1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "base/logging.h" 18 #include "base/mutex.h" 19 #include "dex_file-inl.h" 20 #include "dex_instruction-inl.h" 21 #include "driver/compiler_driver.h" 22 #include "driver/dex_compilation_unit.h" 23 #include "mirror/art_field-inl.h" 24 #include "mirror/art_method-inl.h" 25 #include "mirror/class-inl.h" 26 #include "mirror/dex_cache.h" 27 28 namespace art { 29 namespace optimizer { 30 31 // Controls quickening activation. 32 const bool kEnableQuickening = true; 33 // Control check-cast elision. 34 const bool kEnableCheckCastEllision = true; 35 36 class DexCompiler { 37 public: 38 DexCompiler(art::CompilerDriver& compiler, 39 const DexCompilationUnit& unit, 40 DexToDexCompilationLevel dex_to_dex_compilation_level) 41 : driver_(compiler), 42 unit_(unit), 43 dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {} 44 45 ~DexCompiler() {} 46 47 void Compile(); 48 49 private: 50 const DexFile& GetDexFile() const { 51 return *unit_.GetDexFile(); 52 } 53 54 // TODO: since the whole compilation pipeline uses a "const DexFile", we need 55 // to "unconst" here. The DEX-to-DEX compiler should work on a non-const DexFile. 56 DexFile& GetModifiableDexFile() { 57 return *const_cast<DexFile*>(unit_.GetDexFile()); 58 } 59 60 bool PerformOptimizations() const { 61 return dex_to_dex_compilation_level_ >= kOptimize; 62 } 63 64 // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where 65 // a barrier is required. 66 void CompileReturnVoid(Instruction* inst, uint32_t dex_pc); 67 68 // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In 69 // this case, returns the second NOP instruction pointer. Otherwise, returns 70 // the given "inst". 71 Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc); 72 73 // Compiles a field access into a quick field access. 74 // The field index is replaced by an offset within an Object where we can read 75 // from / write to this field. Therefore, this does not involve any resolution 76 // at runtime. 77 // Since the field index is encoded with 16 bits, we can replace it only if the 78 // field offset can be encoded with 16 bits too. 79 void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, 80 Instruction::Code new_opcode, bool is_put); 81 82 // Compiles a virtual method invocation into a quick virtual method invocation. 83 // The method index is replaced by the vtable index where the corresponding 84 // AbstractMethod can be found. Therefore, this does not involve any resolution 85 // at runtime. 86 // Since the method index is encoded with 16 bits, we can replace it only if the 87 // vtable index can be encoded with 16 bits too. 88 void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, 89 Instruction::Code new_opcode, bool is_range); 90 91 CompilerDriver& driver_; 92 const DexCompilationUnit& unit_; 93 const DexToDexCompilationLevel dex_to_dex_compilation_level_; 94 95 DISALLOW_COPY_AND_ASSIGN(DexCompiler); 96 }; 97 98 void DexCompiler::Compile() { 99 DCHECK_GE(dex_to_dex_compilation_level_, kRequired); 100 const DexFile::CodeItem* code_item = unit_.GetCodeItem(); 101 const uint16_t* insns = code_item->insns_; 102 const uint32_t insns_size = code_item->insns_size_in_code_units_; 103 Instruction* inst = const_cast<Instruction*>(Instruction::At(insns)); 104 105 for (uint32_t dex_pc = 0; dex_pc < insns_size; 106 inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) { 107 switch (inst->Opcode()) { 108 case Instruction::RETURN_VOID: 109 CompileReturnVoid(inst, dex_pc); 110 break; 111 112 case Instruction::CHECK_CAST: 113 inst = CompileCheckCast(inst, dex_pc); 114 break; 115 116 case Instruction::IGET: 117 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false); 118 break; 119 120 case Instruction::IGET_WIDE: 121 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false); 122 break; 123 124 case Instruction::IGET_OBJECT: 125 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false); 126 break; 127 128 case Instruction::IPUT: 129 case Instruction::IPUT_BOOLEAN: 130 case Instruction::IPUT_BYTE: 131 case Instruction::IPUT_CHAR: 132 case Instruction::IPUT_SHORT: 133 // These opcodes have the same implementation in interpreter so group 134 // them under IPUT_QUICK. 135 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true); 136 break; 137 138 case Instruction::IPUT_WIDE: 139 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true); 140 break; 141 142 case Instruction::IPUT_OBJECT: 143 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true); 144 break; 145 146 case Instruction::INVOKE_VIRTUAL: 147 CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false); 148 break; 149 150 case Instruction::INVOKE_VIRTUAL_RANGE: 151 CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true); 152 break; 153 154 default: 155 // Nothing to do. 156 break; 157 } 158 } 159 } 160 161 void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) { 162 DCHECK(inst->Opcode() == Instruction::RETURN_VOID); 163 // Are we compiling a non-clinit constructor? 164 if (!unit_.IsConstructor() || unit_.IsStatic()) { 165 return; 166 } 167 // Do we need a constructor barrier ? 168 if (!driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(), 169 unit_.GetClassDefIndex())) { 170 return; 171 } 172 // Replace RETURN_VOID by RETURN_VOID_BARRIER. 173 VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode()) 174 << " by " << Instruction::Name(Instruction::RETURN_VOID_BARRIER) 175 << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " 176 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); 177 inst->SetOpcode(Instruction::RETURN_VOID_BARRIER); 178 } 179 180 Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) { 181 if (!kEnableCheckCastEllision || !PerformOptimizations()) { 182 return inst; 183 } 184 MethodReference referrer(&GetDexFile(), unit_.GetDexMethodIndex()); 185 if (!driver_.IsSafeCast(referrer, dex_pc)) { 186 return inst; 187 } 188 // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code 189 // units and a "nop" instruction size is 1 code unit, we need to replace it by 190 // 2 consecutive NOP instructions. 191 // Because the caller loops over instructions by calling Instruction::Next onto 192 // the current instruction, we need to return the 2nd NOP instruction. Indeed, 193 // its next instruction is the former check-cast's next instruction. 194 VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode()) 195 << " by replacing it with 2 NOPs at dex pc " 196 << StringPrintf("0x%x", dex_pc) << " in method " 197 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); 198 // We are modifying 4 consecutive bytes. 199 inst->SetOpcode(Instruction::NOP); 200 inst->SetVRegA_10x(0u); // keep compliant with verifier. 201 // Get to next instruction which is the second half of check-cast and replace 202 // it by a NOP. 203 inst = const_cast<Instruction*>(inst->Next()); 204 inst->SetOpcode(Instruction::NOP); 205 inst->SetVRegA_10x(0u); // keep compliant with verifier. 206 return inst; 207 } 208 209 void DexCompiler::CompileInstanceFieldAccess(Instruction* inst, 210 uint32_t dex_pc, 211 Instruction::Code new_opcode, 212 bool is_put) { 213 if (!kEnableQuickening || !PerformOptimizations()) { 214 return; 215 } 216 uint32_t field_idx = inst->VRegC_22c(); 217 int field_offset; 218 bool is_volatile; 219 bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, field_offset, 220 is_volatile, is_put); 221 if (fast_path && !is_volatile && IsUint(16, field_offset)) { 222 VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) 223 << " to " << Instruction::Name(new_opcode) 224 << " by replacing field index " << field_idx 225 << " by field offset " << field_offset 226 << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " 227 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); 228 // We are modifying 4 consecutive bytes. 229 inst->SetOpcode(new_opcode); 230 // Replace field index by field offset. 231 inst->SetVRegC_22c(static_cast<uint16_t>(field_offset)); 232 } 233 } 234 235 void DexCompiler::CompileInvokeVirtual(Instruction* inst, 236 uint32_t dex_pc, 237 Instruction::Code new_opcode, 238 bool is_range) { 239 if (!kEnableQuickening || !PerformOptimizations()) { 240 return; 241 } 242 uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); 243 MethodReference target_method(&GetDexFile(), method_idx); 244 InvokeType invoke_type = kVirtual; 245 InvokeType original_invoke_type = invoke_type; 246 int vtable_idx; 247 uintptr_t direct_code; 248 uintptr_t direct_method; 249 bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc, invoke_type, 250 target_method, vtable_idx, 251 direct_code, direct_method, 252 false); 253 // TODO: support devirtualization. 254 if (fast_path && original_invoke_type == invoke_type) { 255 if (vtable_idx >= 0 && IsUint(16, vtable_idx)) { 256 VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) 257 << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")" 258 << " to " << Instruction::Name(new_opcode) 259 << " by replacing method index " << method_idx 260 << " by vtable index " << vtable_idx 261 << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " 262 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); 263 // We are modifying 4 consecutive bytes. 264 inst->SetOpcode(new_opcode); 265 // Replace method index by vtable index. 266 if (is_range) { 267 inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx)); 268 } else { 269 inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx)); 270 } 271 } 272 } 273 } 274 275 } // namespace optimizer 276 } // namespace art 277 278 extern "C" void ArtCompileDEX(art::CompilerDriver& compiler, const art::DexFile::CodeItem* code_item, 279 uint32_t access_flags, art::InvokeType invoke_type, 280 uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, 281 const art::DexFile& dex_file, 282 art::DexToDexCompilationLevel dex_to_dex_compilation_level) { 283 if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) { 284 art::DexCompilationUnit unit(NULL, class_loader, art::Runtime::Current()->GetClassLinker(), 285 dex_file, code_item, class_def_idx, method_idx, access_flags); 286 art::optimizer::DexCompiler dex_compiler(compiler, unit, dex_to_dex_compilation_level); 287 dex_compiler.Compile(); 288 } 289 } 290