the elements in the ext4 xattr section are in sorted order
    287  *
    288  * The ext4 filesystem requires extended attributes to be sorted when
    289  * they're not stored in the inode. The kernel ext4 code uses the following
    290  * sorting algorithm:
    291  *
    292  * 1) First sort extended attributes by their name_index. For example,
    293  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
    294  * 2) If the name_indexes are equal, then sorting is based on the length
    295  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
    296  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
    297  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
    298  *    which name comes first. For example, "selinux" would come before "yelinux".
    299  *
    300  * This method is intended to implement the sorting function defined in
    301  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
    302  */
    303 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
    304 {
    305 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    306 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
    307 		if (IS_LAST_ENTRY(next)) {
    308 			return;
    309 		}
    310 
    311 		int cmp = next->e_name_index - entry->e_name_index;
    312 		if (cmp == 0)
    313 			cmp = next->e_name_len - entry->e_name_len;
    314 		if (cmp == 0)
    315 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
    316 		if (cmp < 0) {
    317 			error("BUG: extended attributes are not sorted\n");
    318 			return;
    319 		}
    320 		if (cmp == 0) {
    321 			error("BUG: duplicate extended attributes detected\n");
    322 			return;
    323 		}
    324 	}
    325 }
    326 
    327 #define NAME_HASH_SHIFT 5
    328 #define VALUE_HASH_SHIFT 16
    329 
    330 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
    331 		struct ext4_xattr_entry *entry)
    332 {
    333 	__u32 hash = 0;
    334 	char *name = entry->e_name;
    335 	int n;
    336 
    337 	for (n = 0; n < entry->e_name_len; n++) {
    338 		hash = (hash << NAME_HASH_SHIFT) ^
    339 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
    340 			*name++;
    341 	}
    342 
    343 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
    344 		__le32 *value = (__le32 *)((char *)header +
    345 			le16_to_cpu(entry->e_value_offs));
    346 		for (n = (le32_to_cpu(entry->e_value_size) +
    347 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
    348 			hash = (hash << VALUE_HASH_SHIFT) ^
    349 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
    350 				le32_to_cpu(*value++);
    351 		}
    352 	}
    353 	entry->e_hash = cpu_to_le32(hash);
    354 }
    355 
    356 #undef NAME_HASH_SHIFT
    357 #undef VALUE_HASH_SHIFT
    358 
    359 static struct ext4_xattr_entry* xattr_addto_range(
    360 		void *block_start,
    361 		void *block_end,
    362 		struct ext4_xattr_entry *first,
    363 		int name_index,
    364 		const char *name,
    365 		const void *value,
    366 		size_t value_len)
    367 {
    368 	size_t name_len = strlen(name);
    369 	if (name_len > 255)
    370 		return NULL;
    371 
    372 	size_t available_size = xattr_free_space(first, block_end);
    373 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
    374 
    375 	if (needed_size > available_size)
    376 		return NULL;
    377 
    378 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
    379 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
    380 
    381 	new_entry->e_name_len = name_len;
    382 	new_entry->e_name_index = name_index;
    383 	memcpy(new_entry->e_name, name, name_len);
    384 	new_entry->e_value_block = 0;
    385 	new_entry->e_value_size = cpu_to_le32(value_len);
    386 
    387 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
    388 	size_t e_value_offs = val - (char *) block_start;
    389 
    390 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
    391 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
    392 	memcpy(val, value, value_len);
    393 
    394 	xattr_assert_sane(first);
    395 	return new_entry;
    396 }
    397 
    398 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
    399 		const char *name, const void *value, size_t value_len)
    400 {
    401 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
    402 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
    403 	char *block_end = ((char *) inode) + info.inode_size;
    404 
    405 	struct ext4_xattr_entry *result =
    406 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
    407 
    408 	if (result == NULL)
    409 		return -1;
    410 
    411 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
    412 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
    413 
    414 	return 0;
    415 }
    416 
    417 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
    418 		const char *name, const void *value, size_t value_len)
    419 {
    420 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
    421 	if (!header)
    422 		return -1;
    423 
    424 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
    425 	char *block_end = ((char *) header) + info.block_size;
    426 
    427 	struct ext4_xattr_entry *result =
    428 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
    429 
    430 	if (result == NULL)
    431 		return -1;
    432 
    433 	ext4_xattr_hash_entry(header, result);
    434 	return 0;
    435 }
    436 
    437 
    438 static int xattr_add(u32 inode_num, int name_index, const char *name,
    439 		const void *value, size_t value_len)
    440 {
    441 	if (!value)
    442 		return 0;
    443 
    444 	struct ext4_inode *inode = get_inode(inode_num);
    445 
    446 	if (!inode)
    447 		return -1;
    448 
    449 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
    450 	if (result != 0) {
    451 		result = xattr_addto_block(inode, name_index, name, value, value_len);
    452 	}
    453 	return result;
    454 }
    455 
    456 int inode_set_selinux(u32 inode_num, const char *secon)
    457 {
    458 	if (!secon)
    459 		return 0;
    460 
    461 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    462 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
    463 }
    464 
    465 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
    466 	if (capabilities == 0)
    467 		return 0;
    468 
    469 	struct vfs_cap_data cap_data;
    470 	memset(&cap_data, 0, sizeof(cap_data));
    471 
    472 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
    473 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
    474 	cap_data.data[0].inheritable = 0;
    475 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
    476 	cap_data.data[1].inheritable = 0;
    477 
    478 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    479 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
    480 }
    481 
    482