1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the X86 specific subclass of TargetSubtargetInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef X86SUBTARGET_H 15 #define X86SUBTARGET_H 16 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/IR/CallingConv.h" 19 #include "llvm/Target/TargetSubtargetInfo.h" 20 #include <string> 21 22 #define GET_SUBTARGETINFO_HEADER 23 #include "X86GenSubtargetInfo.inc" 24 25 namespace llvm { 26 class GlobalValue; 27 class StringRef; 28 class TargetMachine; 29 30 /// PICStyles - The X86 backend supports a number of different styles of PIC. 31 /// 32 namespace PICStyles { 33 enum Style { 34 StubPIC, // Used on i386-darwin in -fPIC mode. 35 StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode. 36 GOT, // Used on many 32-bit unices in -fPIC mode. 37 RIPRel, // Used on X86-64 when not in -static mode. 38 None // Set when in -static mode (not PIC or DynamicNoPIC mode). 39 }; 40 } 41 42 class X86Subtarget : public X86GenSubtargetInfo { 43 protected: 44 enum X86SSEEnum { 45 NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512 46 }; 47 48 enum X863DNowEnum { 49 NoThreeDNow, ThreeDNow, ThreeDNowA 50 }; 51 52 enum X86ProcFamilyEnum { 53 Others, IntelAtom 54 }; 55 56 /// X86ProcFamily - X86 processor family: Intel Atom, and others 57 X86ProcFamilyEnum X86ProcFamily; 58 59 /// PICStyle - Which PIC style to use 60 /// 61 PICStyles::Style PICStyle; 62 63 /// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or 64 /// none supported. 65 X86SSEEnum X86SSELevel; 66 67 /// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported. 68 /// 69 X863DNowEnum X863DNowLevel; 70 71 /// HasCMov - True if this processor has conditional move instructions 72 /// (generally pentium pro+). 73 bool HasCMov; 74 75 /// HasX86_64 - True if the processor supports X86-64 instructions. 76 /// 77 bool HasX86_64; 78 79 /// HasPOPCNT - True if the processor supports POPCNT. 80 bool HasPOPCNT; 81 82 /// HasSSE4A - True if the processor supports SSE4A instructions. 83 bool HasSSE4A; 84 85 /// HasAES - Target has AES instructions 86 bool HasAES; 87 88 /// HasPCLMUL - Target has carry-less multiplication 89 bool HasPCLMUL; 90 91 /// HasFMA - Target has 3-operand fused multiply-add 92 bool HasFMA; 93 94 /// HasFMA4 - Target has 4-operand fused multiply-add 95 bool HasFMA4; 96 97 /// HasXOP - Target has XOP instructions 98 bool HasXOP; 99 100 /// HasMOVBE - True if the processor has the MOVBE instruction. 101 bool HasMOVBE; 102 103 /// HasRDRAND - True if the processor has the RDRAND instruction. 104 bool HasRDRAND; 105 106 /// HasF16C - Processor has 16-bit floating point conversion instructions. 107 bool HasF16C; 108 109 /// HasFSGSBase - Processor has FS/GS base insturctions. 110 bool HasFSGSBase; 111 112 /// HasLZCNT - Processor has LZCNT instruction. 113 bool HasLZCNT; 114 115 /// HasBMI - Processor has BMI1 instructions. 116 bool HasBMI; 117 118 /// HasBMI2 - Processor has BMI2 instructions. 119 bool HasBMI2; 120 121 /// HasRTM - Processor has RTM instructions. 122 bool HasRTM; 123 124 /// HasHLE - Processor has HLE. 125 bool HasHLE; 126 127 /// HasADX - Processor has ADX instructions. 128 bool HasADX; 129 130 /// HasPRFCHW - Processor has PRFCHW instructions. 131 bool HasPRFCHW; 132 133 /// HasRDSEED - Processor has RDSEED instructions. 134 bool HasRDSEED; 135 136 /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow. 137 bool IsBTMemSlow; 138 139 /// IsUAMemFast - True if unaligned memory access is fast. 140 bool IsUAMemFast; 141 142 /// HasVectorUAMem - True if SIMD operations can have unaligned memory 143 /// operands. This may require setting a feature bit in the processor. 144 bool HasVectorUAMem; 145 146 /// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction; 147 /// this is true for most x86-64 chips, but not the first AMD chips. 148 bool HasCmpxchg16b; 149 150 /// UseLeaForSP - True if the LEA instruction should be used for adjusting 151 /// the stack pointer. This is an optimization for Intel Atom processors. 152 bool UseLeaForSP; 153 154 /// HasSlowDivide - True if smaller divides are significantly faster than 155 /// full divides and should be used when possible. 156 bool HasSlowDivide; 157 158 /// PostRAScheduler - True if using post-register-allocation scheduler. 159 bool PostRAScheduler; 160 161 /// PadShortFunctions - True if the short functions should be padded to prevent 162 /// a stall when returning too early. 163 bool PadShortFunctions; 164 165 /// CallRegIndirect - True if the Calls with memory reference should be converted 166 /// to a register-based indirect call. 167 bool CallRegIndirect; 168 /// LEAUsesAG - True if the LEA instruction inputs have to be ready at 169 /// address generation (AG) time. 170 bool LEAUsesAG; 171 172 /// Processor has AVX-512 PreFetch Instructions 173 bool HasPFI; 174 175 /// Processor has AVX-512 Exponential and Reciprocal Instructions 176 bool HasERI; 177 178 /// Processor has AVX-512 Conflict Detection Instructions 179 bool HasCDI; 180 181 /// stackAlignment - The minimum alignment known to hold of the stack frame on 182 /// entry to the function and which must be maintained by every function. 183 unsigned stackAlignment; 184 185 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. 186 /// 187 unsigned MaxInlineSizeThreshold; 188 189 /// TargetTriple - What processor and OS we're targeting. 190 Triple TargetTriple; 191 192 /// Instruction itineraries for scheduling 193 InstrItineraryData InstrItins; 194 195 private: 196 /// StackAlignOverride - Override the stack alignment. 197 unsigned StackAlignOverride; 198 199 /// In64BitMode - True if compiling for 64-bit, false for 32-bit. 200 bool In64BitMode; 201 202 public: 203 /// This constructor initializes the data members to match that 204 /// of the specified triple. 205 /// 206 X86Subtarget(const std::string &TT, const std::string &CPU, 207 const std::string &FS, 208 unsigned StackAlignOverride, bool is64Bit); 209 210 /// getStackAlignment - Returns the minimum alignment known to hold of the 211 /// stack frame on entry to the function and which must be maintained by every 212 /// function for this subtarget. 213 unsigned getStackAlignment() const { return stackAlignment; } 214 215 /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size 216 /// that still makes it profitable to inline the call. 217 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } 218 219 /// ParseSubtargetFeatures - Parses features string setting specified 220 /// subtarget options. Definition of function is auto generated by tblgen. 221 void ParseSubtargetFeatures(StringRef CPU, StringRef FS); 222 223 /// AutoDetectSubtargetFeatures - Auto-detect CPU features using CPUID 224 /// instruction. 225 void AutoDetectSubtargetFeatures(); 226 227 /// \brief Reset the features for the X86 target. 228 virtual void resetSubtargetFeatures(const MachineFunction *MF); 229 private: 230 void initializeEnvironment(); 231 void resetSubtargetFeatures(StringRef CPU, StringRef FS); 232 public: 233 /// Is this x86_64? (disregarding specific ABI / programming model) 234 bool is64Bit() const { 235 return In64BitMode; 236 } 237 238 /// Is this x86_64 with the ILP32 programming model (x32 ABI)? 239 bool isTarget64BitILP32() const { 240 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32); 241 } 242 243 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? 244 bool isTarget64BitLP64() const { 245 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32); 246 } 247 248 PICStyles::Style getPICStyle() const { return PICStyle; } 249 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } 250 251 bool hasCMov() const { return HasCMov; } 252 bool hasMMX() const { return X86SSELevel >= MMX; } 253 bool hasSSE1() const { return X86SSELevel >= SSE1; } 254 bool hasSSE2() const { return X86SSELevel >= SSE2; } 255 bool hasSSE3() const { return X86SSELevel >= SSE3; } 256 bool hasSSSE3() const { return X86SSELevel >= SSSE3; } 257 bool hasSSE41() const { return X86SSELevel >= SSE41; } 258 bool hasSSE42() const { return X86SSELevel >= SSE42; } 259 bool hasAVX() const { return X86SSELevel >= AVX; } 260 bool hasAVX2() const { return X86SSELevel >= AVX2; } 261 bool hasAVX512() const { return X86SSELevel >= AVX512; } 262 bool hasFp256() const { return hasAVX(); } 263 bool hasInt256() const { return hasAVX2(); } 264 bool hasSSE4A() const { return HasSSE4A; } 265 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } 266 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } 267 bool hasPOPCNT() const { return HasPOPCNT; } 268 bool hasAES() const { return HasAES; } 269 bool hasPCLMUL() const { return HasPCLMUL; } 270 bool hasFMA() const { return HasFMA; } 271 // FIXME: Favor FMA when both are enabled. Is this the right thing to do? 272 bool hasFMA4() const { return HasFMA4 && !HasFMA; } 273 bool hasXOP() const { return HasXOP; } 274 bool hasMOVBE() const { return HasMOVBE; } 275 bool hasRDRAND() const { return HasRDRAND; } 276 bool hasF16C() const { return HasF16C; } 277 bool hasFSGSBase() const { return HasFSGSBase; } 278 bool hasLZCNT() const { return HasLZCNT; } 279 bool hasBMI() const { return HasBMI; } 280 bool hasBMI2() const { return HasBMI2; } 281 bool hasRTM() const { return HasRTM; } 282 bool hasHLE() const { return HasHLE; } 283 bool hasADX() const { return HasADX; } 284 bool hasPRFCHW() const { return HasPRFCHW; } 285 bool hasRDSEED() const { return HasRDSEED; } 286 bool isBTMemSlow() const { return IsBTMemSlow; } 287 bool isUnalignedMemAccessFast() const { return IsUAMemFast; } 288 bool hasVectorUAMem() const { return HasVectorUAMem; } 289 bool hasCmpxchg16b() const { return HasCmpxchg16b; } 290 bool useLeaForSP() const { return UseLeaForSP; } 291 bool hasSlowDivide() const { return HasSlowDivide; } 292 bool padShortFunctions() const { return PadShortFunctions; } 293 bool callRegIndirect() const { return CallRegIndirect; } 294 bool LEAusesAG() const { return LEAUsesAG; } 295 bool hasCDI() const { return HasCDI; } 296 bool hasPFI() const { return HasPFI; } 297 bool hasERI() const { return HasERI; } 298 299 bool isAtom() const { return X86ProcFamily == IntelAtom; } 300 301 const Triple &getTargetTriple() const { return TargetTriple; } 302 303 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } 304 bool isTargetFreeBSD() const { 305 return TargetTriple.getOS() == Triple::FreeBSD; 306 } 307 bool isTargetSolaris() const { 308 return TargetTriple.getOS() == Triple::Solaris; 309 } 310 bool isTargetELF() const { 311 return (TargetTriple.getEnvironment() == Triple::ELF || 312 TargetTriple.isOSBinFormatELF()); 313 } 314 bool isTargetLinux() const { return TargetTriple.getOS() == Triple::Linux; } 315 bool isTargetNaCl() const { 316 return TargetTriple.getOS() == Triple::NaCl; 317 } 318 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } 319 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } 320 bool isTargetWindows() const { return TargetTriple.getOS() == Triple::Win32; } 321 bool isTargetMingw() const { return TargetTriple.getOS() == Triple::MinGW32; } 322 bool isTargetCygwin() const { return TargetTriple.getOS() == Triple::Cygwin; } 323 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } 324 bool isTargetCOFF() const { 325 return (TargetTriple.getEnvironment() != Triple::ELF && 326 TargetTriple.isOSBinFormatCOFF()); 327 } 328 bool isTargetEnvMacho() const { return TargetTriple.isEnvironmentMachO(); } 329 330 bool isTargetWin64() const { 331 // FIXME: x86_64-cygwin has not been released yet. 332 return In64BitMode && TargetTriple.isOSWindows(); 333 } 334 335 bool isTargetWin32() const { 336 // FIXME: Cygwin is included for isTargetWin64 -- should it be included 337 // here too? 338 return !In64BitMode && (isTargetMingw() || isTargetWindows()); 339 } 340 341 bool isPICStyleSet() const { return PICStyle != PICStyles::None; } 342 bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; } 343 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; } 344 345 bool isPICStyleStubPIC() const { 346 return PICStyle == PICStyles::StubPIC; 347 } 348 349 bool isPICStyleStubNoDynamic() const { 350 return PICStyle == PICStyles::StubDynamicNoPIC; 351 } 352 bool isPICStyleStubAny() const { 353 return PICStyle == PICStyles::StubDynamicNoPIC || 354 PICStyle == PICStyles::StubPIC; 355 } 356 357 bool isCallingConvWin64(CallingConv::ID CC) const { 358 return (isTargetWin64() && CC != CallingConv::X86_64_SysV) || 359 CC == CallingConv::X86_64_Win64; 360 } 361 362 /// ClassifyGlobalReference - Classify a global variable reference for the 363 /// current subtarget according to how we should reference it in a non-pcrel 364 /// context. 365 unsigned char ClassifyGlobalReference(const GlobalValue *GV, 366 const TargetMachine &TM)const; 367 368 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the 369 /// current subtarget according to how we should reference it in a non-pcrel 370 /// context. 371 unsigned char ClassifyBlockAddressReference() const; 372 373 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls 374 /// to immediate address. 375 bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const; 376 377 /// This function returns the name of a function which has an interface 378 /// like the non-standard bzero function, if such a function exists on 379 /// the current subtarget and it is considered prefereable over 380 /// memset with zero passed as the second argument. Otherwise it 381 /// returns null. 382 const char *getBZeroEntry() const; 383 384 /// This function returns true if the target has sincos() routine in its 385 /// compiler runtime or math libraries. 386 bool hasSinCos() const; 387 388 /// enablePostRAScheduler - run for Atom optimization. 389 bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, 390 TargetSubtargetInfo::AntiDepBreakMode& Mode, 391 RegClassVector& CriticalPathRCs) const; 392 393 bool postRAScheduler() const { return PostRAScheduler; } 394 395 /// getInstrItins = Return the instruction itineraries based on the 396 /// subtarget selection. 397 const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } 398 }; 399 400 } // End llvm namespace 401 402 #endif 403