1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 // 31 // A simple C++ interface to the SuiteSparse and CHOLMOD libraries. 32 33 #ifndef CERES_INTERNAL_SUITESPARSE_H_ 34 #define CERES_INTERNAL_SUITESPARSE_H_ 35 36 37 #ifndef CERES_NO_SUITESPARSE 38 39 #include <cstring> 40 #include <string> 41 #include <vector> 42 43 #include "ceres/internal/port.h" 44 #include "cholmod.h" 45 #include "glog/logging.h" 46 #include "SuiteSparseQR.hpp" 47 48 // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled 49 // if SuiteSparse was compiled with Metis support. This makes 50 // calling and linking into cholmod_camd problematic even though it 51 // has nothing to do with Metis. This has been fixed reliably in 52 // 4.2.0. 53 // 54 // The fix was actually committed in 4.1.0, but there is 55 // some confusion about a silent update to the tar ball, so we are 56 // being conservative and choosing the next minor version where 57 // things are stable. 58 #if (SUITESPARSE_VERSION < 4002) 59 #define CERES_NO_CAMD 60 #endif 61 62 // UF_long is deprecated but SuiteSparse_long is only available in 63 // newer versions of SuiteSparse. So for older versions of 64 // SuiteSparse, we define SuiteSparse_long to be the same as UF_long, 65 // which is what recent versions of SuiteSparse do anyways. 66 #ifndef SuiteSparse_long 67 #define SuiteSparse_long UF_long 68 #endif 69 70 namespace ceres { 71 namespace internal { 72 73 class CompressedRowSparseMatrix; 74 class TripletSparseMatrix; 75 76 // The raw CHOLMOD and SuiteSparseQR libraries have a slightly 77 // cumbersome c like calling format. This object abstracts it away and 78 // provides the user with a simpler interface. The methods here cannot 79 // be static as a cholmod_common object serves as a global variable 80 // for all cholmod function calls. 81 class SuiteSparse { 82 public: 83 SuiteSparse(); 84 ~SuiteSparse(); 85 86 // Functions for building cholmod_sparse objects from sparse 87 // matrices stored in triplet form. The matrix A is not 88 // modifed. Called owns the result. 89 cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A); 90 91 // This function works like CreateSparseMatrix, except that the 92 // return value corresponds to A' rather than A. 93 cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A); 94 95 // Create a cholmod_sparse wrapper around the contents of A. This is 96 // a shallow object, which refers to the contents of A and does not 97 // use the SuiteSparse machinery to allocate memory. 98 cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); 99 100 // Given a vector x, build a cholmod_dense vector of size out_size 101 // with the first in_size entries copied from x. If x is NULL, then 102 // an all zeros vector is returned. Caller owns the result. 103 cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size); 104 105 // The matrix A is scaled using the matrix whose diagonal is the 106 // vector scale. mode describes how scaling is applied. Possible 107 // values are CHOLMOD_ROW for row scaling - diag(scale) * A, 108 // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM 109 // for symmetric scaling which scales both the rows and the columns 110 // - diag(scale) * A * diag(scale). 111 void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) { 112 cholmod_scale(scale, mode, A, &cc_); 113 } 114 115 // Create and return a matrix m = A * A'. Caller owns the 116 // result. The matrix A is not modified. 117 cholmod_sparse* AATranspose(cholmod_sparse* A) { 118 cholmod_sparse*m = cholmod_aat(A, NULL, A->nrow, 1, &cc_); 119 m->stype = 1; // Pay attention to the upper triangular part. 120 return m; 121 } 122 123 // y = alpha * A * x + beta * y. Only y is modified. 124 void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta, 125 cholmod_dense* x, cholmod_dense* y) { 126 double alpha_[2] = {alpha, 0}; 127 double beta_[2] = {beta, 0}; 128 cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_); 129 } 130 131 // Find an ordering of A or AA' (if A is unsymmetric) that minimizes 132 // the fill-in in the Cholesky factorization of the corresponding 133 // matrix. This is done by using the AMD algorithm. 134 // 135 // Using this ordering, the symbolic Cholesky factorization of A (or 136 // AA') is computed and returned. 137 // 138 // A is not modified, only the pattern of non-zeros of A is used, 139 // the actual numerical values in A are of no consequence. 140 // 141 // Caller owns the result. 142 cholmod_factor* AnalyzeCholesky(cholmod_sparse* A); 143 144 cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A, 145 const vector<int>& row_blocks, 146 const vector<int>& col_blocks); 147 148 // If A is symmetric, then compute the symbolic Cholesky 149 // factorization of A(ordering, ordering). If A is unsymmetric, then 150 // compute the symbolic factorization of 151 // A(ordering,:) A(ordering,:)'. 152 // 153 // A is not modified, only the pattern of non-zeros of A is used, 154 // the actual numerical values in A are of no consequence. 155 // 156 // Caller owns the result. 157 cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A, 158 const vector<int>& ordering); 159 160 // Perform a symbolic factorization of A without re-ordering A. No 161 // postordering of the elimination tree is performed. This ensures 162 // that the symbolic factor does not introduce an extra permutation 163 // on the matrix. See the documentation for CHOLMOD for more details. 164 cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A); 165 166 // Use the symbolic factorization in L, to find the numerical 167 // factorization for the matrix A or AA^T. Return true if 168 // successful, false otherwise. L contains the numeric factorization 169 // on return. 170 bool Cholesky(cholmod_sparse* A, cholmod_factor* L); 171 172 // Given a Cholesky factorization of a matrix A = LL^T, solve the 173 // linear system Ax = b, and return the result. If the Solve fails 174 // NULL is returned. Caller owns the result. 175 cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b); 176 177 // Combine the calls to Cholesky and Solve into a single call. If 178 // the cholesky factorization or the solve fails, return 179 // NULL. Caller owns the result. 180 cholmod_dense* SolveCholesky(cholmod_sparse* A, 181 cholmod_factor* L, 182 cholmod_dense* b); 183 184 // By virtue of the modeling layer in Ceres being block oriented, 185 // all the matrices used by Ceres are also block oriented. When 186 // doing sparse direct factorization of these matrices the 187 // fill-reducing ordering algorithms (in particular AMD) can either 188 // be run on the block or the scalar form of these matrices. The two 189 // SuiteSparse::AnalyzeCholesky methods allows the the client to 190 // compute the symbolic factorization of a matrix by either using 191 // AMD on the matrix or a user provided ordering of the rows. 192 // 193 // But since the underlying matrices are block oriented, it is worth 194 // running AMD on just the block structre of these matrices and then 195 // lifting these block orderings to a full scalar ordering. This 196 // preserves the block structure of the permuted matrix, and exposes 197 // more of the super-nodal structure of the matrix to the numerical 198 // factorization routines. 199 // 200 // Find the block oriented AMD ordering of a matrix A, whose row and 201 // column blocks are given by row_blocks, and col_blocks 202 // respectively. The matrix may or may not be symmetric. The entries 203 // of col_blocks do not need to sum to the number of columns in 204 // A. If this is the case, only the first sum(col_blocks) are used 205 // to compute the ordering. 206 bool BlockAMDOrdering(const cholmod_sparse* A, 207 const vector<int>& row_blocks, 208 const vector<int>& col_blocks, 209 vector<int>* ordering); 210 211 // Find a fill reducing approximate minimum degree 212 // ordering. ordering is expected to be large enough to hold the 213 // ordering. 214 void ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering); 215 216 217 // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled 218 // if SuiteSparse was compiled with Metis support. This makes 219 // calling and linking into cholmod_camd problematic even though it 220 // has nothing to do with Metis. This has been fixed reliably in 221 // 4.2.0. 222 // 223 // The fix was actually committed in 4.1.0, but there is 224 // some confusion about a silent update to the tar ball, so we are 225 // being conservative and choosing the next minor version where 226 // things are stable. 227 static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() { 228 return (SUITESPARSE_VERSION>4001); 229 } 230 231 // Find a fill reducing approximate minimum degree 232 // ordering. constraints is an array which associates with each 233 // column of the matrix an elimination group. i.e., all columns in 234 // group 0 are eliminated first, all columns in group 1 are 235 // eliminated next etc. This function finds a fill reducing ordering 236 // that obeys these constraints. 237 // 238 // Calling ApproximateMinimumDegreeOrdering is equivalent to calling 239 // ConstrainedApproximateMinimumDegreeOrdering with a constraint 240 // array that puts all columns in the same elimination group. 241 // 242 // If CERES_NO_CAMD is defined then calling this function will 243 // result in a crash. 244 void ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, 245 int* constraints, 246 int* ordering); 247 248 void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); } 249 void Free(cholmod_dense* m) { cholmod_free_dense(&m, &cc_); } 250 void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); } 251 252 void Print(cholmod_sparse* m, const string& name) { 253 cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_); 254 } 255 256 void Print(cholmod_dense* m, const string& name) { 257 cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_); 258 } 259 260 void Print(cholmod_triplet* m, const string& name) { 261 cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_); 262 } 263 264 cholmod_common* mutable_cc() { return &cc_; } 265 266 private: 267 cholmod_common cc_; 268 }; 269 270 } // namespace internal 271 } // namespace ceres 272 273 #else // CERES_NO_SUITESPARSE 274 275 class SuiteSparse {}; 276 typedef void cholmod_factor; 277 278 #endif // CERES_NO_SUITESPARSE 279 280 #endif // CERES_INTERNAL_SUITESPARSE_H_ 281