1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits information about intrinsic functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenIntrinsics.h" 15 #include "CodeGenTarget.h" 16 #include "SequenceToOffsetTable.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/TableGen/Error.h" 19 #include "llvm/TableGen/Record.h" 20 #include "llvm/TableGen/StringMatcher.h" 21 #include "llvm/TableGen/TableGenBackend.h" 22 #include <algorithm> 23 using namespace llvm; 24 25 namespace { 26 class IntrinsicEmitter { 27 RecordKeeper &Records; 28 bool TargetOnly; 29 std::string TargetPrefix; 30 31 public: 32 IntrinsicEmitter(RecordKeeper &R, bool T) 33 : Records(R), TargetOnly(T) {} 34 35 void run(raw_ostream &OS); 36 37 void EmitPrefix(raw_ostream &OS); 38 39 void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, 40 raw_ostream &OS); 41 42 void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, 43 raw_ostream &OS); 44 void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, 45 raw_ostream &OS); 46 void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, 47 raw_ostream &OS); 48 void EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints, 49 raw_ostream &OS); 50 void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, 51 raw_ostream &OS); 52 void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, 53 raw_ostream &OS); 54 void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, 55 raw_ostream &OS); 56 void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, 57 raw_ostream &OS); 58 void EmitSuffix(raw_ostream &OS); 59 }; 60 } // End anonymous namespace 61 62 //===----------------------------------------------------------------------===// 63 // IntrinsicEmitter Implementation 64 //===----------------------------------------------------------------------===// 65 66 void IntrinsicEmitter::run(raw_ostream &OS) { 67 emitSourceFileHeader("Intrinsic Function Source Fragment", OS); 68 69 std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly); 70 71 if (TargetOnly && !Ints.empty()) 72 TargetPrefix = Ints[0].TargetPrefix; 73 74 EmitPrefix(OS); 75 76 // Emit the enum information. 77 EmitEnumInfo(Ints, OS); 78 79 // Emit the intrinsic ID -> name table. 80 EmitIntrinsicToNameTable(Ints, OS); 81 82 // Emit the intrinsic ID -> overload table. 83 EmitIntrinsicToOverloadTable(Ints, OS); 84 85 // Emit the function name recognizer. 86 EmitFnNameRecognizer(Ints, OS); 87 88 // Emit the intrinsic declaration generator. 89 EmitGenerator(Ints, OS); 90 91 // Emit the intrinsic parameter attributes. 92 EmitAttributes(Ints, OS); 93 94 // Emit intrinsic alias analysis mod/ref behavior. 95 EmitModRefBehavior(Ints, OS); 96 97 // Emit code to translate GCC builtins into LLVM intrinsics. 98 EmitIntrinsicToGCCBuiltinMap(Ints, OS); 99 100 EmitSuffix(OS); 101 } 102 103 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { 104 OS << "// VisualStudio defines setjmp as _setjmp\n" 105 "#if defined(_MSC_VER) && defined(setjmp) && \\\n" 106 " !defined(setjmp_undefined_for_msvc)\n" 107 "# pragma push_macro(\"setjmp\")\n" 108 "# undef setjmp\n" 109 "# define setjmp_undefined_for_msvc\n" 110 "#endif\n\n"; 111 } 112 113 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { 114 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" 115 "// let's return it to _setjmp state\n" 116 "# pragma pop_macro(\"setjmp\")\n" 117 "# undef setjmp_undefined_for_msvc\n" 118 "#endif\n\n"; 119 } 120 121 void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, 122 raw_ostream &OS) { 123 OS << "// Enum values for Intrinsics.h\n"; 124 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; 125 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 126 OS << " " << Ints[i].EnumName; 127 OS << ((i != e-1) ? ", " : " "); 128 OS << std::string(40-Ints[i].EnumName.size(), ' ') 129 << "// " << Ints[i].Name << "\n"; 130 } 131 OS << "#endif\n\n"; 132 } 133 134 struct IntrinsicNameSorter { 135 IntrinsicNameSorter(const std::vector<CodeGenIntrinsic> &I) 136 : Ints(I) {} 137 138 // Sort in reverse order of intrinsic name so "abc.def" appears after 139 // "abd.def.ghi" in the overridden name matcher 140 bool operator()(unsigned i, unsigned j) { 141 return Ints[i].Name > Ints[j].Name; 142 } 143 144 private: 145 const std::vector<CodeGenIntrinsic> &Ints; 146 }; 147 148 void IntrinsicEmitter:: 149 EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, 150 raw_ostream &OS) { 151 // Build a 'first character of function name' -> intrinsic # mapping. 152 std::map<char, std::vector<unsigned> > IntMapping; 153 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 154 IntMapping[Ints[i].Name[5]].push_back(i); 155 156 OS << "// Function name -> enum value recognizer code.\n"; 157 OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; 158 OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n"; 159 OS << " switch (Name[5]) { // Dispatch on first letter.\n"; 160 OS << " default: break;\n"; 161 IntrinsicNameSorter Sorter(Ints); 162 // Emit the intrinsic matching stuff by first letter. 163 for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(), 164 E = IntMapping.end(); I != E; ++I) { 165 OS << " case '" << I->first << "':\n"; 166 std::vector<unsigned> &IntList = I->second; 167 168 // Sort intrinsics in reverse order of their names 169 std::sort(IntList.begin(), IntList.end(), Sorter); 170 171 // Emit all the overloaded intrinsics first, build a table of the 172 // non-overloaded ones. 173 std::vector<StringMatcher::StringPair> MatchTable; 174 175 for (unsigned i = 0, e = IntList.size(); i != e; ++i) { 176 unsigned IntNo = IntList[i]; 177 std::string Result = "return " + TargetPrefix + "Intrinsic::" + 178 Ints[IntNo].EnumName + ";"; 179 180 if (!Ints[IntNo].isOverloaded) { 181 MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result)); 182 continue; 183 } 184 185 // For overloaded intrinsics, only the prefix needs to match 186 std::string TheStr = Ints[IntNo].Name.substr(6); 187 TheStr += '.'; // Require "bswap." instead of bswap. 188 OS << " if (NameR.startswith(\"" << TheStr << "\")) " 189 << Result << '\n'; 190 } 191 192 // Emit the matcher logic for the fixed length strings. 193 StringMatcher("NameR", MatchTable, OS).Emit(1); 194 OS << " break; // end of '" << I->first << "' case.\n"; 195 } 196 197 OS << " }\n"; 198 OS << "#endif\n\n"; 199 } 200 201 void IntrinsicEmitter:: 202 EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, 203 raw_ostream &OS) { 204 OS << "// Intrinsic ID to name table\n"; 205 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; 206 OS << " // Note that entry #0 is the invalid intrinsic!\n"; 207 for (unsigned i = 0, e = Ints.size(); i != e; ++i) 208 OS << " \"" << Ints[i].Name << "\",\n"; 209 OS << "#endif\n\n"; 210 } 211 212 void IntrinsicEmitter:: 213 EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, 214 raw_ostream &OS) { 215 OS << "// Intrinsic ID to overload bitset\n"; 216 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; 217 OS << "static const uint8_t OTable[] = {\n"; 218 OS << " 0"; 219 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 220 // Add one to the index so we emit a null bit for the invalid #0 intrinsic. 221 if ((i+1)%8 == 0) 222 OS << ",\n 0"; 223 if (Ints[i].isOverloaded) 224 OS << " | (1<<" << (i+1)%8 << ')'; 225 } 226 OS << "\n};\n\n"; 227 // OTable contains a true bit at the position if the intrinsic is overloaded. 228 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; 229 OS << "#endif\n\n"; 230 } 231 232 233 // NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp! 234 enum IIT_Info { 235 // Common values should be encoded with 0-15. 236 IIT_Done = 0, 237 IIT_I1 = 1, 238 IIT_I8 = 2, 239 IIT_I16 = 3, 240 IIT_I32 = 4, 241 IIT_I64 = 5, 242 IIT_F16 = 6, 243 IIT_F32 = 7, 244 IIT_F64 = 8, 245 IIT_V2 = 9, 246 IIT_V4 = 10, 247 IIT_V8 = 11, 248 IIT_V16 = 12, 249 IIT_V32 = 13, 250 IIT_PTR = 14, 251 IIT_ARG = 15, 252 253 // Values from 16+ are only encodable with the inefficient encoding. 254 IIT_MMX = 16, 255 IIT_METADATA = 17, 256 IIT_EMPTYSTRUCT = 18, 257 IIT_STRUCT2 = 19, 258 IIT_STRUCT3 = 20, 259 IIT_STRUCT4 = 21, 260 IIT_STRUCT5 = 22, 261 IIT_EXTEND_VEC_ARG = 23, 262 IIT_TRUNC_VEC_ARG = 24, 263 IIT_ANYPTR = 25 264 }; 265 266 267 static void EncodeFixedValueType(MVT::SimpleValueType VT, 268 std::vector<unsigned char> &Sig) { 269 if (EVT(VT).isInteger()) { 270 unsigned BitWidth = EVT(VT).getSizeInBits(); 271 switch (BitWidth) { 272 default: PrintFatalError("unhandled integer type width in intrinsic!"); 273 case 1: return Sig.push_back(IIT_I1); 274 case 8: return Sig.push_back(IIT_I8); 275 case 16: return Sig.push_back(IIT_I16); 276 case 32: return Sig.push_back(IIT_I32); 277 case 64: return Sig.push_back(IIT_I64); 278 } 279 } 280 281 switch (VT) { 282 default: PrintFatalError("unhandled MVT in intrinsic!"); 283 case MVT::f16: return Sig.push_back(IIT_F16); 284 case MVT::f32: return Sig.push_back(IIT_F32); 285 case MVT::f64: return Sig.push_back(IIT_F64); 286 case MVT::Metadata: return Sig.push_back(IIT_METADATA); 287 case MVT::x86mmx: return Sig.push_back(IIT_MMX); 288 // MVT::OtherVT is used to mean the empty struct type here. 289 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); 290 } 291 } 292 293 #ifdef _MSC_VER 294 #pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function. 295 #endif 296 297 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, 298 std::vector<unsigned char> &Sig) { 299 300 if (R->isSubClassOf("LLVMMatchType")) { 301 unsigned Number = R->getValueAsInt("Number"); 302 assert(Number < ArgCodes.size() && "Invalid matching number!"); 303 if (R->isSubClassOf("LLVMExtendedElementVectorType")) 304 Sig.push_back(IIT_EXTEND_VEC_ARG); 305 else if (R->isSubClassOf("LLVMTruncatedElementVectorType")) 306 Sig.push_back(IIT_TRUNC_VEC_ARG); 307 else 308 Sig.push_back(IIT_ARG); 309 return Sig.push_back((Number << 2) | ArgCodes[Number]); 310 } 311 312 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); 313 314 unsigned Tmp = 0; 315 switch (VT) { 316 default: break; 317 case MVT::iPTRAny: ++Tmp; // FALL THROUGH. 318 case MVT::vAny: ++Tmp; // FALL THROUGH. 319 case MVT::fAny: ++Tmp; // FALL THROUGH. 320 case MVT::iAny: { 321 // If this is an "any" valuetype, then the type is the type of the next 322 // type in the list specified to getIntrinsic(). 323 Sig.push_back(IIT_ARG); 324 325 // Figure out what arg # this is consuming, and remember what kind it was. 326 unsigned ArgNo = ArgCodes.size(); 327 ArgCodes.push_back(Tmp); 328 329 // Encode what sort of argument it must be in the low 2 bits of the ArgNo. 330 return Sig.push_back((ArgNo << 2) | Tmp); 331 } 332 333 case MVT::iPTR: { 334 unsigned AddrSpace = 0; 335 if (R->isSubClassOf("LLVMQualPointerType")) { 336 AddrSpace = R->getValueAsInt("AddrSpace"); 337 assert(AddrSpace < 256 && "Address space exceeds 255"); 338 } 339 if (AddrSpace) { 340 Sig.push_back(IIT_ANYPTR); 341 Sig.push_back(AddrSpace); 342 } else { 343 Sig.push_back(IIT_PTR); 344 } 345 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig); 346 } 347 } 348 349 if (EVT(VT).isVector()) { 350 EVT VVT = VT; 351 switch (VVT.getVectorNumElements()) { 352 default: PrintFatalError("unhandled vector type width in intrinsic!"); 353 case 2: Sig.push_back(IIT_V2); break; 354 case 4: Sig.push_back(IIT_V4); break; 355 case 8: Sig.push_back(IIT_V8); break; 356 case 16: Sig.push_back(IIT_V16); break; 357 case 32: Sig.push_back(IIT_V32); break; 358 } 359 360 return EncodeFixedValueType(VVT.getVectorElementType(). 361 getSimpleVT().SimpleTy, Sig); 362 } 363 364 EncodeFixedValueType(VT, Sig); 365 } 366 367 #ifdef _MSC_VER 368 #pragma optimize("",on) 369 #endif 370 371 /// ComputeFixedEncoding - If we can encode the type signature for this 372 /// intrinsic into 32 bits, return it. If not, return ~0U. 373 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, 374 std::vector<unsigned char> &TypeSig) { 375 std::vector<unsigned char> ArgCodes; 376 377 if (Int.IS.RetVTs.empty()) 378 TypeSig.push_back(IIT_Done); 379 else if (Int.IS.RetVTs.size() == 1 && 380 Int.IS.RetVTs[0] == MVT::isVoid) 381 TypeSig.push_back(IIT_Done); 382 else { 383 switch (Int.IS.RetVTs.size()) { 384 case 1: break; 385 case 2: TypeSig.push_back(IIT_STRUCT2); break; 386 case 3: TypeSig.push_back(IIT_STRUCT3); break; 387 case 4: TypeSig.push_back(IIT_STRUCT4); break; 388 case 5: TypeSig.push_back(IIT_STRUCT5); break; 389 default: assert(0 && "Unhandled case in struct"); 390 } 391 392 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) 393 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig); 394 } 395 396 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) 397 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig); 398 } 399 400 static void printIITEntry(raw_ostream &OS, unsigned char X) { 401 OS << (unsigned)X; 402 } 403 404 void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, 405 raw_ostream &OS) { 406 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and 407 // capture it in this vector, otherwise store a ~0U. 408 std::vector<unsigned> FixedEncodings; 409 410 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; 411 412 std::vector<unsigned char> TypeSig; 413 414 // Compute the unique argument type info. 415 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 416 // Get the signature for the intrinsic. 417 TypeSig.clear(); 418 ComputeFixedEncoding(Ints[i], TypeSig); 419 420 // Check to see if we can encode it into a 32-bit word. We can only encode 421 // 8 nibbles into a 32-bit word. 422 if (TypeSig.size() <= 8) { 423 bool Failed = false; 424 unsigned Result = 0; 425 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { 426 // If we had an unencodable argument, bail out. 427 if (TypeSig[i] > 15) { 428 Failed = true; 429 break; 430 } 431 Result = (Result << 4) | TypeSig[e-i-1]; 432 } 433 434 // If this could be encoded into a 31-bit word, return it. 435 if (!Failed && (Result >> 31) == 0) { 436 FixedEncodings.push_back(Result); 437 continue; 438 } 439 } 440 441 // Otherwise, we're going to unique the sequence into the 442 // LongEncodingTable, and use its offset in the 32-bit table instead. 443 LongEncodingTable.add(TypeSig); 444 445 // This is a placehold that we'll replace after the table is laid out. 446 FixedEncodings.push_back(~0U); 447 } 448 449 LongEncodingTable.layout(); 450 451 OS << "// Global intrinsic function declaration type table.\n"; 452 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; 453 454 OS << "static const unsigned IIT_Table[] = {\n "; 455 456 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { 457 if ((i & 7) == 7) 458 OS << "\n "; 459 460 // If the entry fit in the table, just emit it. 461 if (FixedEncodings[i] != ~0U) { 462 OS << "0x" << utohexstr(FixedEncodings[i]) << ", "; 463 continue; 464 } 465 466 TypeSig.clear(); 467 ComputeFixedEncoding(Ints[i], TypeSig); 468 469 470 // Otherwise, emit the offset into the long encoding table. We emit it this 471 // way so that it is easier to read the offset in the .def file. 472 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; 473 } 474 475 OS << "0\n};\n\n"; 476 477 // Emit the shared table of register lists. 478 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; 479 if (!LongEncodingTable.empty()) 480 LongEncodingTable.emit(OS, printIITEntry); 481 OS << " 255\n};\n\n"; 482 483 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL 484 } 485 486 enum ModRefKind { 487 MRK_none, 488 MRK_readonly, 489 MRK_readnone 490 }; 491 492 static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) { 493 switch (intrinsic.ModRef) { 494 case CodeGenIntrinsic::NoMem: 495 return MRK_readnone; 496 case CodeGenIntrinsic::ReadArgMem: 497 case CodeGenIntrinsic::ReadMem: 498 return MRK_readonly; 499 case CodeGenIntrinsic::ReadWriteArgMem: 500 case CodeGenIntrinsic::ReadWriteMem: 501 return MRK_none; 502 } 503 llvm_unreachable("bad mod-ref kind"); 504 } 505 506 namespace { 507 struct AttributeComparator { 508 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { 509 // Sort throwing intrinsics after non-throwing intrinsics. 510 if (L->canThrow != R->canThrow) 511 return R->canThrow; 512 513 if (L->isNoReturn != R->isNoReturn) 514 return R->isNoReturn; 515 516 // Try to order by readonly/readnone attribute. 517 ModRefKind LK = getModRefKind(*L); 518 ModRefKind RK = getModRefKind(*R); 519 if (LK != RK) return (LK > RK); 520 521 // Order by argument attributes. 522 // This is reliable because each side is already sorted internally. 523 return (L->ArgumentAttributes < R->ArgumentAttributes); 524 } 525 }; 526 } // End anonymous namespace 527 528 /// EmitAttributes - This emits the Intrinsic::getAttributes method. 529 void IntrinsicEmitter:: 530 EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { 531 OS << "// Add parameter attributes that are not common to all intrinsics.\n"; 532 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; 533 if (TargetOnly) 534 OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix 535 << "Intrinsic::ID id) {\n"; 536 else 537 OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; 538 539 // Compute the maximum number of attribute arguments and the map 540 typedef std::map<const CodeGenIntrinsic*, unsigned, 541 AttributeComparator> UniqAttrMapTy; 542 UniqAttrMapTy UniqAttributes; 543 unsigned maxArgAttrs = 0; 544 unsigned AttrNum = 0; 545 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 546 const CodeGenIntrinsic &intrinsic = Ints[i]; 547 maxArgAttrs = 548 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); 549 unsigned &N = UniqAttributes[&intrinsic]; 550 if (N) continue; 551 assert(AttrNum < 256 && "Too many unique attributes for table!"); 552 N = ++AttrNum; 553 } 554 555 // Emit an array of AttributeSet. Most intrinsics will have at least one 556 // entry, for the function itself (index ~1), which is usually nounwind. 557 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; 558 559 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 560 const CodeGenIntrinsic &intrinsic = Ints[i]; 561 562 OS << " " << UniqAttributes[&intrinsic] << ", // " 563 << intrinsic.Name << "\n"; 564 } 565 OS << " };\n\n"; 566 567 OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n"; 568 OS << " unsigned NumAttrs = 0;\n"; 569 OS << " if (id != 0) {\n"; 570 OS << " SmallVector<Attribute::AttrKind, 8> AttrVec;\n"; 571 OS << " switch(IntrinsicsToAttributesMap[id - "; 572 if (TargetOnly) 573 OS << "Intrinsic::num_intrinsics"; 574 else 575 OS << "1"; 576 OS << "]) {\n"; 577 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; 578 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), 579 E = UniqAttributes.end(); I != E; ++I) { 580 OS << " case " << I->second << ":\n"; 581 582 const CodeGenIntrinsic &intrinsic = *(I->first); 583 584 // Keep track of the number of attributes we're writing out. 585 unsigned numAttrs = 0; 586 587 // The argument attributes are alreadys sorted by argument index. 588 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); 589 if (ae) { 590 while (ai != ae) { 591 unsigned argNo = intrinsic.ArgumentAttributes[ai].first; 592 593 OS << " AttrVec.clear();\n"; 594 595 do { 596 switch (intrinsic.ArgumentAttributes[ai].second) { 597 case CodeGenIntrinsic::NoCapture: 598 OS << " AttrVec.push_back(Attribute::NoCapture);\n"; 599 break; 600 case CodeGenIntrinsic::ReadOnly: 601 OS << " AttrVec.push_back(Attribute::ReadOnly);\n"; 602 break; 603 case CodeGenIntrinsic::ReadNone: 604 OS << " AttrVec.push_back(Attribute::ReadNone);\n"; 605 break; 606 } 607 608 ++ai; 609 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); 610 611 OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " 612 << argNo+1 << ", AttrVec);\n"; 613 } 614 } 615 616 ModRefKind modRef = getModRefKind(intrinsic); 617 618 if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn) { 619 OS << " AttrVec.clear();\n"; 620 621 if (!intrinsic.canThrow) 622 OS << " AttrVec.push_back(Attribute::NoUnwind);\n"; 623 if (intrinsic.isNoReturn) 624 OS << " AttrVec.push_back(Attribute::NoReturn);\n"; 625 626 switch (modRef) { 627 case MRK_none: break; 628 case MRK_readonly: 629 OS << " AttrVec.push_back(Attribute::ReadOnly);\n"; 630 break; 631 case MRK_readnone: 632 OS << " AttrVec.push_back(Attribute::ReadNone);\n"; 633 break; 634 } 635 OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " 636 << "AttributeSet::FunctionIndex, AttrVec);\n"; 637 } 638 639 if (numAttrs) { 640 OS << " NumAttrs = " << numAttrs << ";\n"; 641 OS << " break;\n"; 642 } else { 643 OS << " return AttributeSet();\n"; 644 } 645 } 646 647 OS << " }\n"; 648 OS << " }\n"; 649 OS << " return AttributeSet::get(C, ArrayRef<AttributeSet>(AS, " 650 "NumAttrs));\n"; 651 OS << "}\n"; 652 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; 653 } 654 655 /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. 656 void IntrinsicEmitter:: 657 EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){ 658 OS << "// Determine intrinsic alias analysis mod/ref behavior.\n" 659 << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n" 660 << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && " 661 << "\"Unknown intrinsic.\");\n\n"; 662 663 OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n" 664 << " /* invalid */ UnknownModRefBehavior,\n"; 665 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 666 OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ "; 667 switch (Ints[i].ModRef) { 668 case CodeGenIntrinsic::NoMem: 669 OS << "DoesNotAccessMemory,\n"; 670 break; 671 case CodeGenIntrinsic::ReadArgMem: 672 OS << "OnlyReadsArgumentPointees,\n"; 673 break; 674 case CodeGenIntrinsic::ReadMem: 675 OS << "OnlyReadsMemory,\n"; 676 break; 677 case CodeGenIntrinsic::ReadWriteArgMem: 678 OS << "OnlyAccessesArgumentPointees,\n"; 679 break; 680 case CodeGenIntrinsic::ReadWriteMem: 681 OS << "UnknownModRefBehavior,\n"; 682 break; 683 } 684 } 685 OS << "};\n\n" 686 << "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n" 687 << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; 688 } 689 690 /// EmitTargetBuiltins - All of the builtins in the specified map are for the 691 /// same target, and we already checked it. 692 static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM, 693 const std::string &TargetPrefix, 694 raw_ostream &OS) { 695 696 std::vector<StringMatcher::StringPair> Results; 697 698 for (std::map<std::string, std::string>::const_iterator I = BIM.begin(), 699 E = BIM.end(); I != E; ++I) { 700 std::string ResultCode = 701 "return " + TargetPrefix + "Intrinsic::" + I->second + ";"; 702 Results.push_back(StringMatcher::StringPair(I->first, ResultCode)); 703 } 704 705 StringMatcher("BuiltinName", Results, OS).Emit(); 706 } 707 708 709 void IntrinsicEmitter:: 710 EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, 711 raw_ostream &OS) { 712 typedef std::map<std::string, std::map<std::string, std::string> > BIMTy; 713 BIMTy BuiltinMap; 714 for (unsigned i = 0, e = Ints.size(); i != e; ++i) { 715 if (!Ints[i].GCCBuiltinName.empty()) { 716 // Get the map for this target prefix. 717 std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix]; 718 719 if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, 720 Ints[i].EnumName)).second) 721 PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() + 722 "': duplicate GCC builtin name!"); 723 } 724 } 725 726 OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; 727 OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; 728 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; 729 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; 730 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; 731 732 if (TargetOnly) { 733 OS << "static " << TargetPrefix << "Intrinsic::ID " 734 << "getIntrinsicForGCCBuiltin(const char " 735 << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; 736 } else { 737 OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " 738 << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; 739 } 740 741 OS << " StringRef BuiltinName(BuiltinNameStr);\n"; 742 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; 743 744 // Note: this could emit significantly better code if we cared. 745 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ 746 OS << " "; 747 if (!I->first.empty()) 748 OS << "if (TargetPrefix == \"" << I->first << "\") "; 749 else 750 OS << "/* Target Independent Builtins */ "; 751 OS << "{\n"; 752 753 // Emit the comparisons for this target prefix. 754 EmitTargetBuiltins(I->second, TargetPrefix, OS); 755 OS << " }\n"; 756 } 757 OS << " return "; 758 if (!TargetPrefix.empty()) 759 OS << "(" << TargetPrefix << "Intrinsic::ID)"; 760 OS << "Intrinsic::not_intrinsic;\n"; 761 OS << "}\n"; 762 OS << "#endif\n\n"; 763 } 764 765 namespace llvm { 766 767 void EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly = false) { 768 IntrinsicEmitter(RK, TargetOnly).run(OS); 769 } 770 771 } // End llvm namespace 772