Home | History | Annotate | only in /external/llvm/lib/Target
Up to higher level directory
NameDateSize
AArch64/01-Nov-2013
Android.mk01-Nov-2013787
ARM/01-Nov-2013
CMakeLists.txt01-Nov-2013337
CppBackend/01-Nov-2013
Hexagon/01-Nov-2013
LLVMBuild.txt01-Nov-20131.7K
Makefile01-Nov-2013662
Mangler.cpp01-Nov-20138.9K
Mips/01-Nov-2013
MSP430/01-Nov-2013
NVPTX/01-Nov-2013
PowerPC/01-Nov-2013
R600/01-Nov-2013
README.txt01-Nov-201371.6K
Sparc/01-Nov-2013
SystemZ/01-Nov-2013
Target.cpp01-Nov-20134.3K
TargetIntrinsicInfo.cpp01-Nov-2013926
TargetJITInfo.cpp01-Nov-2013438
TargetLibraryInfo.cpp01-Nov-201317.3K
TargetLoweringObjectFile.cpp01-Nov-201312.3K
TargetMachine.cpp01-Nov-20136K
TargetMachineC.cpp01-Nov-20136.2K
TargetSubtargetInfo.cpp01-Nov-20131.1K
X86/01-Nov-2013
XCore/01-Nov-2013

README.txt

      1 Target Independent Opportunities:
      2 
      3 //===---------------------------------------------------------------------===//
      4 
      5 We should recognized various "overflow detection" idioms and translate them into
      6 llvm.uadd.with.overflow and similar intrinsics.  Here is a multiply idiom:
      7 
      8 unsigned int mul(unsigned int a,unsigned int b) {
      9  if ((unsigned long long)a*b>0xffffffff)
     10    exit(0);
     11   return a*b;
     12 }
     13 
     14 The legalization code for mul-with-overflow needs to be made more robust before
     15 this can be implemented though.
     16 
     17 //===---------------------------------------------------------------------===//
     18 
     19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
     20 precision don't matter (ffastmath).  Misc/mandel will like this. :)  This isn't
     21 safe in general, even on darwin.  See the libm implementation of hypot for
     22 examples (which special case when x/y are exactly zero to get signed zeros etc
     23 right).
     24 
     25 //===---------------------------------------------------------------------===//
     26 
     27 On targets with expensive 64-bit multiply, we could LSR this:
     28 
     29 for (i = ...; ++i) {
     30    x = 1ULL << i;
     31 
     32 into:
     33  long long tmp = 1;
     34  for (i = ...; ++i, tmp+=tmp)
     35    x = tmp;
     36 
     37 This would be a win on ppc32, but not x86 or ppc64.
     38 
     39 //===---------------------------------------------------------------------===//
     40 
     41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
     42 
     43 //===---------------------------------------------------------------------===//
     44 
     45 Reassociate should turn things like:
     46 
     47 int factorial(int X) {
     48  return X*X*X*X*X*X*X*X;
     49 }
     50 
     51 into llvm.powi calls, allowing the code generator to produce balanced
     52 multiplication trees.
     53 
     54 First, the intrinsic needs to be extended to support integers, and second the
     55 code generator needs to be enhanced to lower these to multiplication trees.
     56 
     57 //===---------------------------------------------------------------------===//
     58 
     59 Interesting? testcase for add/shift/mul reassoc:
     60 
     61 int bar(int x, int y) {
     62   return x*x*x+y+x*x*x*x*x*y*y*y*y;
     63 }
     64 int foo(int z, int n) {
     65   return bar(z, n) + bar(2*z, 2*n);
     66 }
     67 
     68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above).  The issue
     69 is that we end up getting t = 2*X  s = t*t   and don't turn this into 4*X*X,
     70 which is the same number of multiplies and is canonical, because the 2*X has
     71 multiple uses.  Here's a simple example:
     72 
     73 define i32 @test15(i32 %X1) {
     74   %B = mul i32 %X1, 47   ; X1*47
     75   %C = mul i32 %B, %B
     76   ret i32 %C
     77 }
     78 
     79 
     80 //===---------------------------------------------------------------------===//
     81 
     82 Reassociate should handle the example in GCC PR16157:
     83 
     84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 
     85 void f () {  /* this can be optimized to four additions... */ 
     86         b4 = a4 + a3 + a2 + a1 + a0; 
     87         b3 = a3 + a2 + a1 + a0; 
     88         b2 = a2 + a1 + a0; 
     89         b1 = a1 + a0; 
     90 } 
     91 
     92 This requires reassociating to forms of expressions that are already available,
     93 something that reassoc doesn't think about yet.
     94 
     95 
     96 //===---------------------------------------------------------------------===//
     97 
     98 This function: (derived from GCC PR19988)
     99 double foo(double x, double y) {
    100   return ((x + 0.1234 * y) * (x + -0.1234 * y));
    101 }
    102 
    103 compiles to:
    104 _foo:
    105 	movapd	%xmm1, %xmm2
    106 	mulsd	LCPI1_1(%rip), %xmm1
    107 	mulsd	LCPI1_0(%rip), %xmm2
    108 	addsd	%xmm0, %xmm1
    109 	addsd	%xmm0, %xmm2
    110 	movapd	%xmm1, %xmm0
    111 	mulsd	%xmm2, %xmm0
    112 	ret
    113 
    114 Reassociate should be able to turn it into:
    115 
    116 double foo(double x, double y) {
    117   return ((x + 0.1234 * y) * (x - 0.1234 * y));
    118 }
    119 
    120 Which allows the multiply by constant to be CSE'd, producing:
    121 
    122 _foo:
    123 	mulsd	LCPI1_0(%rip), %xmm1
    124 	movapd	%xmm1, %xmm2
    125 	addsd	%xmm0, %xmm2
    126 	subsd	%xmm1, %xmm0
    127 	mulsd	%xmm2, %xmm0
    128 	ret
    129 
    130 This doesn't need -ffast-math support at all.  This is particularly bad because
    131 the llvm-gcc frontend is canonicalizing the later into the former, but clang
    132 doesn't have this problem.
    133 
    134 //===---------------------------------------------------------------------===//
    135 
    136 These two functions should generate the same code on big-endian systems:
    137 
    138 int g(int *j,int *l)  {  return memcmp(j,l,4);  }
    139 int h(int *j, int *l) {  return *j - *l; }
    140 
    141 this could be done in SelectionDAGISel.cpp, along with other special cases,
    142 for 1,2,4,8 bytes.
    143 
    144 //===---------------------------------------------------------------------===//
    145 
    146 It would be nice to revert this patch:
    147 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
    148 
    149 And teach the dag combiner enough to simplify the code expanded before 
    150 legalize.  It seems plausible that this knowledge would let it simplify other
    151 stuff too.
    152 
    153 //===---------------------------------------------------------------------===//
    154 
    155 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
    156 to the type size. It works but can be overly conservative as the alignment of
    157 specific vector types are target dependent.
    158 
    159 //===---------------------------------------------------------------------===//
    160 
    161 We should produce an unaligned load from code like this:
    162 
    163 v4sf example(float *P) {
    164   return (v4sf){P[0], P[1], P[2], P[3] };
    165 }
    166 
    167 //===---------------------------------------------------------------------===//
    168 
    169 Add support for conditional increments, and other related patterns.  Instead
    170 of:
    171 
    172 	movl 136(%esp), %eax
    173 	cmpl $0, %eax
    174 	je LBB16_2	#cond_next
    175 LBB16_1:	#cond_true
    176 	incl _foo
    177 LBB16_2:	#cond_next
    178 
    179 emit:
    180 	movl	_foo, %eax
    181 	cmpl	$1, %edi
    182 	sbbl	$-1, %eax
    183 	movl	%eax, _foo
    184 
    185 //===---------------------------------------------------------------------===//
    186 
    187 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
    188 
    189 Expand these to calls of sin/cos and stores:
    190       double sincos(double x, double *sin, double *cos);
    191       float sincosf(float x, float *sin, float *cos);
    192       long double sincosl(long double x, long double *sin, long double *cos);
    193 
    194 Doing so could allow SROA of the destination pointers.  See also:
    195 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
    196 
    197 This is now easily doable with MRVs.  We could even make an intrinsic for this
    198 if anyone cared enough about sincos.
    199 
    200 //===---------------------------------------------------------------------===//
    201 
    202 quantum_sigma_x in 462.libquantum contains the following loop:
    203 
    204       for(i=0; i<reg->size; i++)
    205 	{
    206 	  /* Flip the target bit of each basis state */
    207 	  reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
    208 	} 
    209 
    210 Where MAX_UNSIGNED/state is a 64-bit int.  On a 32-bit platform it would be just
    211 so cool to turn it into something like:
    212 
    213    long long Res = ((MAX_UNSIGNED) 1 << target);
    214    if (target < 32) {
    215      for(i=0; i<reg->size; i++)
    216        reg->node[i].state ^= Res & 0xFFFFFFFFULL;
    217    } else {
    218      for(i=0; i<reg->size; i++)
    219        reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
    220    }
    221    
    222 ... which would only do one 32-bit XOR per loop iteration instead of two.
    223 
    224 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
    225 this requires TBAA.
    226 
    227 //===---------------------------------------------------------------------===//
    228 
    229 This isn't recognized as bswap by instcombine (yes, it really is bswap):
    230 
    231 unsigned long reverse(unsigned v) {
    232     unsigned t;
    233     t = v ^ ((v << 16) | (v >> 16));
    234     t &= ~0xff0000;
    235     v = (v << 24) | (v >> 8);
    236     return v ^ (t >> 8);
    237 }
    238 
    239 //===---------------------------------------------------------------------===//
    240 
    241 [LOOP DELETION]
    242 
    243 We don't delete this output free loop, because trip count analysis doesn't
    244 realize that it is finite (if it were infinite, it would be undefined).  Not
    245 having this blocks Loop Idiom from matching strlen and friends.  
    246 
    247 void foo(char *C) {
    248   int x = 0;
    249   while (*C)
    250     ++x,++C;
    251 }
    252 
    253 //===---------------------------------------------------------------------===//
    254 
    255 [LOOP RECOGNITION]
    256 
    257 These idioms should be recognized as popcount (see PR1488):
    258 
    259 unsigned countbits_slow(unsigned v) {
    260   unsigned c;
    261   for (c = 0; v; v >>= 1)
    262     c += v & 1;
    263   return c;
    264 }
    265 
    266 unsigned int popcount(unsigned int input) {
    267   unsigned int count = 0;
    268   for (unsigned int i =  0; i < 4 * 8; i++)
    269     count += (input >> i) & i;
    270   return count;
    271 }
    272 
    273 This should be recognized as CLZ:  rdar://8459039
    274 
    275 unsigned clz_a(unsigned a) {
    276   int i;
    277   for (i=0;i<32;i++)
    278     if (a & (1<<(31-i)))
    279       return i;
    280   return 32;
    281 }
    282 
    283 This sort of thing should be added to the loop idiom pass.
    284 
    285 //===---------------------------------------------------------------------===//
    286 
    287 These should turn into single 16-bit (unaligned?) loads on little/big endian
    288 processors.
    289 
    290 unsigned short read_16_le(const unsigned char *adr) {
    291   return adr[0] | (adr[1] << 8);
    292 }
    293 unsigned short read_16_be(const unsigned char *adr) {
    294   return (adr[0] << 8) | adr[1];
    295 }
    296 
    297 //===---------------------------------------------------------------------===//
    298 
    299 -instcombine should handle this transform:
    300    icmp pred (sdiv X / C1 ), C2
    301 when X, C1, and C2 are unsigned.  Similarly for udiv and signed operands. 
    302 
    303 Currently InstCombine avoids this transform but will do it when the signs of
    304 the operands and the sign of the divide match. See the FIXME in 
    305 InstructionCombining.cpp in the visitSetCondInst method after the switch case 
    306 for Instruction::UDiv (around line 4447) for more details.
    307 
    308 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
    309 this construct. 
    310 
    311 //===---------------------------------------------------------------------===//
    312 
    313 [LOOP OPTIMIZATION]
    314 
    315 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
    316 opportunities in its double_array_divs_variable function: it needs loop
    317 interchange, memory promotion (which LICM already does), vectorization and
    318 variable trip count loop unrolling (since it has a constant trip count). ICC
    319 apparently produces this very nice code with -ffast-math:
    320 
    321 ..B1.70:                        # Preds ..B1.70 ..B1.69
    322        mulpd     %xmm0, %xmm1                                  #108.2
    323        mulpd     %xmm0, %xmm1                                  #108.2
    324        mulpd     %xmm0, %xmm1                                  #108.2
    325        mulpd     %xmm0, %xmm1                                  #108.2
    326        addl      $8, %edx                                      #
    327        cmpl      $131072, %edx                                 #108.2
    328        jb        ..B1.70       # Prob 99%                      #108.2
    329 
    330 It would be better to count down to zero, but this is a lot better than what we
    331 do.
    332 
    333 //===---------------------------------------------------------------------===//
    334 
    335 Consider:
    336 
    337 typedef unsigned U32;
    338 typedef unsigned long long U64;
    339 int test (U32 *inst, U64 *regs) {
    340     U64 effective_addr2;
    341     U32 temp = *inst;
    342     int r1 = (temp >> 20) & 0xf;
    343     int b2 = (temp >> 16) & 0xf;
    344     effective_addr2 = temp & 0xfff;
    345     if (b2) effective_addr2 += regs[b2];
    346     b2 = (temp >> 12) & 0xf;
    347     if (b2) effective_addr2 += regs[b2];
    348     effective_addr2 &= regs[4];
    349      if ((effective_addr2 & 3) == 0)
    350         return 1;
    351     return 0;
    352 }
    353 
    354 Note that only the low 2 bits of effective_addr2 are used.  On 32-bit systems,
    355 we don't eliminate the computation of the top half of effective_addr2 because
    356 we don't have whole-function selection dags.  On x86, this means we use one
    357 extra register for the function when effective_addr2 is declared as U64 than
    358 when it is declared U32.
    359 
    360 PHI Slicing could be extended to do this.
    361 
    362 //===---------------------------------------------------------------------===//
    363 
    364 Tail call elim should be more aggressive, checking to see if the call is
    365 followed by an uncond branch to an exit block.
    366 
    367 ; This testcase is due to tail-duplication not wanting to copy the return
    368 ; instruction into the terminating blocks because there was other code
    369 ; optimized out of the function after the taildup happened.
    370 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
    371 
    372 define i32 @t4(i32 %a) {
    373 entry:
    374 	%tmp.1 = and i32 %a, 1		; <i32> [#uses=1]
    375 	%tmp.2 = icmp ne i32 %tmp.1, 0		; <i1> [#uses=1]
    376 	br i1 %tmp.2, label %then.0, label %else.0
    377 
    378 then.0:		; preds = %entry
    379 	%tmp.5 = add i32 %a, -1		; <i32> [#uses=1]
    380 	%tmp.3 = call i32 @t4( i32 %tmp.5 )		; <i32> [#uses=1]
    381 	br label %return
    382 
    383 else.0:		; preds = %entry
    384 	%tmp.7 = icmp ne i32 %a, 0		; <i1> [#uses=1]
    385 	br i1 %tmp.7, label %then.1, label %return
    386 
    387 then.1:		; preds = %else.0
    388 	%tmp.11 = add i32 %a, -2		; <i32> [#uses=1]
    389 	%tmp.9 = call i32 @t4( i32 %tmp.11 )		; <i32> [#uses=1]
    390 	br label %return
    391 
    392 return:		; preds = %then.1, %else.0, %then.0
    393 	%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
    394                             [ %tmp.9, %then.1 ]
    395 	ret i32 %result.0
    396 }
    397 
    398 //===---------------------------------------------------------------------===//
    399 
    400 Tail recursion elimination should handle:
    401 
    402 int pow2m1(int n) {
    403  if (n == 0)
    404    return 0;
    405  return 2 * pow2m1 (n - 1) + 1;
    406 }
    407 
    408 Also, multiplies can be turned into SHL's, so they should be handled as if
    409 they were associative.  "return foo() << 1" can be tail recursion eliminated.
    410 
    411 //===---------------------------------------------------------------------===//
    412 
    413 Argument promotion should promote arguments for recursive functions, like 
    414 this:
    415 
    416 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
    417 
    418 define internal i32 @foo(i32* %x) {
    419 entry:
    420 	%tmp = load i32* %x		; <i32> [#uses=0]
    421 	%tmp.foo = call i32 @foo( i32* %x )		; <i32> [#uses=1]
    422 	ret i32 %tmp.foo
    423 }
    424 
    425 define i32 @bar(i32* %x) {
    426 entry:
    427 	%tmp3 = call i32 @foo( i32* %x )		; <i32> [#uses=1]
    428 	ret i32 %tmp3
    429 }
    430 
    431 //===---------------------------------------------------------------------===//
    432 
    433 We should investigate an instruction sinking pass.  Consider this silly
    434 example in pic mode:
    435 
    436 #include <assert.h>
    437 void foo(int x) {
    438   assert(x);
    439   //...
    440 }
    441 
    442 we compile this to:
    443 _foo:
    444 	subl	$28, %esp
    445 	call	"L1$pb"
    446 "L1$pb":
    447 	popl	%eax
    448 	cmpl	$0, 32(%esp)
    449 	je	LBB1_2	# cond_true
    450 LBB1_1:	# return
    451 	# ...
    452 	addl	$28, %esp
    453 	ret
    454 LBB1_2:	# cond_true
    455 ...
    456 
    457 The PIC base computation (call+popl) is only used on one path through the 
    458 code, but is currently always computed in the entry block.  It would be 
    459 better to sink the picbase computation down into the block for the 
    460 assertion, as it is the only one that uses it.  This happens for a lot of 
    461 code with early outs.
    462 
    463 Another example is loads of arguments, which are usually emitted into the 
    464 entry block on targets like x86.  If not used in all paths through a 
    465 function, they should be sunk into the ones that do.
    466 
    467 In this case, whole-function-isel would also handle this.
    468 
    469 //===---------------------------------------------------------------------===//
    470 
    471 Investigate lowering of sparse switch statements into perfect hash tables:
    472 http://burtleburtle.net/bob/hash/perfect.html
    473 
    474 //===---------------------------------------------------------------------===//
    475 
    476 We should turn things like "load+fabs+store" and "load+fneg+store" into the
    477 corresponding integer operations.  On a yonah, this loop:
    478 
    479 double a[256];
    480 void foo() {
    481   int i, b;
    482   for (b = 0; b < 10000000; b++)
    483   for (i = 0; i < 256; i++)
    484     a[i] = -a[i];
    485 }
    486 
    487 is twice as slow as this loop:
    488 
    489 long long a[256];
    490 void foo() {
    491   int i, b;
    492   for (b = 0; b < 10000000; b++)
    493   for (i = 0; i < 256; i++)
    494     a[i] ^= (1ULL << 63);
    495 }
    496 
    497 and I suspect other processors are similar.  On X86 in particular this is a
    498 big win because doing this with integers allows the use of read/modify/write
    499 instructions.
    500 
    501 //===---------------------------------------------------------------------===//
    502 
    503 DAG Combiner should try to combine small loads into larger loads when 
    504 profitable.  For example, we compile this C++ example:
    505 
    506 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
    507 extern THotKey m_HotKey;
    508 THotKey GetHotKey () { return m_HotKey; }
    509 
    510 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
    511 
    512 __Z9GetHotKeyv:                         ## @_Z9GetHotKeyv
    513 	movq	_m_HotKey@GOTPCREL(%rip), %rax
    514 	movzwl	(%rax), %ecx
    515 	movzbl	2(%rax), %edx
    516 	shlq	$16, %rdx
    517 	orq	%rcx, %rdx
    518 	movzbl	3(%rax), %ecx
    519 	shlq	$24, %rcx
    520 	orq	%rdx, %rcx
    521 	movzbl	4(%rax), %eax
    522 	shlq	$32, %rax
    523 	orq	%rcx, %rax
    524 	ret
    525 
    526 //===---------------------------------------------------------------------===//
    527 
    528 We should add an FRINT node to the DAG to model targets that have legal
    529 implementations of ceil/floor/rint.
    530 
    531 //===---------------------------------------------------------------------===//
    532 
    533 Consider:
    534 
    535 int test() {
    536   long long input[8] = {1,0,1,0,1,0,1,0};
    537   foo(input);
    538 }
    539 
    540 Clang compiles this into:
    541 
    542   call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
    543   %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
    544   store i64 1, i64* %0, align 16
    545   %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
    546   store i64 1, i64* %1, align 16
    547   %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
    548   store i64 1, i64* %2, align 16
    549   %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
    550   store i64 1, i64* %3, align 16
    551 
    552 Which gets codegen'd into:
    553 
    554 	pxor	%xmm0, %xmm0
    555 	movaps	%xmm0, -16(%rbp)
    556 	movaps	%xmm0, -32(%rbp)
    557 	movaps	%xmm0, -48(%rbp)
    558 	movaps	%xmm0, -64(%rbp)
    559 	movq	$1, -64(%rbp)
    560 	movq	$1, -48(%rbp)
    561 	movq	$1, -32(%rbp)
    562 	movq	$1, -16(%rbp)
    563 
    564 It would be better to have 4 movq's of 0 instead of the movaps's.
    565 
    566 //===---------------------------------------------------------------------===//
    567 
    568 http://llvm.org/PR717:
    569 
    570 The following code should compile into "ret int undef". Instead, LLVM
    571 produces "ret int 0":
    572 
    573 int f() {
    574   int x = 4;
    575   int y;
    576   if (x == 3) y = 0;
    577   return y;
    578 }
    579 
    580 //===---------------------------------------------------------------------===//
    581 
    582 The loop unroller should partially unroll loops (instead of peeling them)
    583 when code growth isn't too bad and when an unroll count allows simplification
    584 of some code within the loop.  One trivial example is:
    585 
    586 #include <stdio.h>
    587 int main() {
    588     int nRet = 17;
    589     int nLoop;
    590     for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
    591         if ( nLoop & 1 )
    592             nRet += 2;
    593         else
    594             nRet -= 1;
    595     }
    596     return nRet;
    597 }
    598 
    599 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
    600 reduction in code size.  The resultant code would then also be suitable for
    601 exit value computation.
    602 
    603 //===---------------------------------------------------------------------===//
    604 
    605 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
    606 etc.  On X86, we miss a bunch of 'rotate by variable' cases because the rotate
    607 matching code in dag combine doesn't look through truncates aggressively 
    608 enough.  Here are some testcases reduces from GCC PR17886:
    609 
    610 unsigned long long f5(unsigned long long x, unsigned long long y) {
    611   return (x << 8) | ((y >> 48) & 0xffull);
    612 }
    613 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
    614   switch(z) {
    615   case 1:
    616     return (x << 8) | ((y >> 48) & 0xffull);
    617   case 2:
    618     return (x << 16) | ((y >> 40) & 0xffffull);
    619   case 3:
    620     return (x << 24) | ((y >> 32) & 0xffffffull);
    621   case 4:
    622     return (x << 32) | ((y >> 24) & 0xffffffffull);
    623   default:
    624     return (x << 40) | ((y >> 16) & 0xffffffffffull);
    625   }
    626 }
    627 
    628 //===---------------------------------------------------------------------===//
    629 
    630 This (and similar related idioms):
    631 
    632 unsigned int foo(unsigned char i) {
    633   return i | (i<<8) | (i<<16) | (i<<24);
    634 } 
    635 
    636 compiles into:
    637 
    638 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
    639 entry:
    640   %conv = zext i8 %i to i32
    641   %shl = shl i32 %conv, 8
    642   %shl5 = shl i32 %conv, 16
    643   %shl9 = shl i32 %conv, 24
    644   %or = or i32 %shl9, %conv
    645   %or6 = or i32 %or, %shl5
    646   %or10 = or i32 %or6, %shl
    647   ret i32 %or10
    648 }
    649 
    650 it would be better as:
    651 
    652 unsigned int bar(unsigned char i) {
    653   unsigned int j=i | (i << 8); 
    654   return j | (j<<16);
    655 }
    656 
    657 aka:
    658 
    659 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
    660 entry:
    661   %conv = zext i8 %i to i32
    662   %shl = shl i32 %conv, 8
    663   %or = or i32 %shl, %conv
    664   %shl5 = shl i32 %or, 16
    665   %or6 = or i32 %shl5, %or
    666   ret i32 %or6
    667 }
    668 
    669 or even i*0x01010101, depending on the speed of the multiplier.  The best way to
    670 handle this is to canonicalize it to a multiply in IR and have codegen handle
    671 lowering multiplies to shifts on cpus where shifts are faster.
    672 
    673 //===---------------------------------------------------------------------===//
    674 
    675 We do a number of simplifications in simplify libcalls to strength reduce
    676 standard library functions, but we don't currently merge them together.  For
    677 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy.  This can only
    678 be done safely if "b" isn't modified between the strlen and memcpy of course.
    679 
    680 //===---------------------------------------------------------------------===//
    681 
    682 We compile this program: (from GCC PR11680)
    683 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
    684 
    685 Into code that runs the same speed in fast/slow modes, but both modes run 2x
    686 slower than when compile with GCC (either 4.0 or 4.2):
    687 
    688 $ llvm-g++ perf.cpp -O3 -fno-exceptions
    689 $ time ./a.out fast
    690 1.821u 0.003s 0:01.82 100.0%	0+0k 0+0io 0pf+0w
    691 
    692 $ g++ perf.cpp -O3 -fno-exceptions
    693 $ time ./a.out fast
    694 0.821u 0.001s 0:00.82 100.0%	0+0k 0+0io 0pf+0w
    695 
    696 It looks like we are making the same inlining decisions, so this may be raw
    697 codegen badness or something else (haven't investigated).
    698 
    699 //===---------------------------------------------------------------------===//
    700 
    701 Divisibility by constant can be simplified (according to GCC PR12849) from
    702 being a mulhi to being a mul lo (cheaper).  Testcase:
    703 
    704 void bar(unsigned n) {
    705   if (n % 3 == 0)
    706     true();
    707 }
    708 
    709 This is equivalent to the following, where 2863311531 is the multiplicative
    710 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
    711 void bar(unsigned n) {
    712   if (n * 2863311531U < 1431655766U)
    713     true();
    714 }
    715 
    716 The same transformation can work with an even modulo with the addition of a
    717 rotate: rotate the result of the multiply to the right by the number of bits
    718 which need to be zero for the condition to be true, and shrink the compare RHS
    719 by the same amount.  Unless the target supports rotates, though, that
    720 transformation probably isn't worthwhile.
    721 
    722 The transformation can also easily be made to work with non-zero equality
    723 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
    724 
    725 //===---------------------------------------------------------------------===//
    726 
    727 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
    728 bunch of other stuff from this example (see PR1604): 
    729 
    730 #include <cstdio>
    731 struct test {
    732     int val;
    733     virtual ~test() {}
    734 };
    735 
    736 int main() {
    737     test t;
    738     std::scanf("%d", &t.val);
    739     std::printf("%d\n", t.val);
    740 }
    741 
    742 //===---------------------------------------------------------------------===//
    743 
    744 These functions perform the same computation, but produce different assembly.
    745 
    746 define i8 @select(i8 %x) readnone nounwind {
    747   %A = icmp ult i8 %x, 250
    748   %B = select i1 %A, i8 0, i8 1
    749   ret i8 %B 
    750 }
    751 
    752 define i8 @addshr(i8 %x) readnone nounwind {
    753   %A = zext i8 %x to i9
    754   %B = add i9 %A, 6       ;; 256 - 250 == 6
    755   %C = lshr i9 %B, 8
    756   %D = trunc i9 %C to i8
    757   ret i8 %D
    758 }
    759 
    760 //===---------------------------------------------------------------------===//
    761 
    762 From gcc bug 24696:
    763 int
    764 f (unsigned long a, unsigned long b, unsigned long c)
    765 {
    766   return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
    767 }
    768 int
    769 f (unsigned long a, unsigned long b, unsigned long c)
    770 {
    771   return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
    772 }
    773 Both should combine to ((a|b) & (c-1)) != 0.  Currently not optimized with
    774 "clang -emit-llvm-bc | opt -std-compile-opts".
    775 
    776 //===---------------------------------------------------------------------===//
    777 
    778 From GCC Bug 20192:
    779 #define PMD_MASK    (~((1UL << 23) - 1))
    780 void clear_pmd_range(unsigned long start, unsigned long end)
    781 {
    782    if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
    783        f();
    784 }
    785 The expression should optimize to something like
    786 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
    787 -emit-llvm-bc | opt -std-compile-opts".
    788 
    789 //===---------------------------------------------------------------------===//
    790 
    791 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
    792 i;}
    793 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
    794 These should combine to the same thing.  Currently, the first function
    795 produces better code on X86.
    796 
    797 //===---------------------------------------------------------------------===//
    798 
    799 From GCC Bug 15784:
    800 #define abs(x) x>0?x:-x
    801 int f(int x, int y)
    802 {
    803  return (abs(x)) >= 0;
    804 }
    805 This should optimize to x == INT_MIN. (With -fwrapv.)  Currently not
    806 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    807 
    808 //===---------------------------------------------------------------------===//
    809 
    810 From GCC Bug 14753:
    811 void
    812 rotate_cst (unsigned int a)
    813 {
    814  a = (a << 10) | (a >> 22);
    815  if (a == 123)
    816    bar ();
    817 }
    818 void
    819 minus_cst (unsigned int a)
    820 {
    821  unsigned int tem;
    822 
    823  tem = 20 - a;
    824  if (tem == 5)
    825    bar ();
    826 }
    827 void
    828 mask_gt (unsigned int a)
    829 {
    830  /* This is equivalent to a > 15.  */
    831  if ((a & ~7) > 8)
    832    bar ();
    833 }
    834 void
    835 rshift_gt (unsigned int a)
    836 {
    837  /* This is equivalent to a > 23.  */
    838  if ((a >> 2) > 5)
    839    bar ();
    840 }
    841 
    842 All should simplify to a single comparison.  All of these are
    843 currently not optimized with "clang -emit-llvm-bc | opt
    844 -std-compile-opts".
    845 
    846 //===---------------------------------------------------------------------===//
    847 
    848 From GCC Bug 32605:
    849 int c(int* x) {return (char*)x+2 == (char*)x;}
    850 Should combine to 0.  Currently not optimized with "clang
    851 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
    852 
    853 //===---------------------------------------------------------------------===//
    854 
    855 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
    856 Should be combined to  "((b >> 1) | b) & 1".  Currently not optimized
    857 with "clang -emit-llvm-bc | opt -std-compile-opts".
    858 
    859 //===---------------------------------------------------------------------===//
    860 
    861 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
    862 Should combine to "x | (y & 3)".  Currently not optimized with "clang
    863 -emit-llvm-bc | opt -std-compile-opts".
    864 
    865 //===---------------------------------------------------------------------===//
    866 
    867 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
    868 Should fold to "(~a & c) | (a & b)".  Currently not optimized with
    869 "clang -emit-llvm-bc | opt -std-compile-opts".
    870 
    871 //===---------------------------------------------------------------------===//
    872 
    873 int a(int a,int b) {return (~(a|b))|a;}
    874 Should fold to "a|~b".  Currently not optimized with "clang
    875 -emit-llvm-bc | opt -std-compile-opts".
    876 
    877 //===---------------------------------------------------------------------===//
    878 
    879 int a(int a, int b) {return (a&&b) || (a&&!b);}
    880 Should fold to "a".  Currently not optimized with "clang -emit-llvm-bc
    881 | opt -std-compile-opts".
    882 
    883 //===---------------------------------------------------------------------===//
    884 
    885 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
    886 Should fold to "a ? b : c", or at least something sane.  Currently not
    887 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    888 
    889 //===---------------------------------------------------------------------===//
    890 
    891 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
    892 Should fold to a && (b || c).  Currently not optimized with "clang
    893 -emit-llvm-bc | opt -std-compile-opts".
    894 
    895 //===---------------------------------------------------------------------===//
    896 
    897 int a(int x) {return x | ((x & 8) ^ 8);}
    898 Should combine to x | 8.  Currently not optimized with "clang
    899 -emit-llvm-bc | opt -std-compile-opts".
    900 
    901 //===---------------------------------------------------------------------===//
    902 
    903 int a(int x) {return x ^ ((x & 8) ^ 8);}
    904 Should also combine to x | 8.  Currently not optimized with "clang
    905 -emit-llvm-bc | opt -std-compile-opts".
    906 
    907 //===---------------------------------------------------------------------===//
    908 
    909 int a(int x) {return ((x | -9) ^ 8) & x;}
    910 Should combine to x & -9.  Currently not optimized with "clang
    911 -emit-llvm-bc | opt -std-compile-opts".
    912 
    913 //===---------------------------------------------------------------------===//
    914 
    915 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
    916 Should combine to "a * 0x88888888 >> 31".  Currently not optimized
    917 with "clang -emit-llvm-bc | opt -std-compile-opts".
    918 
    919 //===---------------------------------------------------------------------===//
    920 
    921 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
    922 There's an unnecessary zext in the generated code with "clang
    923 -emit-llvm-bc | opt -std-compile-opts".
    924 
    925 //===---------------------------------------------------------------------===//
    926 
    927 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
    928 Should combine to "20 * (((unsigned)x) & -2)".  Currently not
    929 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    930 
    931 //===---------------------------------------------------------------------===//
    932 
    933 int g(int x) { return (x - 10) < 0; }
    934 Should combine to "x <= 9" (the sub has nsw).  Currently not
    935 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    936 
    937 //===---------------------------------------------------------------------===//
    938 
    939 int g(int x) { return (x + 10) < 0; }
    940 Should combine to "x < -10" (the add has nsw).  Currently not
    941 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    942 
    943 //===---------------------------------------------------------------------===//
    944 
    945 int f(int i, int j) { return i < j + 1; }
    946 int g(int i, int j) { return j > i - 1; }
    947 Should combine to "i <= j" (the add/sub has nsw).  Currently not
    948 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    949 
    950 //===---------------------------------------------------------------------===//
    951 
    952 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
    953 The & 15 part should be optimized away, it doesn't change the result. Currently
    954 not optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    955 
    956 //===---------------------------------------------------------------------===//
    957 
    958 This was noticed in the entryblock for grokdeclarator in 403.gcc:
    959 
    960         %tmp = icmp eq i32 %decl_context, 4          
    961         %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 
    962         %tmp1 = icmp eq i32 %decl_context_addr.0, 1 
    963         %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
    964 
    965 tmp1 should be simplified to something like:
    966   (!tmp || decl_context == 1)
    967 
    968 This allows recursive simplifications, tmp1 is used all over the place in
    969 the function, e.g. by:
    970 
    971         %tmp23 = icmp eq i32 %decl_context_addr.1, 0            ; <i1> [#uses=1]
    972         %tmp24 = xor i1 %tmp1, true             ; <i1> [#uses=1]
    973         %or.cond8 = and i1 %tmp23, %tmp24               ; <i1> [#uses=1]
    974 
    975 later.
    976 
    977 //===---------------------------------------------------------------------===//
    978 
    979 [STORE SINKING]
    980 
    981 Store sinking: This code:
    982 
    983 void f (int n, int *cond, int *res) {
    984     int i;
    985     *res = 0;
    986     for (i = 0; i < n; i++)
    987         if (*cond)
    988             *res ^= 234; /* (*) */
    989 }
    990 
    991 On this function GVN hoists the fully redundant value of *res, but nothing
    992 moves the store out.  This gives us this code:
    993 
    994 bb:		; preds = %bb2, %entry
    995 	%.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]	
    996 	%i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
    997 	%1 = load i32* %cond, align 4
    998 	%2 = icmp eq i32 %1, 0
    999 	br i1 %2, label %bb2, label %bb1
   1000 
   1001 bb1:		; preds = %bb
   1002 	%3 = xor i32 %.rle, 234	
   1003 	store i32 %3, i32* %res, align 4
   1004 	br label %bb2
   1005 
   1006 bb2:		; preds = %bb, %bb1
   1007 	%.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]	
   1008 	%indvar.next = add i32 %i.05, 1	
   1009 	%exitcond = icmp eq i32 %indvar.next, %n
   1010 	br i1 %exitcond, label %return, label %bb
   1011 
   1012 DSE should sink partially dead stores to get the store out of the loop.
   1013 
   1014 Here's another partial dead case:
   1015 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
   1016 
   1017 //===---------------------------------------------------------------------===//
   1018 
   1019 Scalar PRE hoists the mul in the common block up to the else:
   1020 
   1021 int test (int a, int b, int c, int g) {
   1022   int d, e;
   1023   if (a)
   1024     d = b * c;
   1025   else
   1026     d = b - c;
   1027   e = b * c + g;
   1028   return d + e;
   1029 }
   1030 
   1031 It would be better to do the mul once to reduce codesize above the if.
   1032 This is GCC PR38204.
   1033 
   1034 
   1035 //===---------------------------------------------------------------------===//
   1036 This simple function from 179.art:
   1037 
   1038 int winner, numf2s;
   1039 struct { double y; int   reset; } *Y;
   1040 
   1041 void find_match() {
   1042    int i;
   1043    winner = 0;
   1044    for (i=0;i<numf2s;i++)
   1045        if (Y[i].y > Y[winner].y)
   1046               winner =i;
   1047 }
   1048 
   1049 Compiles into (with clang TBAA):
   1050 
   1051 for.body:                                         ; preds = %for.inc, %bb.nph
   1052   %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
   1053   %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
   1054   %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
   1055   %tmp5 = load double* %tmp4, align 8, !tbaa !4
   1056   %idxprom7 = sext i32 %i.01718 to i64
   1057   %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
   1058   %tmp11 = load double* %tmp10, align 8, !tbaa !4
   1059   %cmp12 = fcmp ogt double %tmp5, %tmp11
   1060   br i1 %cmp12, label %if.then, label %for.inc
   1061 
   1062 if.then:                                          ; preds = %for.body
   1063   %i.017 = trunc i64 %indvar to i32
   1064   br label %for.inc
   1065 
   1066 for.inc:                                          ; preds = %for.body, %if.then
   1067   %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
   1068   %indvar.next = add i64 %indvar, 1
   1069   %exitcond = icmp eq i64 %indvar.next, %tmp22
   1070   br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
   1071 
   1072 
   1073 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
   1074 sunk the store to winner out.
   1075 
   1076 However, this is awful on several levels: the conditional truncate in the loop
   1077 (-indvars at fault? why can't we completely promote the IV to i64?).
   1078 
   1079 Beyond that, we have a partially redundant load in the loop: if "winner" (aka 
   1080 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
   1081 Similarly, the addressing that feeds it (including the sext) is redundant. In
   1082 the end we get this generated assembly:
   1083 
   1084 LBB0_2:                                 ## %for.body
   1085                                         ## =>This Inner Loop Header: Depth=1
   1086 	movsd	(%rdi), %xmm0
   1087 	movslq	%edx, %r8
   1088 	shlq	$4, %r8
   1089 	ucomisd	(%rcx,%r8), %xmm0
   1090 	jbe	LBB0_4
   1091 	movl	%esi, %edx
   1092 LBB0_4:                                 ## %for.inc
   1093 	addq	$16, %rdi
   1094 	incq	%rsi
   1095 	cmpq	%rsi, %rax
   1096 	jne	LBB0_2
   1097 
   1098 All things considered this isn't too bad, but we shouldn't need the movslq or
   1099 the shlq instruction, or the load folded into ucomisd every time through the
   1100 loop.
   1101 
   1102 On an x86-specific topic, if the loop can't be restructure, the movl should be a
   1103 cmov.
   1104 
   1105 //===---------------------------------------------------------------------===//
   1106 
   1107 [STORE SINKING]
   1108 
   1109 GCC PR37810 is an interesting case where we should sink load/store reload
   1110 into the if block and outside the loop, so we don't reload/store it on the
   1111 non-call path.
   1112 
   1113 for () {
   1114   *P += 1;
   1115   if ()
   1116     call();
   1117   else
   1118     ...
   1119 ->
   1120 tmp = *P
   1121 for () {
   1122   tmp += 1;
   1123   if () {
   1124     *P = tmp;
   1125     call();
   1126     tmp = *P;
   1127   } else ...
   1128 }
   1129 *P = tmp;
   1130 
   1131 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
   1132 we don't sink the store.  We need partially dead store sinking.
   1133 
   1134 //===---------------------------------------------------------------------===//
   1135 
   1136 [LOAD PRE CRIT EDGE SPLITTING]
   1137 
   1138 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
   1139 leading to excess stack traffic. This could be handled by GVN with some crazy
   1140 symbolic phi translation.  The code we get looks like (g is on the stack):
   1141 
   1142 bb2:		; preds = %bb1
   1143 ..
   1144 	%9 = getelementptr %struct.f* %g, i32 0, i32 0		
   1145 	store i32 %8, i32* %9, align  bel %bb3
   1146 
   1147 bb3:		; preds = %bb1, %bb2, %bb
   1148 	%c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
   1149 	%b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
   1150 	%10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
   1151 	%11 = load i32* %10, align 4
   1152 
   1153 %11 is partially redundant, an in BB2 it should have the value %8.
   1154 
   1155 GCC PR33344 and PR35287 are similar cases.
   1156 
   1157 
   1158 //===---------------------------------------------------------------------===//
   1159 
   1160 [LOAD PRE]
   1161 
   1162 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
   1163 GCC testsuite, ones we don't get yet are (checked through loadpre25):
   1164 
   1165 [CRIT EDGE BREAKING]
   1166 loadpre3.c predcom-4.c
   1167 
   1168 [PRE OF READONLY CALL]
   1169 loadpre5.c
   1170 
   1171 [TURN SELECT INTO BRANCH]
   1172 loadpre14.c loadpre15.c 
   1173 
   1174 actually a conditional increment: loadpre18.c loadpre19.c
   1175 
   1176 //===---------------------------------------------------------------------===//
   1177 
   1178 [LOAD PRE / STORE SINKING / SPEC HACK]
   1179 
   1180 This is a chunk of code from 456.hmmer:
   1181 
   1182 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
   1183      int *tpdm, int xmb, int *bp, int *ms) {
   1184  int k, sc;
   1185  for (k = 1; k <= M; k++) {
   1186      mc[k] = mpp[k-1]   + tpmm[k-1];
   1187      if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
   1188      if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
   1189      if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc;
   1190      mc[k] += ms[k];
   1191    }
   1192 }
   1193 
   1194 It is very profitable for this benchmark to turn the conditional stores to mc[k]
   1195 into a conditional move (select instr in IR) and allow the final store to do the
   1196 store.  See GCC PR27313 for more details.  Note that this is valid to xform even
   1197 with the new C++ memory model, since mc[k] is previously loaded and later
   1198 stored.
   1199 
   1200 //===---------------------------------------------------------------------===//
   1201 
   1202 [SCALAR PRE]
   1203 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
   1204 GCC testsuite.
   1205 
   1206 //===---------------------------------------------------------------------===//
   1207 
   1208 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
   1209 GCC testsuite.  For example, we get the first example in predcom-1.c, but 
   1210 miss the second one:
   1211 
   1212 unsigned fib[1000];
   1213 unsigned avg[1000];
   1214 
   1215 __attribute__ ((noinline))
   1216 void count_averages(int n) {
   1217   int i;
   1218   for (i = 1; i < n; i++)
   1219     avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
   1220 }
   1221 
   1222 which compiles into two loads instead of one in the loop.
   1223 
   1224 predcom-2.c is the same as predcom-1.c
   1225 
   1226 predcom-3.c is very similar but needs loads feeding each other instead of
   1227 store->load.
   1228 
   1229 
   1230 //===---------------------------------------------------------------------===//
   1231 
   1232 [ALIAS ANALYSIS]
   1233 
   1234 Type based alias analysis:
   1235 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
   1236 
   1237 We should do better analysis of posix_memalign.  At the least it should
   1238 no-capture its pointer argument, at best, we should know that the out-value
   1239 result doesn't point to anything (like malloc).  One example of this is in
   1240 SingleSource/Benchmarks/Misc/dt.c
   1241 
   1242 //===---------------------------------------------------------------------===//
   1243 
   1244 Interesting missed case because of control flow flattening (should be 2 loads):
   1245 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
   1246 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 
   1247              opt -mem2reg -gvn -instcombine | llvm-dis
   1248 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
   1249 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
   1250 
   1251 //===---------------------------------------------------------------------===//
   1252 
   1253 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
   1254 We could eliminate the branch condition here, loading from null is undefined:
   1255 
   1256 struct S { int w, x, y, z; };
   1257 struct T { int r; struct S s; };
   1258 void bar (struct S, int);
   1259 void foo (int a, struct T b)
   1260 {
   1261   struct S *c = 0;
   1262   if (a)
   1263     c = &b.s;
   1264   bar (*c, a);
   1265 }
   1266 
   1267 //===---------------------------------------------------------------------===//
   1268 
   1269 simplifylibcalls should do several optimizations for strspn/strcspn:
   1270 
   1271 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
   1272 
   1273 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
   1274                      int __reject3) {
   1275   register size_t __result = 0;
   1276   while (__s[__result] != '\0' && __s[__result] != __reject1 &&
   1277          __s[__result] != __reject2 && __s[__result] != __reject3)
   1278     ++__result;
   1279   return __result;
   1280 }
   1281 
   1282 This should turn into a switch on the character.  See PR3253 for some notes on
   1283 codegen.
   1284 
   1285 456.hmmer apparently uses strcspn and strspn a lot.  471.omnetpp uses strspn.
   1286 
   1287 //===---------------------------------------------------------------------===//
   1288 
   1289 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
   1290 
   1291 char buf1[6], buf2[6], buf3[4], buf4[4];
   1292 int i;
   1293 
   1294 int foo (void) {
   1295   int ret = snprintf (buf1, sizeof buf1, "abcde");
   1296   ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
   1297   ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
   1298   ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
   1299   return ret;
   1300 }
   1301 
   1302 //===---------------------------------------------------------------------===//
   1303 
   1304 "gas" uses this idiom:
   1305   else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
   1306 ..
   1307   else if (strchr ("<>", *intel_parser.op_string)
   1308 
   1309 Those should be turned into a switch.
   1310 
   1311 //===---------------------------------------------------------------------===//
   1312 
   1313 252.eon contains this interesting code:
   1314 
   1315         %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
   1316         %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
   1317         %strlen = call i32 @strlen(i8* %3072)    ; uses = 1
   1318         %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
   1319         call void @llvm.memcpy.i32(i8* %endptr, 
   1320           i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
   1321         %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 
   1322         
   1323 This is interesting for a couple reasons.  First, in this:
   1324 
   1325 The memcpy+strlen strlen can be replaced with:
   1326 
   1327         %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 
   1328 
   1329 Because the destination was just copied into the specified memory buffer.  This,
   1330 in turn, can be constant folded to "4".
   1331 
   1332 In other code, it contains:
   1333 
   1334         %endptr6978 = bitcast i8* %endptr69 to i32*            
   1335         store i32 7107374, i32* %endptr6978, align 1
   1336         %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly    
   1337 
   1338 Which could also be constant folded.  Whatever is producing this should probably
   1339 be fixed to leave this as a memcpy from a string.
   1340 
   1341 Further, eon also has an interesting partially redundant strlen call:
   1342 
   1343 bb8:            ; preds = %_ZN18eonImageCalculatorC1Ev.exit
   1344         %682 = getelementptr i8** %argv, i32 6          ; <i8**> [#uses=2]
   1345         %683 = load i8** %682, align 4          ; <i8*> [#uses=4]
   1346         %684 = load i8* %683, align 1           ; <i8> [#uses=1]
   1347         %685 = icmp eq i8 %684, 0               ; <i1> [#uses=1]
   1348         br i1 %685, label %bb10, label %bb9
   1349 
   1350 bb9:            ; preds = %bb8
   1351         %686 = call i32 @strlen(i8* %683) nounwind readonly          
   1352         %687 = icmp ugt i32 %686, 254           ; <i1> [#uses=1]
   1353         br i1 %687, label %bb10, label %bb11
   1354 
   1355 bb10:           ; preds = %bb9, %bb8
   1356         %688 = call i32 @strlen(i8* %683) nounwind readonly          
   1357 
   1358 This could be eliminated by doing the strlen once in bb8, saving code size and
   1359 improving perf on the bb8->9->10 path.
   1360 
   1361 //===---------------------------------------------------------------------===//
   1362 
   1363 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
   1364 which looks like:
   1365        %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 
   1366  
   1367 
   1368 bb62:           ; preds = %bb55, %bb53
   1369         %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]             
   1370         %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
   1371         %172 = add i32 %171, -1         ; <i32> [#uses=1]
   1372         %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172       
   1373 
   1374 ...  no stores ...
   1375        br i1 %or.cond, label %bb65, label %bb72
   1376 
   1377 bb65:           ; preds = %bb62
   1378         store i8 0, i8* %173, align 1
   1379         br label %bb72
   1380 
   1381 bb72:           ; preds = %bb65, %bb62
   1382         %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]            
   1383         %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
   1384 
   1385 Note that on the bb62->bb72 path, that the %177 strlen call is partially
   1386 redundant with the %171 call.  At worst, we could shove the %177 strlen call
   1387 up into the bb65 block moving it out of the bb62->bb72 path.   However, note
   1388 that bb65 stores to the string, zeroing out the last byte.  This means that on
   1389 that path the value of %177 is actually just %171-1.  A sub is cheaper than a
   1390 strlen!
   1391 
   1392 This pattern repeats several times, basically doing:
   1393 
   1394   A = strlen(P);
   1395   P[A-1] = 0;
   1396   B = strlen(P);
   1397   where it is "obvious" that B = A-1.
   1398 
   1399 //===---------------------------------------------------------------------===//
   1400 
   1401 186.crafty has this interesting pattern with the "out.4543" variable:
   1402 
   1403 call void @llvm.memcpy.i32(
   1404         i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
   1405        i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 
   1406 %101 = call@printf(i8* ...   @out.4543, i32 0, i32 0)) nounwind 
   1407 
   1408 It is basically doing:
   1409 
   1410   memcpy(globalarray, "string");
   1411   printf(...,  globalarray);
   1412   
   1413 Anyway, by knowing that printf just reads the memory and forward substituting
   1414 the string directly into the printf, this eliminates reads from globalarray.
   1415 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
   1416 other similar functions) there are many stores to "out".  Once all the printfs
   1417 stop using "out", all that is left is the memcpy's into it.  This should allow
   1418 globalopt to remove the "stored only" global.
   1419 
   1420 //===---------------------------------------------------------------------===//
   1421 
   1422 This code:
   1423 
   1424 define inreg i32 @foo(i8* inreg %p) nounwind {
   1425   %tmp0 = load i8* %p
   1426   %tmp1 = ashr i8 %tmp0, 5
   1427   %tmp2 = sext i8 %tmp1 to i32
   1428   ret i32 %tmp2
   1429 }
   1430 
   1431 could be dagcombine'd to a sign-extending load with a shift.
   1432 For example, on x86 this currently gets this:
   1433 
   1434 	movb	(%eax), %al
   1435 	sarb	$5, %al
   1436 	movsbl	%al, %eax
   1437 
   1438 while it could get this:
   1439 
   1440 	movsbl	(%eax), %eax
   1441 	sarl	$5, %eax
   1442 
   1443 //===---------------------------------------------------------------------===//
   1444 
   1445 GCC PR31029:
   1446 
   1447 int test(int x) { return 1-x == x; }     // --> return false
   1448 int test2(int x) { return 2-x == x; }    // --> return x == 1 ?
   1449 
   1450 Always foldable for odd constants, what is the rule for even?
   1451 
   1452 //===---------------------------------------------------------------------===//
   1453 
   1454 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
   1455 for next field in struct (which is at same address).
   1456 
   1457 For example: store of float into { {{}}, float } could be turned into a store to
   1458 the float directly.
   1459 
   1460 //===---------------------------------------------------------------------===//
   1461 
   1462 The arg promotion pass should make use of nocapture to make its alias analysis
   1463 stuff much more precise.
   1464 
   1465 //===---------------------------------------------------------------------===//
   1466 
   1467 The following functions should be optimized to use a select instead of a
   1468 branch (from gcc PR40072):
   1469 
   1470 char char_int(int m) {if(m>7) return 0; return m;}
   1471 int int_char(char m) {if(m>7) return 0; return m;}
   1472 
   1473 //===---------------------------------------------------------------------===//
   1474 
   1475 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
   1476 
   1477 Generates this:
   1478 
   1479 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
   1480 entry:
   1481   %0 = and i32 %a, 128                            ; <i32> [#uses=1]
   1482   %1 = icmp eq i32 %0, 0                          ; <i1> [#uses=1]
   1483   %2 = or i32 %b, 128                             ; <i32> [#uses=1]
   1484   %3 = and i32 %b, -129                           ; <i32> [#uses=1]
   1485   %b_addr.0 = select i1 %1, i32 %3, i32 %2        ; <i32> [#uses=1]
   1486   ret i32 %b_addr.0
   1487 }
   1488 
   1489 However, it's functionally equivalent to:
   1490 
   1491          b = (b & ~0x80) | (a & 0x80);
   1492 
   1493 Which generates this:
   1494 
   1495 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
   1496 entry:
   1497   %0 = and i32 %b, -129                           ; <i32> [#uses=1]
   1498   %1 = and i32 %a, 128                            ; <i32> [#uses=1]
   1499   %2 = or i32 %0, %1                              ; <i32> [#uses=1]
   1500   ret i32 %2
   1501 }
   1502 
   1503 This can be generalized for other forms:
   1504 
   1505      b = (b & ~0x80) | (a & 0x40) << 1;
   1506 
   1507 //===---------------------------------------------------------------------===//
   1508 
   1509 These two functions produce different code. They shouldn't:
   1510 
   1511 #include <stdint.h>
   1512  
   1513 uint8_t p1(uint8_t b, uint8_t a) {
   1514   b = (b & ~0xc0) | (a & 0xc0);
   1515   return (b);
   1516 }
   1517  
   1518 uint8_t p2(uint8_t b, uint8_t a) {
   1519   b = (b & ~0x40) | (a & 0x40);
   1520   b = (b & ~0x80) | (a & 0x80);
   1521   return (b);
   1522 }
   1523 
   1524 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
   1525 entry:
   1526   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
   1527   %1 = and i8 %a, -64                             ; <i8> [#uses=1]
   1528   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
   1529   ret i8 %2
   1530 }
   1531 
   1532 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
   1533 entry:
   1534   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
   1535   %.masked = and i8 %a, 64                        ; <i8> [#uses=1]
   1536   %1 = and i8 %a, -128                            ; <i8> [#uses=1]
   1537   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
   1538   %3 = or i8 %2, %.masked                         ; <i8> [#uses=1]
   1539   ret i8 %3
   1540 }
   1541 
   1542 //===---------------------------------------------------------------------===//
   1543 
   1544 IPSCCP does not currently propagate argument dependent constants through
   1545 functions where it does not not all of the callers.  This includes functions
   1546 with normal external linkage as well as templates, C99 inline functions etc.
   1547 Specifically, it does nothing to:
   1548 
   1549 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
   1550 entry:
   1551   %0 = add nsw i32 %y, %z                         
   1552   %1 = mul i32 %0, %x                             
   1553   %2 = mul i32 %y, %z                             
   1554   %3 = add nsw i32 %1, %2                         
   1555   ret i32 %3
   1556 }
   1557 
   1558 define i32 @test2() nounwind {
   1559 entry:
   1560   %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
   1561   ret i32 %0
   1562 }
   1563 
   1564 It would be interesting extend IPSCCP to be able to handle simple cases like
   1565 this, where all of the arguments to a call are constant.  Because IPSCCP runs
   1566 before inlining, trivial templates and inline functions are not yet inlined.
   1567 The results for a function + set of constant arguments should be memoized in a
   1568 map.
   1569 
   1570 //===---------------------------------------------------------------------===//
   1571 
   1572 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
   1573 libanalysis' constantfolding logic.  This would allow IPSCCP to be able to
   1574 handle simple things like this:
   1575 
   1576 static int foo(const char *X) { return strlen(X); }
   1577 int bar() { return foo("abcd"); }
   1578 
   1579 //===---------------------------------------------------------------------===//
   1580 
   1581 functionattrs doesn't know much about memcpy/memset.  This function should be
   1582 marked readnone rather than readonly, since it only twiddles local memory, but
   1583 functionattrs doesn't handle memset/memcpy/memmove aggressively:
   1584 
   1585 struct X { int *p; int *q; };
   1586 int foo() {
   1587  int i = 0, j = 1;
   1588  struct X x, y;
   1589  int **p;
   1590  y.p = &i;
   1591  x.q = &j;
   1592  p = __builtin_memcpy (&x, &y, sizeof (int *));
   1593  return **p;
   1594 }
   1595 
   1596 This can be seen at:
   1597 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
   1598 
   1599 
   1600 //===---------------------------------------------------------------------===//
   1601 
   1602 Missed instcombine transformation:
   1603 define i1 @a(i32 %x) nounwind readnone {
   1604 entry:
   1605   %cmp = icmp eq i32 %x, 30
   1606   %sub = add i32 %x, -30
   1607   %cmp2 = icmp ugt i32 %sub, 9
   1608   %or = or i1 %cmp, %cmp2
   1609   ret i1 %or
   1610 }
   1611 This should be optimized to a single compare.  Testcase derived from gcc.
   1612 
   1613 //===---------------------------------------------------------------------===//
   1614 
   1615 Missed instcombine or reassociate transformation:
   1616 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
   1617 
   1618 The sgt and slt should be combined into a single comparison. Testcase derived
   1619 from gcc.
   1620 
   1621 //===---------------------------------------------------------------------===//
   1622 
   1623 Missed instcombine transformation:
   1624 
   1625   %382 = srem i32 %tmp14.i, 64                    ; [#uses=1]
   1626   %383 = zext i32 %382 to i64                     ; [#uses=1]
   1627   %384 = shl i64 %381, %383                       ; [#uses=1]
   1628   %385 = icmp slt i32 %tmp14.i, 64                ; [#uses=1]
   1629 
   1630 The srem can be transformed to an and because if %tmp14.i is negative, the
   1631 shift is undefined.  Testcase derived from 403.gcc.
   1632 
   1633 //===---------------------------------------------------------------------===//
   1634 
   1635 This is a range comparison on a divided result (from 403.gcc):
   1636 
   1637   %1337 = sdiv i32 %1336, 8                       ; [#uses=1]
   1638   %.off.i208 = add i32 %1336, 7                   ; [#uses=1]
   1639   %1338 = icmp ult i32 %.off.i208, 15             ; [#uses=1]
   1640   
   1641 We already catch this (removing the sdiv) if there isn't an add, we should
   1642 handle the 'add' as well.  This is a common idiom with it's builtin_alloca code.
   1643 C testcase:
   1644 
   1645 int a(int x) { return (unsigned)(x/16+7) < 15; }
   1646 
   1647 Another similar case involves truncations on 64-bit targets:
   1648 
   1649   %361 = sdiv i64 %.046, 8                        ; [#uses=1]
   1650   %362 = trunc i64 %361 to i32                    ; [#uses=2]
   1651 ...
   1652   %367 = icmp eq i32 %362, 0                      ; [#uses=1]
   1653 
   1654 //===---------------------------------------------------------------------===//
   1655 
   1656 Missed instcombine/dagcombine transformation:
   1657 define void @lshift_lt(i8 zeroext %a) nounwind {
   1658 entry:
   1659   %conv = zext i8 %a to i32
   1660   %shl = shl i32 %conv, 3
   1661   %cmp = icmp ult i32 %shl, 33
   1662   br i1 %cmp, label %if.then, label %if.end
   1663 
   1664 if.then:
   1665   tail call void @bar() nounwind
   1666   ret void
   1667 
   1668 if.end:
   1669   ret void
   1670 }
   1671 declare void @bar() nounwind
   1672 
   1673 The shift should be eliminated.  Testcase derived from gcc.
   1674 
   1675 //===---------------------------------------------------------------------===//
   1676 
   1677 These compile into different code, one gets recognized as a switch and the
   1678 other doesn't due to phase ordering issues (PR6212):
   1679 
   1680 int test1(int mainType, int subType) {
   1681   if (mainType == 7)
   1682     subType = 4;
   1683   else if (mainType == 9)
   1684     subType = 6;
   1685   else if (mainType == 11)
   1686     subType = 9;
   1687   return subType;
   1688 }
   1689 
   1690 int test2(int mainType, int subType) {
   1691   if (mainType == 7)
   1692     subType = 4;
   1693   if (mainType == 9)
   1694     subType = 6;
   1695   if (mainType == 11)
   1696     subType = 9;
   1697   return subType;
   1698 }
   1699 
   1700 //===---------------------------------------------------------------------===//
   1701 
   1702 The following test case (from PR6576):
   1703 
   1704 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
   1705 entry:
   1706  %cond1 = icmp eq i32 %b, 0                      ; <i1> [#uses=1]
   1707  br i1 %cond1, label %exit, label %bb.nph
   1708 bb.nph:                                           ; preds = %entry
   1709  %tmp = mul i32 %b, %a                           ; <i32> [#uses=1]
   1710  ret i32 %tmp
   1711 exit:                                             ; preds = %entry
   1712  ret i32 0
   1713 }
   1714 
   1715 could be reduced to:
   1716 
   1717 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
   1718 entry:
   1719  %tmp = mul i32 %b, %a
   1720  ret i32 %tmp
   1721 }
   1722 
   1723 //===---------------------------------------------------------------------===//
   1724 
   1725 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
   1726 See GCC PR34949
   1727 
   1728 Another interesting case is that something related could be used for variables
   1729 that go const after their ctor has finished.  In these cases, globalopt (which
   1730 can statically run the constructor) could mark the global const (so it gets put
   1731 in the readonly section).  A testcase would be:
   1732 
   1733 #include <complex>
   1734 using namespace std;
   1735 const complex<char> should_be_in_rodata (42,-42);
   1736 complex<char> should_be_in_data (42,-42);
   1737 complex<char> should_be_in_bss;
   1738 
   1739 Where we currently evaluate the ctors but the globals don't become const because
   1740 the optimizer doesn't know they "become const" after the ctor is done.  See
   1741 GCC PR4131 for more examples.
   1742 
   1743 //===---------------------------------------------------------------------===//
   1744 
   1745 In this code:
   1746 
   1747 long foo(long x) {
   1748   return x > 1 ? x : 1;
   1749 }
   1750 
   1751 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
   1752 and cheaper on most targets.
   1753 
   1754 LLVM prefers comparisons with zero over non-zero in general, but in this
   1755 case it choses instead to keep the max operation obvious.
   1756 
   1757 //===---------------------------------------------------------------------===//
   1758 
   1759 define void @a(i32 %x) nounwind {
   1760 entry:
   1761   switch i32 %x, label %if.end [
   1762     i32 0, label %if.then
   1763     i32 1, label %if.then
   1764     i32 2, label %if.then
   1765     i32 3, label %if.then
   1766     i32 5, label %if.then
   1767   ]
   1768 if.then:
   1769   tail call void @foo() nounwind
   1770   ret void
   1771 if.end:
   1772   ret void
   1773 }
   1774 declare void @foo()
   1775 
   1776 Generated code on x86-64 (other platforms give similar results):
   1777 a:
   1778 	cmpl	$5, %edi
   1779 	ja	LBB2_2
   1780 	cmpl	$4, %edi
   1781 	jne	LBB2_3
   1782 .LBB0_2:
   1783 	ret
   1784 .LBB0_3:
   1785 	jmp	foo  # TAILCALL
   1786 
   1787 If we wanted to be really clever, we could simplify the whole thing to
   1788 something like the following, which eliminates a branch:
   1789 	xorl    $1, %edi
   1790 	cmpl	$4, %edi
   1791 	ja	.LBB0_2
   1792 	ret
   1793 .LBB0_2:
   1794 	jmp	foo  # TAILCALL
   1795 
   1796 //===---------------------------------------------------------------------===//
   1797 
   1798 We compile this:
   1799 
   1800 int foo(int a) { return (a & (~15)) / 16; }
   1801 
   1802 Into:
   1803 
   1804 define i32 @foo(i32 %a) nounwind readnone ssp {
   1805 entry:
   1806   %and = and i32 %a, -16
   1807   %div = sdiv i32 %and, 16
   1808   ret i32 %div
   1809 }
   1810 
   1811 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
   1812 should be instcombined into just "a >> 4".
   1813 
   1814 We do get this at the codegen level, so something knows about it, but 
   1815 instcombine should catch it earlier:
   1816 
   1817 _foo:                                   ## @foo
   1818 ## BB#0:                                ## %entry
   1819 	movl	%edi, %eax
   1820 	sarl	$4, %eax
   1821 	ret
   1822 
   1823 //===---------------------------------------------------------------------===//
   1824 
   1825 This code (from GCC PR28685):
   1826 
   1827 int test(int a, int b) {
   1828   int lt = a < b;
   1829   int eq = a == b;
   1830   if (lt)
   1831     return 1;
   1832   return eq;
   1833 }
   1834 
   1835 Is compiled to:
   1836 
   1837 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
   1838 entry:
   1839   %cmp = icmp slt i32 %a, %b
   1840   br i1 %cmp, label %return, label %if.end
   1841 
   1842 if.end:                                           ; preds = %entry
   1843   %cmp5 = icmp eq i32 %a, %b
   1844   %conv6 = zext i1 %cmp5 to i32
   1845   ret i32 %conv6
   1846 
   1847 return:                                           ; preds = %entry
   1848   ret i32 1
   1849 }
   1850 
   1851 it could be:
   1852 
   1853 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
   1854 entry:
   1855   %0 = icmp sle i32 %a, %b
   1856   %retval = zext i1 %0 to i32
   1857   ret i32 %retval
   1858 }
   1859 
   1860 //===---------------------------------------------------------------------===//
   1861 
   1862 This code can be seen in viterbi:
   1863 
   1864   %64 = call noalias i8* @malloc(i64 %62) nounwind
   1865 ...
   1866   %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
   1867   %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
   1868 
   1869 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
   1870 fold to %62.  This is a security win (overflows of malloc will get caught)
   1871 and also a performance win by exposing more memsets to the optimizer.
   1872 
   1873 This occurs several times in viterbi.
   1874 
   1875 Note that this would change the semantics of @llvm.objectsize which by its
   1876 current definition always folds to a constant. We also should make sure that
   1877 we remove checking in code like
   1878 
   1879   char *p = malloc(strlen(s)+1);
   1880   __strcpy_chk(p, s, __builtin_objectsize(p, 0));
   1881 
   1882 //===---------------------------------------------------------------------===//
   1883 
   1884 This code (from Benchmarks/Dhrystone/dry.c):
   1885 
   1886 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
   1887 entry:
   1888   %sext = shl i32 %0, 24
   1889   %conv = ashr i32 %sext, 24
   1890   %sext6 = shl i32 %1, 24
   1891   %conv4 = ashr i32 %sext6, 24
   1892   %cmp = icmp eq i32 %conv, %conv4
   1893   %. = select i1 %cmp, i32 10000, i32 0
   1894   ret i32 %.
   1895 }
   1896 
   1897 Should be simplified into something like:
   1898 
   1899 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
   1900 entry:
   1901   %sext = shl i32 %0, 24
   1902   %conv = and i32 %sext, 0xFF000000
   1903   %sext6 = shl i32 %1, 24
   1904   %conv4 = and i32 %sext6, 0xFF000000
   1905   %cmp = icmp eq i32 %conv, %conv4
   1906   %. = select i1 %cmp, i32 10000, i32 0
   1907   ret i32 %.
   1908 }
   1909 
   1910 and then to:
   1911 
   1912 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
   1913 entry:
   1914   %conv = and i32 %0, 0xFF
   1915   %conv4 = and i32 %1, 0xFF
   1916   %cmp = icmp eq i32 %conv, %conv4
   1917   %. = select i1 %cmp, i32 10000, i32 0
   1918   ret i32 %.
   1919 }
   1920 //===---------------------------------------------------------------------===//
   1921 
   1922 clang -O3 currently compiles this code
   1923 
   1924 int g(unsigned int a) {
   1925   unsigned int c[100];
   1926   c[10] = a;
   1927   c[11] = a;
   1928   unsigned int b = c[10] + c[11];
   1929   if(b > a*2) a = 4;
   1930   else a = 8;
   1931   return a + 7;
   1932 }
   1933 
   1934 into
   1935 
   1936 define i32 @g(i32 a) nounwind readnone {
   1937   %add = shl i32 %a, 1
   1938   %mul = shl i32 %a, 1
   1939   %cmp = icmp ugt i32 %add, %mul
   1940   %a.addr.0 = select i1 %cmp, i32 11, i32 15
   1941   ret i32 %a.addr.0
   1942 }
   1943 
   1944 The icmp should fold to false. This CSE opportunity is only available
   1945 after GVN and InstCombine have run.
   1946 
   1947 //===---------------------------------------------------------------------===//
   1948 
   1949 memcpyopt should turn this:
   1950 
   1951 define i8* @test10(i32 %x) {
   1952   %alloc = call noalias i8* @malloc(i32 %x) nounwind
   1953   call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
   1954   ret i8* %alloc
   1955 }
   1956 
   1957 into a call to calloc.  We should make sure that we analyze calloc as
   1958 aggressively as malloc though.
   1959 
   1960 //===---------------------------------------------------------------------===//
   1961 
   1962 clang -O3 doesn't optimize this:
   1963 
   1964 void f1(int* begin, int* end) {
   1965   std::fill(begin, end, 0);
   1966 }
   1967 
   1968 into a memset.  This is PR8942.
   1969 
   1970 //===---------------------------------------------------------------------===//
   1971 
   1972 clang -O3 -fno-exceptions currently compiles this code:
   1973 
   1974 void f(int N) {
   1975   std::vector<int> v(N);
   1976 
   1977   extern void sink(void*); sink(&v);
   1978 }
   1979 
   1980 into
   1981 
   1982 define void @_Z1fi(i32 %N) nounwind {
   1983 entry:
   1984   %v2 = alloca [3 x i32*], align 8
   1985   %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
   1986   %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
   1987   %conv = sext i32 %N to i64
   1988   store i32* null, i32** %v2.sub, align 8, !tbaa !0
   1989   %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
   1990   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   1991   %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
   1992   store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   1993   %cmp.i.i.i.i = icmp eq i32 %N, 0
   1994   br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
   1995 
   1996 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
   1997   store i32* null, i32** %v2.sub, align 8, !tbaa !0
   1998   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   1999   %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
   2000   store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   2001   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
   2002 
   2003 cond.true.i.i.i.i:                                ; preds = %entry
   2004   %cmp.i.i.i.i.i = icmp slt i32 %N, 0
   2005   br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
   2006 
   2007 if.then.i.i.i.i.i:                                ; preds = %cond.true.i.i.i.i
   2008   call void @_ZSt17__throw_bad_allocv() noreturn nounwind
   2009   unreachable
   2010 
   2011 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i:    ; preds = %cond.true.i.i.i.i
   2012   %mul.i.i.i.i.i = shl i64 %conv, 2
   2013   %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
   2014   %0 = bitcast i8* %call3.i.i.i.i.i to i32*
   2015   store i32* %0, i32** %v2.sub, align 8, !tbaa !0
   2016   store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   2017   %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
   2018   store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   2019   call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
   2020   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
   2021 
   2022 This is just the handling the construction of the vector. Most surprising here
   2023 is the fact that all three null stores in %entry are dead (because we do no
   2024 cross-block DSE).
   2025 
   2026 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
   2027 This is a because the client of LazyValueInfo doesn't simplify all instruction
   2028 operands, just selected ones.
   2029 
   2030 //===---------------------------------------------------------------------===//
   2031 
   2032 clang -O3 -fno-exceptions currently compiles this code:
   2033 
   2034 void f(char* a, int n) {
   2035   __builtin_memset(a, 0, n);
   2036   for (int i = 0; i < n; ++i)
   2037     a[i] = 0;
   2038 }
   2039 
   2040 into:
   2041 
   2042 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
   2043 entry:
   2044   %conv = sext i32 %n to i64
   2045   tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
   2046   %cmp8 = icmp sgt i32 %n, 0
   2047   br i1 %cmp8, label %for.body.lr.ph, label %for.end
   2048 
   2049 for.body.lr.ph:                                   ; preds = %entry
   2050   %tmp10 = add i32 %n, -1
   2051   %tmp11 = zext i32 %tmp10 to i64
   2052   %tmp12 = add i64 %tmp11, 1
   2053   call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
   2054   ret void
   2055 
   2056 for.end:                                          ; preds = %entry
   2057   ret void
   2058 }
   2059 
   2060 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
   2061 the two memset's together.
   2062 
   2063 The issue with the addition only occurs in 64-bit mode, and appears to be at
   2064 least partially caused by Scalar Evolution not keeping its cache updated: it
   2065 returns the "wrong" result immediately after indvars runs, but figures out the
   2066 expected result if it is run from scratch on IR resulting from running indvars.
   2067 
   2068 //===---------------------------------------------------------------------===//
   2069 
   2070 clang -O3 -fno-exceptions currently compiles this code:
   2071 
   2072 struct S {
   2073   unsigned short m1, m2;
   2074   unsigned char m3, m4;
   2075 };
   2076 
   2077 void f(int N) {
   2078   std::vector<S> v(N);
   2079   extern void sink(void*); sink(&v);
   2080 }
   2081 
   2082 into poor code for zero-initializing 'v' when N is >0. The problem is that
   2083 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
   2084 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
   2085 a memset.
   2086 
   2087 In order to handle this we have to:
   2088   A) Teach clang to generate metadata for memsets of structs that have holes in
   2089      them.
   2090   B) Teach clang to use such a memset for zero init of this struct (since it has
   2091      a hole), instead of doing elementwise zeroing.
   2092 
   2093 //===---------------------------------------------------------------------===//
   2094 
   2095 clang -O3 currently compiles this code:
   2096 
   2097 extern const int magic;
   2098 double f() { return 0.0 * magic; }
   2099 
   2100 into
   2101 
   2102 @magic = external constant i32
   2103 
   2104 define double @_Z1fv() nounwind readnone {
   2105 entry:
   2106   %tmp = load i32* @magic, align 4, !tbaa !0
   2107   %conv = sitofp i32 %tmp to double
   2108   %mul = fmul double %conv, 0.000000e+00
   2109   ret double %mul
   2110 }
   2111 
   2112 We should be able to fold away this fmul to 0.0.  More generally, fmul(x,0.0)
   2113 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
   2114 not an INF.  The CannotBeNegativeZero predicate in value tracking should be
   2115 extended to support general "fpclassify" operations that can return 
   2116 yes/no/unknown for each of these predicates.
   2117 
   2118 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
   2119 we know that it isn't +/-Inf if the floating point type has enough exponent bits
   2120 to represent the largest integer value as < inf.
   2121 
   2122 //===---------------------------------------------------------------------===//
   2123 
   2124 When optimizing a transformation that can change the sign of 0.0 (such as the
   2125 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
   2126 expression doesn't matter.  For example, by the above rules, we can't transform
   2127 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
   2128 expression is defined to be -0.0.
   2129 
   2130 If we look at the uses of the fmul for example, we might be able to prove that
   2131 all uses don't care about the sign of zero.  For example, if we have:
   2132 
   2133   fadd(fmul(sitofp(x), 0.0), 2.0)
   2134 
   2135 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
   2136 transform the fmul to 0.0, and then the fadd to 2.0.
   2137 
   2138 //===---------------------------------------------------------------------===//
   2139 
   2140 We should enhance memcpy/memcpy/memset to allow a metadata node on them
   2141 indicating that some bytes of the transfer are undefined.  This is useful for
   2142 frontends like clang when lowering struct copies, when some elements of the
   2143 struct are undefined.  Consider something like this:
   2144 
   2145 struct x {
   2146   char a;
   2147   int b[4];
   2148 };
   2149 void foo(struct x*P);
   2150 struct x testfunc() {
   2151   struct x V1, V2;
   2152   foo(&V1);
   2153   V2 = V1;
   2154 
   2155   return V2;
   2156 }
   2157 
   2158 We currently compile this to:
   2159 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
   2160 
   2161 
   2162 %struct.x = type { i8, [4 x i32] }
   2163 
   2164 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
   2165 entry:
   2166   %V1 = alloca %struct.x, align 4
   2167   call void @foo(%struct.x* %V1)
   2168   %tmp1 = bitcast %struct.x* %V1 to i8*
   2169   %0 = bitcast %struct.x* %V1 to i160*
   2170   %srcval1 = load i160* %0, align 4
   2171   %tmp2 = bitcast %struct.x* %agg.result to i8*
   2172   %1 = bitcast %struct.x* %agg.result to i160*
   2173   store i160 %srcval1, i160* %1, align 4
   2174   ret void
   2175 }
   2176 
   2177 This happens because SRoA sees that the temp alloca has is being memcpy'd into
   2178 and out of and it has holes and it has to be conservative.  If we knew about the
   2179 holes, then this could be much much better.
   2180 
   2181 Having information about these holes would also improve memcpy (etc) lowering at
   2182 llc time when it gets inlined, because we can use smaller transfers.  This also
   2183 avoids partial register stalls in some important cases.
   2184 
   2185 //===---------------------------------------------------------------------===//
   2186 
   2187 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
   2188 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
   2189 example:
   2190 
   2191  %indvar.next90 = add i64 %indvar89, 1     ;; Has 2 uses
   2192  %tmp96 = add i64 %tmp95, 1                ;; Has 1 use
   2193  %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
   2194 
   2195 We don't fold this because we don't want to introduce an overlapped live range
   2196 of the ivar.  However if we can make this more aggressive without causing
   2197 performance issues in two ways:
   2198 
   2199 1. If *either* the LHS or RHS has a single use, we can definitely do the
   2200    transformation.  In the overlapping liverange case we're trading one register
   2201    use for one fewer operation, which is a reasonable trade.  Before doing this
   2202    we should verify that the llc output actually shrinks for some benchmarks.
   2203 2. If both ops have multiple uses, we can still fold it if the operations are
   2204    both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
   2205    increase register pressure.
   2206 
   2207 There are a ton of icmp's we aren't simplifying because of the reg pressure
   2208 concern.  Care is warranted here though because many of these are induction
   2209 variables and other cases that matter a lot to performance, like the above.
   2210 Here's a blob of code that you can drop into the bottom of visitICmp to see some
   2211 missed cases:
   2212 
   2213   { Value *A, *B, *C, *D;
   2214     if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 
   2215         match(Op1, m_Add(m_Value(C), m_Value(D))) &&
   2216         (A == C || A == D || B == C || B == D)) {
   2217       errs() << "OP0 = " << *Op0 << "  U=" << Op0->getNumUses() << "\n";
   2218       errs() << "OP1 = " << *Op1 << "  U=" << Op1->getNumUses() << "\n";
   2219       errs() << "CMP = " << I << "\n\n";
   2220     }
   2221   }
   2222 
   2223 //===---------------------------------------------------------------------===//
   2224 
   2225 define i1 @test1(i32 %x) nounwind {
   2226   %and = and i32 %x, 3
   2227   %cmp = icmp ult i32 %and, 2
   2228   ret i1 %cmp
   2229 }
   2230 
   2231 Can be folded to (x & 2) == 0.
   2232 
   2233 define i1 @test2(i32 %x) nounwind {
   2234   %and = and i32 %x, 3
   2235   %cmp = icmp ugt i32 %and, 1
   2236   ret i1 %cmp
   2237 }
   2238 
   2239 Can be folded to (x & 2) != 0.
   2240 
   2241 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
   2242 icmp transform.
   2243 
   2244 //===---------------------------------------------------------------------===//
   2245 
   2246 This code:
   2247 
   2248 typedef struct {
   2249 int f1:1;
   2250 int f2:1;
   2251 int f3:1;
   2252 int f4:29;
   2253 } t1;
   2254 
   2255 typedef struct {
   2256 int f1:1;
   2257 int f2:1;
   2258 int f3:30;
   2259 } t2;
   2260 
   2261 t1 s1;
   2262 t2 s2;
   2263 
   2264 void func1(void)
   2265 {
   2266 s1.f1 = s2.f1;
   2267 s1.f2 = s2.f2;
   2268 }
   2269 
   2270 Compiles into this IR (on x86-64 at least):
   2271 
   2272 %struct.t1 = type { i8, [3 x i8] }
   2273 @s2 = global %struct.t1 zeroinitializer, align 4
   2274 @s1 = global %struct.t1 zeroinitializer, align 4
   2275 define void @func1() nounwind ssp noredzone {
   2276 entry:
   2277   %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
   2278   %bf.val.sext5 = and i32 %0, 1
   2279   %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
   2280   %2 = and i32 %1, -4
   2281   %3 = or i32 %2, %bf.val.sext5
   2282   %bf.val.sext26 = and i32 %0, 2
   2283   %4 = or i32 %3, %bf.val.sext26
   2284   store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
   2285   ret void
   2286 }
   2287 
   2288 The two or/and's should be merged into one each.
   2289 
   2290 //===---------------------------------------------------------------------===//
   2291 
   2292 Machine level code hoisting can be useful in some cases.  For example, PR9408
   2293 is about:
   2294 
   2295 typedef union {
   2296  void (*f1)(int);
   2297  void (*f2)(long);
   2298 } funcs;
   2299 
   2300 void foo(funcs f, int which) {
   2301  int a = 5;
   2302  if (which) {
   2303    f.f1(a);
   2304  } else {
   2305    f.f2(a);
   2306  }
   2307 }
   2308 
   2309 which we compile to:
   2310 
   2311 foo:                                    # @foo
   2312 # BB#0:                                 # %entry
   2313        pushq   %rbp
   2314        movq    %rsp, %rbp
   2315        testl   %esi, %esi
   2316        movq    %rdi, %rax
   2317        je      .LBB0_2
   2318 # BB#1:                                 # %if.then
   2319        movl    $5, %edi
   2320        callq   *%rax
   2321        popq    %rbp
   2322        ret
   2323 .LBB0_2:                                # %if.else
   2324        movl    $5, %edi
   2325        callq   *%rax
   2326        popq    %rbp
   2327        ret
   2328 
   2329 Note that bb1 and bb2 are the same.  This doesn't happen at the IR level
   2330 because one call is passing an i32 and the other is passing an i64.
   2331 
   2332 //===---------------------------------------------------------------------===//
   2333 
   2334 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
   2335 store_bit_field).  The rem should be replaced with a multiply and subtract:
   2336 
   2337   %3 = sdiv i32 %A, %B
   2338   %4 = srem i32 %A, %B
   2339 
   2340 Similarly for udiv/urem.  Note that this shouldn't be done on X86 or ARM,
   2341 which can do this in a single operation (instruction or libcall).  It is
   2342 probably best to do this in the code generator.
   2343 
   2344 //===---------------------------------------------------------------------===//
   2345 
   2346 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
   2347 should fold to (x & y) == 0.
   2348 
   2349 //===---------------------------------------------------------------------===//
   2350 
   2351 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
   2352 should fold to x > y.
   2353 
   2354 //===---------------------------------------------------------------------===//
   2355