1 // Copyright 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "cc/resources/picture_layer_tiling.h" 6 7 #include <algorithm> 8 #include <cmath> 9 #include <limits> 10 11 #include "base/debug/trace_event.h" 12 #include "cc/base/math_util.h" 13 #include "ui/gfx/point_conversions.h" 14 #include "ui/gfx/rect_conversions.h" 15 #include "ui/gfx/safe_integer_conversions.h" 16 #include "ui/gfx/size_conversions.h" 17 18 namespace cc { 19 20 scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create( 21 float contents_scale, 22 gfx::Size layer_bounds, 23 PictureLayerTilingClient* client) { 24 return make_scoped_ptr(new PictureLayerTiling(contents_scale, 25 layer_bounds, 26 client)); 27 } 28 29 PictureLayerTiling::PictureLayerTiling(float contents_scale, 30 gfx::Size layer_bounds, 31 PictureLayerTilingClient* client) 32 : contents_scale_(contents_scale), 33 layer_bounds_(layer_bounds), 34 resolution_(NON_IDEAL_RESOLUTION), 35 client_(client), 36 tiling_data_(gfx::Size(), gfx::Size(), true), 37 last_impl_frame_time_in_seconds_(0.0) { 38 gfx::Size content_bounds = 39 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale)); 40 gfx::Size tile_size = client_->CalculateTileSize(content_bounds); 41 42 DCHECK(!gfx::ToFlooredSize( 43 gfx::ScaleSize(layer_bounds, contents_scale)).IsEmpty()) << 44 "Tiling created with scale too small as contents become empty." << 45 " Layer bounds: " << layer_bounds.ToString() << 46 " Contents scale: " << contents_scale; 47 48 tiling_data_.SetTotalSize(content_bounds); 49 tiling_data_.SetMaxTextureSize(tile_size); 50 } 51 52 PictureLayerTiling::~PictureLayerTiling() { 53 } 54 55 void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) { 56 client_ = client; 57 } 58 59 gfx::Rect PictureLayerTiling::ContentRect() const { 60 return gfx::Rect(tiling_data_.total_size()); 61 } 62 63 gfx::SizeF PictureLayerTiling::ContentSizeF() const { 64 return gfx::ScaleSize(layer_bounds_, contents_scale_); 65 } 66 67 Tile* PictureLayerTiling::TileAt(int i, int j) const { 68 TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j)); 69 if (iter == tiles_.end()) 70 return NULL; 71 return iter->second.get(); 72 } 73 74 void PictureLayerTiling::CreateTile(int i, 75 int j, 76 const PictureLayerTiling* twin_tiling) { 77 TileMapKey key(i, j); 78 DCHECK(tiles_.find(key) == tiles_.end()); 79 80 gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j); 81 gfx::Rect tile_rect = paint_rect; 82 tile_rect.set_size(tiling_data_.max_texture_size()); 83 84 // Check our twin for a valid tile. 85 if (twin_tiling && 86 tiling_data_.max_texture_size() == 87 twin_tiling->tiling_data_.max_texture_size()) { 88 if (Tile* candidate_tile = twin_tiling->TileAt(i, j)) { 89 gfx::Rect rect = 90 gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_); 91 if (!client_->GetInvalidation()->Intersects(rect)) { 92 tiles_[key] = candidate_tile; 93 return; 94 } 95 } 96 } 97 98 // Create a new tile because our twin didn't have a valid one. 99 scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect); 100 if (tile.get()) 101 tiles_[key] = tile; 102 } 103 104 Region PictureLayerTiling::OpaqueRegionInContentRect( 105 gfx::Rect content_rect) const { 106 Region opaque_region; 107 // TODO(enne): implement me 108 return opaque_region; 109 } 110 111 void PictureLayerTiling::SetCanUseLCDText(bool can_use_lcd_text) { 112 for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) 113 it->second->set_can_use_lcd_text(can_use_lcd_text); 114 } 115 116 void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() { 117 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); 118 for (TilingData::Iterator iter(&tiling_data_, live_tiles_rect_); iter; 119 ++iter) { 120 TileMapKey key = iter.index(); 121 TileMap::iterator find = tiles_.find(key); 122 if (find != tiles_.end()) 123 continue; 124 CreateTile(key.first, key.second, twin_tiling); 125 } 126 } 127 128 void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) { 129 if (layer_bounds_ == layer_bounds) 130 return; 131 132 DCHECK(!layer_bounds.IsEmpty()); 133 134 gfx::Size old_layer_bounds = layer_bounds_; 135 layer_bounds_ = layer_bounds; 136 gfx::Size old_content_bounds = tiling_data_.total_size(); 137 gfx::Size content_bounds = 138 gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_)); 139 140 gfx::Size tile_size = client_->CalculateTileSize(content_bounds); 141 if (tile_size != tiling_data_.max_texture_size()) { 142 tiling_data_.SetTotalSize(content_bounds); 143 tiling_data_.SetMaxTextureSize(tile_size); 144 Reset(); 145 return; 146 } 147 148 // Any tiles outside our new bounds are invalid and should be dropped. 149 gfx::Rect bounded_live_tiles_rect(live_tiles_rect_); 150 bounded_live_tiles_rect.Intersect(gfx::Rect(content_bounds)); 151 SetLiveTilesRect(bounded_live_tiles_rect); 152 tiling_data_.SetTotalSize(content_bounds); 153 154 // Create tiles for newly exposed areas. 155 Region layer_region((gfx::Rect(layer_bounds_))); 156 layer_region.Subtract(gfx::Rect(old_layer_bounds)); 157 Invalidate(layer_region); 158 } 159 160 void PictureLayerTiling::Invalidate(const Region& layer_region) { 161 std::vector<TileMapKey> new_tile_keys; 162 for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) { 163 gfx::Rect layer_rect = iter.rect(); 164 gfx::Rect content_rect = 165 gfx::ScaleToEnclosingRect(layer_rect, contents_scale_); 166 content_rect.Intersect(live_tiles_rect_); 167 if (content_rect.IsEmpty()) 168 continue; 169 for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) { 170 TileMapKey key(iter.index()); 171 TileMap::iterator find = tiles_.find(key); 172 if (find == tiles_.end()) 173 continue; 174 tiles_.erase(find); 175 new_tile_keys.push_back(key); 176 } 177 } 178 179 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); 180 for (size_t i = 0; i < new_tile_keys.size(); ++i) 181 CreateTile(new_tile_keys[i].first, new_tile_keys[i].second, twin_tiling); 182 } 183 184 PictureLayerTiling::CoverageIterator::CoverageIterator() 185 : tiling_(NULL), 186 current_tile_(NULL), 187 tile_i_(0), 188 tile_j_(0), 189 left_(0), 190 top_(0), 191 right_(-1), 192 bottom_(-1) { 193 } 194 195 PictureLayerTiling::CoverageIterator::CoverageIterator( 196 const PictureLayerTiling* tiling, 197 float dest_scale, 198 gfx::Rect dest_rect) 199 : tiling_(tiling), 200 dest_rect_(dest_rect), 201 dest_to_content_scale_(0), 202 current_tile_(NULL), 203 tile_i_(0), 204 tile_j_(0), 205 left_(0), 206 top_(0), 207 right_(-1), 208 bottom_(-1) { 209 DCHECK(tiling_); 210 if (dest_rect_.IsEmpty()) 211 return; 212 213 dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale; 214 // This is the maximum size that the dest rect can be, given the content size. 215 gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize( 216 tiling_->ContentRect().size(), 217 1 / dest_to_content_scale_, 218 1 / dest_to_content_scale_)); 219 220 gfx::Rect content_rect = 221 gfx::ScaleToEnclosingRect(dest_rect_, 222 dest_to_content_scale_, 223 dest_to_content_scale_); 224 // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to 225 // check for non-intersection first. 226 content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size())); 227 if (content_rect.IsEmpty()) 228 return; 229 230 left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x()); 231 top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y()); 232 right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord( 233 content_rect.right() - 1); 234 bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord( 235 content_rect.bottom() - 1); 236 237 tile_i_ = left_ - 1; 238 tile_j_ = top_; 239 ++(*this); 240 } 241 242 PictureLayerTiling::CoverageIterator::~CoverageIterator() { 243 } 244 245 PictureLayerTiling::CoverageIterator& 246 PictureLayerTiling::CoverageIterator::operator++() { 247 if (tile_j_ > bottom_) 248 return *this; 249 250 bool first_time = tile_i_ < left_; 251 bool new_row = false; 252 tile_i_++; 253 if (tile_i_ > right_) { 254 tile_i_ = left_; 255 tile_j_++; 256 new_row = true; 257 if (tile_j_ > bottom_) { 258 current_tile_ = NULL; 259 return *this; 260 } 261 } 262 263 current_tile_ = tiling_->TileAt(tile_i_, tile_j_); 264 265 // Calculate the current geometry rect. Due to floating point rounding 266 // and ToEnclosingRect, tiles might overlap in destination space on the 267 // edges. 268 gfx::Rect last_geometry_rect = current_geometry_rect_; 269 270 gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_); 271 272 current_geometry_rect_ = 273 gfx::ScaleToEnclosingRect(content_rect, 274 1 / dest_to_content_scale_, 275 1 / dest_to_content_scale_); 276 277 current_geometry_rect_.Intersect(dest_rect_); 278 279 if (first_time) 280 return *this; 281 282 // Iteration happens left->right, top->bottom. Running off the bottom-right 283 // edge is handled by the intersection above with dest_rect_. Here we make 284 // sure that the new current geometry rect doesn't overlap with the last. 285 int min_left; 286 int min_top; 287 if (new_row) { 288 min_left = dest_rect_.x(); 289 min_top = last_geometry_rect.bottom(); 290 } else { 291 min_left = last_geometry_rect.right(); 292 min_top = last_geometry_rect.y(); 293 } 294 295 int inset_left = std::max(0, min_left - current_geometry_rect_.x()); 296 int inset_top = std::max(0, min_top - current_geometry_rect_.y()); 297 current_geometry_rect_.Inset(inset_left, inset_top, 0, 0); 298 299 if (!new_row) { 300 DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x()); 301 DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom()); 302 DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y()); 303 } 304 305 return *this; 306 } 307 308 gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const { 309 return current_geometry_rect_; 310 } 311 312 gfx::Rect 313 PictureLayerTiling::CoverageIterator::full_tile_geometry_rect() const { 314 gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_); 315 rect.set_size(tiling_->tiling_data_.max_texture_size()); 316 return rect; 317 } 318 319 gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const { 320 gfx::PointF tex_origin = 321 tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin(); 322 323 // Convert from dest space => content space => texture space. 324 gfx::RectF texture_rect(current_geometry_rect_); 325 texture_rect.Scale(dest_to_content_scale_, 326 dest_to_content_scale_); 327 texture_rect.Offset(-tex_origin.OffsetFromOrigin()); 328 texture_rect.Intersect(tiling_->ContentRect()); 329 330 return texture_rect; 331 } 332 333 gfx::Size PictureLayerTiling::CoverageIterator::texture_size() const { 334 return tiling_->tiling_data_.max_texture_size(); 335 } 336 337 void PictureLayerTiling::Reset() { 338 live_tiles_rect_ = gfx::Rect(); 339 tiles_.clear(); 340 } 341 342 namespace { 343 344 bool NearlyOne(SkMScalar lhs) { 345 return std::abs(lhs-1.0) < std::numeric_limits<float>::epsilon(); 346 } 347 348 bool NearlyZero(SkMScalar lhs) { 349 return std::abs(lhs) < std::numeric_limits<float>::epsilon(); 350 } 351 352 bool ApproximatelyTranslation(const SkMatrix44& matrix) { 353 return 354 NearlyOne(matrix.get(0, 0)) && 355 NearlyZero(matrix.get(1, 0)) && 356 NearlyZero(matrix.get(2, 0)) && 357 matrix.get(3, 0) == 0 && 358 NearlyZero(matrix.get(0, 1)) && 359 NearlyOne(matrix.get(1, 1)) && 360 NearlyZero(matrix.get(2, 1)) && 361 matrix.get(3, 1) == 0 && 362 NearlyZero(matrix.get(0, 2)) && 363 NearlyZero(matrix.get(1, 2)) && 364 NearlyOne(matrix.get(2, 2)) && 365 matrix.get(3, 2) == 0 && 366 matrix.get(3, 3) == 1; 367 } 368 369 } // namespace 370 371 void PictureLayerTiling::UpdateTilePriorities( 372 WhichTree tree, 373 gfx::Size device_viewport, 374 gfx::Rect viewport_in_layer_space, 375 gfx::Rect visible_layer_rect, 376 gfx::Size last_layer_bounds, 377 gfx::Size current_layer_bounds, 378 float last_layer_contents_scale, 379 float current_layer_contents_scale, 380 const gfx::Transform& last_screen_transform, 381 const gfx::Transform& current_screen_transform, 382 double current_frame_time_in_seconds, 383 size_t max_tiles_for_interest_area) { 384 if (!NeedsUpdateForFrameAtTime(current_frame_time_in_seconds)) { 385 // This should never be zero for the purposes of has_ever_been_updated(). 386 DCHECK_NE(current_frame_time_in_seconds, 0.0); 387 return; 388 } 389 if (ContentRect().IsEmpty()) { 390 last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds; 391 return; 392 } 393 394 gfx::Rect viewport_in_content_space = 395 gfx::ScaleToEnclosingRect(viewport_in_layer_space, contents_scale_); 396 gfx::Rect visible_content_rect = 397 gfx::ScaleToEnclosingRect(visible_layer_rect, contents_scale_); 398 399 gfx::Size tile_size = tiling_data_.max_texture_size(); 400 int64 interest_rect_area = 401 max_tiles_for_interest_area * tile_size.width() * tile_size.height(); 402 403 gfx::Rect starting_rect = visible_content_rect.IsEmpty() 404 ? viewport_in_content_space 405 : visible_content_rect; 406 gfx::Rect interest_rect = ExpandRectEquallyToAreaBoundedBy( 407 starting_rect, 408 interest_rect_area, 409 ContentRect()); 410 DCHECK(interest_rect.IsEmpty() || 411 ContentRect().Contains(interest_rect)); 412 413 SetLiveTilesRect(interest_rect); 414 415 double time_delta = 0; 416 if (last_impl_frame_time_in_seconds_ != 0.0 && 417 last_layer_bounds == current_layer_bounds) { 418 time_delta = 419 current_frame_time_in_seconds - last_impl_frame_time_in_seconds_; 420 } 421 422 gfx::Rect view_rect(device_viewport); 423 float current_scale = current_layer_contents_scale / contents_scale_; 424 float last_scale = last_layer_contents_scale / contents_scale_; 425 426 bool store_screen_space_quads_on_tiles; 427 TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("cc.debug"), 428 &store_screen_space_quads_on_tiles); 429 430 // Fast path tile priority calculation when both transforms are translations. 431 if (ApproximatelyTranslation(last_screen_transform.matrix()) && 432 ApproximatelyTranslation(current_screen_transform.matrix())) { 433 gfx::Vector2dF current_offset( 434 current_screen_transform.matrix().get(0, 3), 435 current_screen_transform.matrix().get(1, 3)); 436 gfx::Vector2dF last_offset( 437 last_screen_transform.matrix().get(0, 3), 438 last_screen_transform.matrix().get(1, 3)); 439 440 for (TilingData::Iterator iter(&tiling_data_, interest_rect); 441 iter; ++iter) { 442 TileMap::iterator find = tiles_.find(iter.index()); 443 if (find == tiles_.end()) 444 continue; 445 Tile* tile = find->second.get(); 446 447 gfx::Rect tile_bounds = 448 tiling_data_.TileBounds(iter.index_x(), iter.index_y()); 449 gfx::RectF current_screen_rect = gfx::ScaleRect( 450 tile_bounds, 451 current_scale, 452 current_scale) + current_offset; 453 gfx::RectF last_screen_rect = gfx::ScaleRect( 454 tile_bounds, 455 last_scale, 456 last_scale) + last_offset; 457 458 float distance_to_visible_in_pixels = 459 TilePriority::manhattanDistance(current_screen_rect, view_rect); 460 461 float time_to_visible_in_seconds = 462 TilePriority::TimeForBoundsToIntersect( 463 last_screen_rect, current_screen_rect, time_delta, view_rect); 464 TilePriority priority( 465 resolution_, 466 time_to_visible_in_seconds, 467 distance_to_visible_in_pixels); 468 if (store_screen_space_quads_on_tiles) 469 priority.set_current_screen_quad(gfx::QuadF(current_screen_rect)); 470 tile->SetPriority(tree, priority); 471 } 472 } else if (!last_screen_transform.HasPerspective() && 473 !current_screen_transform.HasPerspective()) { 474 // Secondary fast path that can be applied for any affine transforms. 475 476 // Initialize the necessary geometry in screen space, so that we can 477 // iterate over tiles in screen space without needing a costly transform 478 // mapping for each tile. 479 480 // Apply screen space transform to the local origin point (0, 0); only the 481 // translation component is needed and can be initialized directly. 482 gfx::Point current_screen_space_origin( 483 current_screen_transform.matrix().get(0, 3), 484 current_screen_transform.matrix().get(1, 3)); 485 486 gfx::Point last_screen_space_origin( 487 last_screen_transform.matrix().get(0, 3), 488 last_screen_transform.matrix().get(1, 3)); 489 490 float current_tile_width = tiling_data_.TileSizeX(0) * current_scale; 491 float last_tile_width = tiling_data_.TileSizeX(0) * last_scale; 492 float current_tile_height = tiling_data_.TileSizeY(0) * current_scale; 493 float last_tile_height = tiling_data_.TileSizeY(0) * last_scale; 494 495 // Apply screen space transform to local basis vectors (tile_width, 0) and 496 // (0, tile_height); the math simplifies and can be initialized directly. 497 gfx::Vector2dF current_horizontal( 498 current_screen_transform.matrix().get(0, 0) * current_tile_width, 499 current_screen_transform.matrix().get(1, 0) * current_tile_width); 500 gfx::Vector2dF current_vertical( 501 current_screen_transform.matrix().get(0, 1) * current_tile_height, 502 current_screen_transform.matrix().get(1, 1) * current_tile_height); 503 504 gfx::Vector2dF last_horizontal( 505 last_screen_transform.matrix().get(0, 0) * last_tile_width, 506 last_screen_transform.matrix().get(1, 0) * last_tile_width); 507 gfx::Vector2dF last_vertical( 508 last_screen_transform.matrix().get(0, 1) * last_tile_height, 509 last_screen_transform.matrix().get(1, 1) * last_tile_height); 510 511 for (TilingData::Iterator iter(&tiling_data_, interest_rect); 512 iter; ++iter) { 513 TileMap::iterator find = tiles_.find(iter.index()); 514 if (find == tiles_.end()) 515 continue; 516 517 Tile* tile = find->second.get(); 518 519 int i = iter.index_x(); 520 int j = iter.index_y(); 521 gfx::PointF current_tile_origin = current_screen_space_origin + 522 ScaleVector2d(current_horizontal, i) + 523 ScaleVector2d(current_vertical, j); 524 gfx::PointF last_tile_origin = last_screen_space_origin + 525 ScaleVector2d(last_horizontal, i) + 526 ScaleVector2d(last_vertical, j); 527 528 gfx::RectF current_screen_rect = gfx::QuadF( 529 current_tile_origin, 530 current_tile_origin + current_horizontal, 531 current_tile_origin + current_horizontal + current_vertical, 532 current_tile_origin + current_vertical).BoundingBox(); 533 534 gfx::RectF last_screen_rect = gfx::QuadF( 535 last_tile_origin, 536 last_tile_origin + last_horizontal, 537 last_tile_origin + last_horizontal + last_vertical, 538 last_tile_origin + last_vertical).BoundingBox(); 539 540 float distance_to_visible_in_pixels = 541 TilePriority::manhattanDistance(current_screen_rect, view_rect); 542 543 float time_to_visible_in_seconds = 544 TilePriority::TimeForBoundsToIntersect( 545 last_screen_rect, current_screen_rect, time_delta, view_rect); 546 TilePriority priority( 547 resolution_, 548 time_to_visible_in_seconds, 549 distance_to_visible_in_pixels); 550 551 if (store_screen_space_quads_on_tiles) { 552 // This overhead is only triggered when logging event tracing data. 553 gfx::Rect tile_bounds = 554 tiling_data_.TileBounds(iter.index_x(), iter.index_y()); 555 gfx::RectF current_layer_content_rect = gfx::ScaleRect( 556 tile_bounds, 557 current_scale, 558 current_scale); 559 bool clipped; 560 priority.set_current_screen_quad( 561 MathUtil::MapQuad(current_screen_transform, 562 gfx::QuadF(current_layer_content_rect), 563 &clipped)); 564 } 565 tile->SetPriority(tree, priority); 566 } 567 } else { 568 for (TilingData::Iterator iter(&tiling_data_, interest_rect); 569 iter; ++iter) { 570 TileMap::iterator find = tiles_.find(iter.index()); 571 if (find == tiles_.end()) 572 continue; 573 Tile* tile = find->second.get(); 574 575 gfx::Rect tile_bounds = 576 tiling_data_.TileBounds(iter.index_x(), iter.index_y()); 577 gfx::RectF current_layer_content_rect = gfx::ScaleRect( 578 tile_bounds, 579 current_scale, 580 current_scale); 581 gfx::RectF current_screen_rect = MathUtil::MapClippedRect( 582 current_screen_transform, current_layer_content_rect); 583 gfx::RectF last_layer_content_rect = gfx::ScaleRect( 584 tile_bounds, 585 last_scale, 586 last_scale); 587 gfx::RectF last_screen_rect = MathUtil::MapClippedRect( 588 last_screen_transform, last_layer_content_rect); 589 590 float distance_to_visible_in_pixels = 591 TilePriority::manhattanDistance(current_screen_rect, view_rect); 592 593 float time_to_visible_in_seconds = 594 TilePriority::TimeForBoundsToIntersect( 595 last_screen_rect, current_screen_rect, time_delta, view_rect); 596 597 TilePriority priority( 598 resolution_, 599 time_to_visible_in_seconds, 600 distance_to_visible_in_pixels); 601 if (store_screen_space_quads_on_tiles) { 602 bool clipped; 603 priority.set_current_screen_quad( 604 MathUtil::MapQuad(current_screen_transform, 605 gfx::QuadF(current_layer_content_rect), 606 &clipped)); 607 } 608 tile->SetPriority(tree, priority); 609 } 610 } 611 612 last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds; 613 } 614 615 void PictureLayerTiling::SetLiveTilesRect( 616 gfx::Rect new_live_tiles_rect) { 617 DCHECK(new_live_tiles_rect.IsEmpty() || 618 ContentRect().Contains(new_live_tiles_rect)); 619 if (live_tiles_rect_ == new_live_tiles_rect) 620 return; 621 622 // Iterate to delete all tiles outside of our new live_tiles rect. 623 for (TilingData::DifferenceIterator iter(&tiling_data_, 624 live_tiles_rect_, 625 new_live_tiles_rect); 626 iter; 627 ++iter) { 628 TileMapKey key(iter.index()); 629 TileMap::iterator found = tiles_.find(key); 630 // If the tile was outside of the recorded region, it won't exist even 631 // though it was in the live rect. 632 if (found != tiles_.end()) 633 tiles_.erase(found); 634 } 635 636 const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); 637 638 // Iterate to allocate new tiles for all regions with newly exposed area. 639 for (TilingData::DifferenceIterator iter(&tiling_data_, 640 new_live_tiles_rect, 641 live_tiles_rect_); 642 iter; 643 ++iter) { 644 TileMapKey key(iter.index()); 645 CreateTile(key.first, key.second, twin_tiling); 646 } 647 648 live_tiles_rect_ = new_live_tiles_rect; 649 } 650 651 void PictureLayerTiling::DidBecomeActive() { 652 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 653 it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE)); 654 it->second->SetPriority(PENDING_TREE, TilePriority()); 655 656 // Tile holds a ref onto a picture pile. If the tile never gets invalidated 657 // and recreated, then that picture pile ref could exist indefinitely. To 658 // prevent this, ask the client to update the pile to its own ref. This 659 // will cause PicturePileImpls and their clones to get deleted once the 660 // corresponding PictureLayerImpl and any in flight raster jobs go out of 661 // scope. 662 client_->UpdatePile(it->second.get()); 663 } 664 } 665 666 void PictureLayerTiling::UpdateTilesToCurrentPile() { 667 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 668 client_->UpdatePile(it->second.get()); 669 } 670 } 671 672 scoped_ptr<base::Value> PictureLayerTiling::AsValue() const { 673 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); 674 state->SetInteger("num_tiles", tiles_.size()); 675 state->SetDouble("content_scale", contents_scale_); 676 state->Set("content_bounds", 677 MathUtil::AsValue(ContentRect().size()).release()); 678 return state.PassAs<base::Value>(); 679 } 680 681 size_t PictureLayerTiling::GPUMemoryUsageInBytes() const { 682 size_t amount = 0; 683 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { 684 const Tile* tile = it->second.get(); 685 amount += tile->GPUMemoryUsageInBytes(); 686 } 687 return amount; 688 } 689 690 namespace { 691 692 // This struct represents an event at which the expending rect intersects 693 // one of its boundaries. 4 intersection events will occur during expansion. 694 struct EdgeEvent { 695 enum { BOTTOM, TOP, LEFT, RIGHT } edge; 696 int* num_edges; 697 int distance; 698 }; 699 700 // Compute the delta to expand from edges to cover target_area. 701 int ComputeExpansionDelta(int num_x_edges, int num_y_edges, 702 int width, int height, 703 int64 target_area) { 704 // Compute coefficients for the quadratic equation: 705 // a*x^2 + b*x + c = 0 706 int a = num_y_edges * num_x_edges; 707 int b = num_y_edges * width + num_x_edges * height; 708 int64 c = static_cast<int64>(width) * height - target_area; 709 710 // Compute the delta for our edges using the quadratic equation. 711 return a == 0 ? -c / b : 712 (-b + static_cast<int>( 713 std::sqrt(static_cast<int64>(b) * b - 4.0 * a * c))) / (2 * a); 714 } 715 716 } // namespace 717 718 gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy( 719 gfx::Rect starting_rect, 720 int64 target_area, 721 gfx::Rect bounding_rect) { 722 if (starting_rect.IsEmpty()) 723 return starting_rect; 724 725 DCHECK(!bounding_rect.IsEmpty()); 726 DCHECK_GT(target_area, 0); 727 728 // Expand the starting rect to cover target_area, if it is smaller than it. 729 int delta = ComputeExpansionDelta( 730 2, 2, starting_rect.width(), starting_rect.height(), target_area); 731 gfx::Rect expanded_starting_rect = starting_rect; 732 if (delta > 0) 733 expanded_starting_rect.Inset(-delta, -delta); 734 735 gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect); 736 if (rect.IsEmpty()) { 737 // The starting_rect and bounding_rect are far away. 738 return rect; 739 } 740 if (delta >= 0 && rect == expanded_starting_rect) { 741 // The starting rect already covers the entire bounding_rect and isn't too 742 // large for the target_area. 743 return rect; 744 } 745 746 // Continue to expand/shrink rect to let it cover target_area. 747 748 // These values will be updated by the loop and uses as the output. 749 int origin_x = rect.x(); 750 int origin_y = rect.y(); 751 int width = rect.width(); 752 int height = rect.height(); 753 754 // In the beginning we will consider 2 edges in each dimension. 755 int num_y_edges = 2; 756 int num_x_edges = 2; 757 758 // Create an event list. 759 EdgeEvent events[] = { 760 { EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() }, 761 { EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() }, 762 { EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() }, 763 { EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() } 764 }; 765 766 // Sort the events by distance (closest first). 767 if (events[0].distance > events[1].distance) std::swap(events[0], events[1]); 768 if (events[2].distance > events[3].distance) std::swap(events[2], events[3]); 769 if (events[0].distance > events[2].distance) std::swap(events[0], events[2]); 770 if (events[1].distance > events[3].distance) std::swap(events[1], events[3]); 771 if (events[1].distance > events[2].distance) std::swap(events[1], events[2]); 772 773 for (int event_index = 0; event_index < 4; event_index++) { 774 const EdgeEvent& event = events[event_index]; 775 776 int delta = ComputeExpansionDelta( 777 num_x_edges, num_y_edges, width, height, target_area); 778 779 // Clamp delta to our event distance. 780 if (delta > event.distance) 781 delta = event.distance; 782 783 // Adjust the edge count for this kind of edge. 784 --*event.num_edges; 785 786 // Apply the delta to the edges and edge events. 787 for (int i = event_index; i < 4; i++) { 788 switch (events[i].edge) { 789 case EdgeEvent::BOTTOM: 790 origin_y -= delta; 791 height += delta; 792 break; 793 case EdgeEvent::TOP: 794 height += delta; 795 break; 796 case EdgeEvent::LEFT: 797 origin_x -= delta; 798 width += delta; 799 break; 800 case EdgeEvent::RIGHT: 801 width += delta; 802 break; 803 } 804 events[i].distance -= delta; 805 } 806 807 // If our delta is less then our event distance, we're done. 808 if (delta < event.distance) 809 break; 810 } 811 812 return gfx::Rect(origin_x, origin_y, width, height); 813 } 814 815 } // namespace cc 816