Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGRecordLayout.h"
     20 #include "CodeGenModule.h"
     21 #include "TargetInfo.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/ADT/Hashing.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/MDBuilder.h"
     30 #include "llvm/Support/ConvertUTF.h"
     31 
     32 using namespace clang;
     33 using namespace CodeGen;
     34 
     35 //===--------------------------------------------------------------------===//
     36 //                        Miscellaneous Helper Methods
     37 //===--------------------------------------------------------------------===//
     38 
     39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     40   unsigned addressSpace =
     41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     42 
     43   llvm::PointerType *destType = Int8PtrTy;
     44   if (addressSpace)
     45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     46 
     47   if (value->getType() == destType) return value;
     48   return Builder.CreateBitCast(value, destType);
     49 }
     50 
     51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     52 /// block.
     53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     54                                                     const Twine &Name) {
     55   if (!Builder.isNamePreserving())
     56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
     57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
     58 }
     59 
     60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
     61                                      llvm::Value *Init) {
     62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
     63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
     65 }
     66 
     67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
     68                                                 const Twine &Name) {
     69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
     70   // FIXME: Should we prefer the preferred type alignment here?
     71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     72   Alloc->setAlignment(Align.getQuantity());
     73   return Alloc;
     74 }
     75 
     76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
     77                                                  const Twine &Name) {
     78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
     79   // FIXME: Should we prefer the preferred type alignment here?
     80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     81   Alloc->setAlignment(Align.getQuantity());
     82   return Alloc;
     83 }
     84 
     85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
     86 /// expression and compare the result against zero, returning an Int1Ty value.
     87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
     88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
     89     llvm::Value *MemPtr = EmitScalarExpr(E);
     90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
     91   }
     92 
     93   QualType BoolTy = getContext().BoolTy;
     94   if (!E->getType()->isAnyComplexType())
     95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
     96 
     97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
     98 }
     99 
    100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
    101 /// ignoring the result.
    102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
    103   if (E->isRValue())
    104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
    105 
    106   // Just emit it as an l-value and drop the result.
    107   EmitLValue(E);
    108 }
    109 
    110 /// EmitAnyExpr - Emit code to compute the specified expression which
    111 /// can have any type.  The result is returned as an RValue struct.
    112 /// If this is an aggregate expression, AggSlot indicates where the
    113 /// result should be returned.
    114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
    115                                     AggValueSlot aggSlot,
    116                                     bool ignoreResult) {
    117   switch (getEvaluationKind(E->getType())) {
    118   case TEK_Scalar:
    119     return RValue::get(EmitScalarExpr(E, ignoreResult));
    120   case TEK_Complex:
    121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
    122   case TEK_Aggregate:
    123     if (!ignoreResult && aggSlot.isIgnored())
    124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    125     EmitAggExpr(E, aggSlot);
    126     return aggSlot.asRValue();
    127   }
    128   llvm_unreachable("bad evaluation kind");
    129 }
    130 
    131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    132 /// always be accessible even if no aggregate location is provided.
    133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    134   AggValueSlot AggSlot = AggValueSlot::ignored();
    135 
    136   if (hasAggregateEvaluationKind(E->getType()))
    137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    138   return EmitAnyExpr(E, AggSlot);
    139 }
    140 
    141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    142 /// location.
    143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    144                                        llvm::Value *Location,
    145                                        Qualifiers Quals,
    146                                        bool IsInit) {
    147   // FIXME: This function should take an LValue as an argument.
    148   switch (getEvaluationKind(E->getType())) {
    149   case TEK_Complex:
    150     EmitComplexExprIntoLValue(E,
    151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
    152                               /*isInit*/ false);
    153     return;
    154 
    155   case TEK_Aggregate: {
    156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
    157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
    158                                          AggValueSlot::IsDestructed_t(IsInit),
    159                                          AggValueSlot::DoesNotNeedGCBarriers,
    160                                          AggValueSlot::IsAliased_t(!IsInit)));
    161     return;
    162   }
    163 
    164   case TEK_Scalar: {
    165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    166     LValue LV = MakeAddrLValue(Location, E->getType());
    167     EmitStoreThroughLValue(RV, LV);
    168     return;
    169   }
    170   }
    171   llvm_unreachable("bad evaluation kind");
    172 }
    173 
    174 static void
    175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
    176                      const Expr *E, llvm::Value *ReferenceTemporary) {
    177   // Objective-C++ ARC:
    178   //   If we are binding a reference to a temporary that has ownership, we
    179   //   need to perform retain/release operations on the temporary.
    180   //
    181   // FIXME: This should be looking at E, not M.
    182   if (CGF.getLangOpts().ObjCAutoRefCount &&
    183       M->getType()->isObjCLifetimeType()) {
    184     QualType ObjCARCReferenceLifetimeType = M->getType();
    185     switch (Qualifiers::ObjCLifetime Lifetime =
    186                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
    187     case Qualifiers::OCL_None:
    188     case Qualifiers::OCL_ExplicitNone:
    189       // Carry on to normal cleanup handling.
    190       break;
    191 
    192     case Qualifiers::OCL_Autoreleasing:
    193       // Nothing to do; cleaned up by an autorelease pool.
    194       return;
    195 
    196     case Qualifiers::OCL_Strong:
    197     case Qualifiers::OCL_Weak:
    198       switch (StorageDuration Duration = M->getStorageDuration()) {
    199       case SD_Static:
    200         // Note: we intentionally do not register a cleanup to release
    201         // the object on program termination.
    202         return;
    203 
    204       case SD_Thread:
    205         // FIXME: We should probably register a cleanup in this case.
    206         return;
    207 
    208       case SD_Automatic:
    209       case SD_FullExpression:
    210         assert(!ObjCARCReferenceLifetimeType->isArrayType());
    211         CodeGenFunction::Destroyer *Destroy;
    212         CleanupKind CleanupKind;
    213         if (Lifetime == Qualifiers::OCL_Strong) {
    214           const ValueDecl *VD = M->getExtendingDecl();
    215           bool Precise =
    216               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    217           CleanupKind = CGF.getARCCleanupKind();
    218           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
    219                             : &CodeGenFunction::destroyARCStrongImprecise;
    220         } else {
    221           // __weak objects always get EH cleanups; otherwise, exceptions
    222           // could cause really nasty crashes instead of mere leaks.
    223           CleanupKind = NormalAndEHCleanup;
    224           Destroy = &CodeGenFunction::destroyARCWeak;
    225         }
    226         if (Duration == SD_FullExpression)
    227           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
    228                           ObjCARCReferenceLifetimeType, *Destroy,
    229                           CleanupKind & EHCleanup);
    230         else
    231           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
    232                                           ObjCARCReferenceLifetimeType,
    233                                           *Destroy, CleanupKind & EHCleanup);
    234         return;
    235 
    236       case SD_Dynamic:
    237         llvm_unreachable("temporary cannot have dynamic storage duration");
    238       }
    239       llvm_unreachable("unknown storage duration");
    240     }
    241   }
    242 
    243   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
    244   if (const RecordType *RT =
    245           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    246     // Get the destructor for the reference temporary.
    247     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    248     if (!ClassDecl->hasTrivialDestructor())
    249       ReferenceTemporaryDtor = ClassDecl->getDestructor();
    250   }
    251 
    252   if (!ReferenceTemporaryDtor)
    253     return;
    254 
    255   // Call the destructor for the temporary.
    256   switch (M->getStorageDuration()) {
    257   case SD_Static:
    258   case SD_Thread: {
    259     llvm::Constant *CleanupFn;
    260     llvm::Constant *CleanupArg;
    261     if (E->getType()->isArrayType()) {
    262       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
    263           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
    264           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions);
    265       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
    266     } else {
    267       CleanupFn =
    268         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
    269       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
    270     }
    271     CGF.CGM.getCXXABI().registerGlobalDtor(
    272         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
    273     break;
    274   }
    275 
    276   case SD_FullExpression:
    277     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
    278                     CodeGenFunction::destroyCXXObject,
    279                     CGF.getLangOpts().Exceptions);
    280     break;
    281 
    282   case SD_Automatic:
    283     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
    284                                     ReferenceTemporary, E->getType(),
    285                                     CodeGenFunction::destroyCXXObject,
    286                                     CGF.getLangOpts().Exceptions);
    287     break;
    288 
    289   case SD_Dynamic:
    290     llvm_unreachable("temporary cannot have dynamic storage duration");
    291   }
    292 }
    293 
    294 static llvm::Value *
    295 createReferenceTemporary(CodeGenFunction &CGF,
    296                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
    297   switch (M->getStorageDuration()) {
    298   case SD_FullExpression:
    299   case SD_Automatic:
    300     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
    301 
    302   case SD_Thread:
    303   case SD_Static:
    304     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
    305 
    306   case SD_Dynamic:
    307     llvm_unreachable("temporary can't have dynamic storage duration");
    308   }
    309   llvm_unreachable("unknown storage duration");
    310 }
    311 
    312 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
    313                                            const MaterializeTemporaryExpr *M) {
    314   const Expr *E = M->GetTemporaryExpr();
    315 
    316   if (getLangOpts().ObjCAutoRefCount &&
    317       M->getType()->isObjCLifetimeType() &&
    318       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
    319       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
    320     // FIXME: Fold this into the general case below.
    321     llvm::Value *Object = createReferenceTemporary(*this, M, E);
    322     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
    323 
    324     if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
    325       // We should not have emitted the initializer for this temporary as a
    326       // constant.
    327       assert(!Var->hasInitializer());
    328       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    329     }
    330 
    331     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
    332 
    333     pushTemporaryCleanup(*this, M, E, Object);
    334     return RefTempDst;
    335   }
    336 
    337   SmallVector<const Expr *, 2> CommaLHSs;
    338   SmallVector<SubobjectAdjustment, 2> Adjustments;
    339   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
    340 
    341   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
    342     EmitIgnoredExpr(CommaLHSs[I]);
    343 
    344   if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
    345     if (opaque->getType()->isRecordType()) {
    346       assert(Adjustments.empty());
    347       return EmitOpaqueValueLValue(opaque);
    348     }
    349   }
    350 
    351   // Create and initialize the reference temporary.
    352   llvm::Value *Object = createReferenceTemporary(*this, M, E);
    353   if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
    354     // If the temporary is a global and has a constant initializer, we may
    355     // have already initialized it.
    356     if (!Var->hasInitializer()) {
    357       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    358       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    359     }
    360   } else {
    361     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    362   }
    363   pushTemporaryCleanup(*this, M, E, Object);
    364 
    365   // Perform derived-to-base casts and/or field accesses, to get from the
    366   // temporary object we created (and, potentially, for which we extended
    367   // the lifetime) to the subobject we're binding the reference to.
    368   for (unsigned I = Adjustments.size(); I != 0; --I) {
    369     SubobjectAdjustment &Adjustment = Adjustments[I-1];
    370     switch (Adjustment.Kind) {
    371     case SubobjectAdjustment::DerivedToBaseAdjustment:
    372       Object =
    373           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
    374                                 Adjustment.DerivedToBase.BasePath->path_begin(),
    375                                 Adjustment.DerivedToBase.BasePath->path_end(),
    376                                 /*NullCheckValue=*/ false);
    377       break;
    378 
    379     case SubobjectAdjustment::FieldAdjustment: {
    380       LValue LV = MakeAddrLValue(Object, E->getType());
    381       LV = EmitLValueForField(LV, Adjustment.Field);
    382       assert(LV.isSimple() &&
    383              "materialized temporary field is not a simple lvalue");
    384       Object = LV.getAddress();
    385       break;
    386     }
    387 
    388     case SubobjectAdjustment::MemberPointerAdjustment: {
    389       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
    390       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
    391                     *this, Object, Ptr, Adjustment.Ptr.MPT);
    392       break;
    393     }
    394     }
    395   }
    396 
    397   return MakeAddrLValue(Object, M->getType());
    398 }
    399 
    400 RValue
    401 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
    402   // Emit the expression as an lvalue.
    403   LValue LV = EmitLValue(E);
    404   assert(LV.isSimple());
    405   llvm::Value *Value = LV.getAddress();
    406 
    407   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
    408     // C++11 [dcl.ref]p5 (as amended by core issue 453):
    409     //   If a glvalue to which a reference is directly bound designates neither
    410     //   an existing object or function of an appropriate type nor a region of
    411     //   storage of suitable size and alignment to contain an object of the
    412     //   reference's type, the behavior is undefined.
    413     QualType Ty = E->getType();
    414     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
    415   }
    416 
    417   return RValue::get(Value);
    418 }
    419 
    420 
    421 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    422 /// input field number being accessed.
    423 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    424                                              const llvm::Constant *Elts) {
    425   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
    426       ->getZExtValue();
    427 }
    428 
    429 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
    430 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
    431                                     llvm::Value *High) {
    432   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
    433   llvm::Value *K47 = Builder.getInt64(47);
    434   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
    435   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
    436   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
    437   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
    438   return Builder.CreateMul(B1, KMul);
    439 }
    440 
    441 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
    442                                     llvm::Value *Address,
    443                                     QualType Ty, CharUnits Alignment) {
    444   if (!SanitizePerformTypeCheck)
    445     return;
    446 
    447   // Don't check pointers outside the default address space. The null check
    448   // isn't correct, the object-size check isn't supported by LLVM, and we can't
    449   // communicate the addresses to the runtime handler for the vptr check.
    450   if (Address->getType()->getPointerAddressSpace())
    451     return;
    452 
    453   llvm::Value *Cond = 0;
    454   llvm::BasicBlock *Done = 0;
    455 
    456   if (SanOpts->Null) {
    457     // The glvalue must not be an empty glvalue.
    458     Cond = Builder.CreateICmpNE(
    459         Address, llvm::Constant::getNullValue(Address->getType()));
    460 
    461     if (TCK == TCK_DowncastPointer) {
    462       // When performing a pointer downcast, it's OK if the value is null.
    463       // Skip the remaining checks in that case.
    464       Done = createBasicBlock("null");
    465       llvm::BasicBlock *Rest = createBasicBlock("not.null");
    466       Builder.CreateCondBr(Cond, Rest, Done);
    467       EmitBlock(Rest);
    468       Cond = 0;
    469     }
    470   }
    471 
    472   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
    473     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
    474 
    475     // The glvalue must refer to a large enough storage region.
    476     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
    477     //        to check this.
    478     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
    479     llvm::Value *Min = Builder.getFalse();
    480     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
    481     llvm::Value *LargeEnough =
    482         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
    483                               llvm::ConstantInt::get(IntPtrTy, Size));
    484     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
    485   }
    486 
    487   uint64_t AlignVal = 0;
    488 
    489   if (SanOpts->Alignment) {
    490     AlignVal = Alignment.getQuantity();
    491     if (!Ty->isIncompleteType() && !AlignVal)
    492       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
    493 
    494     // The glvalue must be suitably aligned.
    495     if (AlignVal) {
    496       llvm::Value *Align =
    497           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
    498                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
    499       llvm::Value *Aligned =
    500         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
    501       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
    502     }
    503   }
    504 
    505   if (Cond) {
    506     llvm::Constant *StaticData[] = {
    507       EmitCheckSourceLocation(Loc),
    508       EmitCheckTypeDescriptor(Ty),
    509       llvm::ConstantInt::get(SizeTy, AlignVal),
    510       llvm::ConstantInt::get(Int8Ty, TCK)
    511     };
    512     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
    513   }
    514 
    515   // If possible, check that the vptr indicates that there is a subobject of
    516   // type Ty at offset zero within this object.
    517   //
    518   // C++11 [basic.life]p5,6:
    519   //   [For storage which does not refer to an object within its lifetime]
    520   //   The program has undefined behavior if:
    521   //    -- the [pointer or glvalue] is used to access a non-static data member
    522   //       or call a non-static member function
    523   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    524   if (SanOpts->Vptr &&
    525       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
    526        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
    527       RD && RD->hasDefinition() && RD->isDynamicClass()) {
    528     // Compute a hash of the mangled name of the type.
    529     //
    530     // FIXME: This is not guaranteed to be deterministic! Move to a
    531     //        fingerprinting mechanism once LLVM provides one. For the time
    532     //        being the implementation happens to be deterministic.
    533     SmallString<64> MangledName;
    534     llvm::raw_svector_ostream Out(MangledName);
    535     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
    536                                                      Out);
    537     llvm::hash_code TypeHash = hash_value(Out.str());
    538 
    539     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
    540     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
    541     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
    542     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
    543     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
    544     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
    545 
    546     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
    547     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
    548 
    549     // Look the hash up in our cache.
    550     const int CacheSize = 128;
    551     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
    552     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
    553                                                    "__ubsan_vptr_type_cache");
    554     llvm::Value *Slot = Builder.CreateAnd(Hash,
    555                                           llvm::ConstantInt::get(IntPtrTy,
    556                                                                  CacheSize-1));
    557     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
    558     llvm::Value *CacheVal =
    559       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
    560 
    561     // If the hash isn't in the cache, call a runtime handler to perform the
    562     // hard work of checking whether the vptr is for an object of the right
    563     // type. This will either fill in the cache and return, or produce a
    564     // diagnostic.
    565     llvm::Constant *StaticData[] = {
    566       EmitCheckSourceLocation(Loc),
    567       EmitCheckTypeDescriptor(Ty),
    568       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
    569       llvm::ConstantInt::get(Int8Ty, TCK)
    570     };
    571     llvm::Value *DynamicData[] = { Address, Hash };
    572     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
    573               "dynamic_type_cache_miss", StaticData, DynamicData,
    574               CRK_AlwaysRecoverable);
    575   }
    576 
    577   if (Done) {
    578     Builder.CreateBr(Done);
    579     EmitBlock(Done);
    580   }
    581 }
    582 
    583 /// Determine whether this expression refers to a flexible array member in a
    584 /// struct. We disable array bounds checks for such members.
    585 static bool isFlexibleArrayMemberExpr(const Expr *E) {
    586   // For compatibility with existing code, we treat arrays of length 0 or
    587   // 1 as flexible array members.
    588   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
    589   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
    590     if (CAT->getSize().ugt(1))
    591       return false;
    592   } else if (!isa<IncompleteArrayType>(AT))
    593     return false;
    594 
    595   E = E->IgnoreParens();
    596 
    597   // A flexible array member must be the last member in the class.
    598   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
    599     // FIXME: If the base type of the member expr is not FD->getParent(),
    600     // this should not be treated as a flexible array member access.
    601     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    602       RecordDecl::field_iterator FI(
    603           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
    604       return ++FI == FD->getParent()->field_end();
    605     }
    606   }
    607 
    608   return false;
    609 }
    610 
    611 /// If Base is known to point to the start of an array, return the length of
    612 /// that array. Return 0 if the length cannot be determined.
    613 static llvm::Value *getArrayIndexingBound(
    614     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
    615   // For the vector indexing extension, the bound is the number of elements.
    616   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    617     IndexedType = Base->getType();
    618     return CGF.Builder.getInt32(VT->getNumElements());
    619   }
    620 
    621   Base = Base->IgnoreParens();
    622 
    623   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
    624     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
    625         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
    626       IndexedType = CE->getSubExpr()->getType();
    627       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
    628       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
    629         return CGF.Builder.getInt(CAT->getSize());
    630       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
    631         return CGF.getVLASize(VAT).first;
    632     }
    633   }
    634 
    635   return 0;
    636 }
    637 
    638 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
    639                                       llvm::Value *Index, QualType IndexType,
    640                                       bool Accessed) {
    641   assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
    642 
    643   QualType IndexedType;
    644   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
    645   if (!Bound)
    646     return;
    647 
    648   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
    649   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
    650   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
    651 
    652   llvm::Constant *StaticData[] = {
    653     EmitCheckSourceLocation(E->getExprLoc()),
    654     EmitCheckTypeDescriptor(IndexedType),
    655     EmitCheckTypeDescriptor(IndexType)
    656   };
    657   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
    658                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
    659   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
    660 }
    661 
    662 
    663 CodeGenFunction::ComplexPairTy CodeGenFunction::
    664 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    665                          bool isInc, bool isPre) {
    666   ComplexPairTy InVal = EmitLoadOfComplex(LV);
    667 
    668   llvm::Value *NextVal;
    669   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    670     uint64_t AmountVal = isInc ? 1 : -1;
    671     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    672 
    673     // Add the inc/dec to the real part.
    674     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    675   } else {
    676     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    677     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    678     if (!isInc)
    679       FVal.changeSign();
    680     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    681 
    682     // Add the inc/dec to the real part.
    683     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    684   }
    685 
    686   ComplexPairTy IncVal(NextVal, InVal.second);
    687 
    688   // Store the updated result through the lvalue.
    689   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
    690 
    691   // If this is a postinc, return the value read from memory, otherwise use the
    692   // updated value.
    693   return isPre ? IncVal : InVal;
    694 }
    695 
    696 
    697 //===----------------------------------------------------------------------===//
    698 //                         LValue Expression Emission
    699 //===----------------------------------------------------------------------===//
    700 
    701 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    702   if (Ty->isVoidType())
    703     return RValue::get(0);
    704 
    705   switch (getEvaluationKind(Ty)) {
    706   case TEK_Complex: {
    707     llvm::Type *EltTy =
    708       ConvertType(Ty->castAs<ComplexType>()->getElementType());
    709     llvm::Value *U = llvm::UndefValue::get(EltTy);
    710     return RValue::getComplex(std::make_pair(U, U));
    711   }
    712 
    713   // If this is a use of an undefined aggregate type, the aggregate must have an
    714   // identifiable address.  Just because the contents of the value are undefined
    715   // doesn't mean that the address can't be taken and compared.
    716   case TEK_Aggregate: {
    717     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    718     return RValue::getAggregate(DestPtr);
    719   }
    720 
    721   case TEK_Scalar:
    722     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    723   }
    724   llvm_unreachable("bad evaluation kind");
    725 }
    726 
    727 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    728                                               const char *Name) {
    729   ErrorUnsupported(E, Name);
    730   return GetUndefRValue(E->getType());
    731 }
    732 
    733 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    734                                               const char *Name) {
    735   ErrorUnsupported(E, Name);
    736   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    737   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
    738 }
    739 
    740 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
    741   LValue LV;
    742   if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
    743     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
    744   else
    745     LV = EmitLValue(E);
    746   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    747     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
    748                   E->getType(), LV.getAlignment());
    749   return LV;
    750 }
    751 
    752 /// EmitLValue - Emit code to compute a designator that specifies the location
    753 /// of the expression.
    754 ///
    755 /// This can return one of two things: a simple address or a bitfield reference.
    756 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    757 /// an LLVM pointer type.
    758 ///
    759 /// If this returns a bitfield reference, nothing about the pointee type of the
    760 /// LLVM value is known: For example, it may not be a pointer to an integer.
    761 ///
    762 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    763 /// this method guarantees that the returned pointer type will point to an LLVM
    764 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    765 /// length type, this is not possible.
    766 ///
    767 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    768   switch (E->getStmtClass()) {
    769   default: return EmitUnsupportedLValue(E, "l-value expression");
    770 
    771   case Expr::ObjCPropertyRefExprClass:
    772     llvm_unreachable("cannot emit a property reference directly");
    773 
    774   case Expr::ObjCSelectorExprClass:
    775     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    776   case Expr::ObjCIsaExprClass:
    777     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    778   case Expr::BinaryOperatorClass:
    779     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    780   case Expr::CompoundAssignOperatorClass:
    781     if (!E->getType()->isAnyComplexType())
    782       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    783     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    784   case Expr::CallExprClass:
    785   case Expr::CXXMemberCallExprClass:
    786   case Expr::CXXOperatorCallExprClass:
    787   case Expr::UserDefinedLiteralClass:
    788     return EmitCallExprLValue(cast<CallExpr>(E));
    789   case Expr::VAArgExprClass:
    790     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    791   case Expr::DeclRefExprClass:
    792     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
    793   case Expr::ParenExprClass:
    794     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
    795   case Expr::GenericSelectionExprClass:
    796     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
    797   case Expr::PredefinedExprClass:
    798     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
    799   case Expr::StringLiteralClass:
    800     return EmitStringLiteralLValue(cast<StringLiteral>(E));
    801   case Expr::ObjCEncodeExprClass:
    802     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
    803   case Expr::PseudoObjectExprClass:
    804     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
    805   case Expr::InitListExprClass:
    806     return EmitInitListLValue(cast<InitListExpr>(E));
    807   case Expr::CXXTemporaryObjectExprClass:
    808   case Expr::CXXConstructExprClass:
    809     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
    810   case Expr::CXXBindTemporaryExprClass:
    811     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
    812   case Expr::CXXUuidofExprClass:
    813     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
    814   case Expr::LambdaExprClass:
    815     return EmitLambdaLValue(cast<LambdaExpr>(E));
    816 
    817   case Expr::ExprWithCleanupsClass: {
    818     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
    819     enterFullExpression(cleanups);
    820     RunCleanupsScope Scope(*this);
    821     return EmitLValue(cleanups->getSubExpr());
    822   }
    823 
    824   case Expr::CXXDefaultArgExprClass:
    825     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
    826   case Expr::CXXDefaultInitExprClass: {
    827     CXXDefaultInitExprScope Scope(*this);
    828     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
    829   }
    830   case Expr::CXXTypeidExprClass:
    831     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
    832 
    833   case Expr::ObjCMessageExprClass:
    834     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
    835   case Expr::ObjCIvarRefExprClass:
    836     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
    837   case Expr::StmtExprClass:
    838     return EmitStmtExprLValue(cast<StmtExpr>(E));
    839   case Expr::UnaryOperatorClass:
    840     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
    841   case Expr::ArraySubscriptExprClass:
    842     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
    843   case Expr::ExtVectorElementExprClass:
    844     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
    845   case Expr::MemberExprClass:
    846     return EmitMemberExpr(cast<MemberExpr>(E));
    847   case Expr::CompoundLiteralExprClass:
    848     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
    849   case Expr::ConditionalOperatorClass:
    850     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
    851   case Expr::BinaryConditionalOperatorClass:
    852     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
    853   case Expr::ChooseExprClass:
    854     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
    855   case Expr::OpaqueValueExprClass:
    856     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
    857   case Expr::SubstNonTypeTemplateParmExprClass:
    858     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
    859   case Expr::ImplicitCastExprClass:
    860   case Expr::CStyleCastExprClass:
    861   case Expr::CXXFunctionalCastExprClass:
    862   case Expr::CXXStaticCastExprClass:
    863   case Expr::CXXDynamicCastExprClass:
    864   case Expr::CXXReinterpretCastExprClass:
    865   case Expr::CXXConstCastExprClass:
    866   case Expr::ObjCBridgedCastExprClass:
    867     return EmitCastLValue(cast<CastExpr>(E));
    868 
    869   case Expr::MaterializeTemporaryExprClass:
    870     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
    871   }
    872 }
    873 
    874 /// Given an object of the given canonical type, can we safely copy a
    875 /// value out of it based on its initializer?
    876 static bool isConstantEmittableObjectType(QualType type) {
    877   assert(type.isCanonical());
    878   assert(!type->isReferenceType());
    879 
    880   // Must be const-qualified but non-volatile.
    881   Qualifiers qs = type.getLocalQualifiers();
    882   if (!qs.hasConst() || qs.hasVolatile()) return false;
    883 
    884   // Otherwise, all object types satisfy this except C++ classes with
    885   // mutable subobjects or non-trivial copy/destroy behavior.
    886   if (const RecordType *RT = dyn_cast<RecordType>(type))
    887     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
    888       if (RD->hasMutableFields() || !RD->isTrivial())
    889         return false;
    890 
    891   return true;
    892 }
    893 
    894 /// Can we constant-emit a load of a reference to a variable of the
    895 /// given type?  This is different from predicates like
    896 /// Decl::isUsableInConstantExpressions because we do want it to apply
    897 /// in situations that don't necessarily satisfy the language's rules
    898 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
    899 /// to do this with const float variables even if those variables
    900 /// aren't marked 'constexpr'.
    901 enum ConstantEmissionKind {
    902   CEK_None,
    903   CEK_AsReferenceOnly,
    904   CEK_AsValueOrReference,
    905   CEK_AsValueOnly
    906 };
    907 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
    908   type = type.getCanonicalType();
    909   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
    910     if (isConstantEmittableObjectType(ref->getPointeeType()))
    911       return CEK_AsValueOrReference;
    912     return CEK_AsReferenceOnly;
    913   }
    914   if (isConstantEmittableObjectType(type))
    915     return CEK_AsValueOnly;
    916   return CEK_None;
    917 }
    918 
    919 /// Try to emit a reference to the given value without producing it as
    920 /// an l-value.  This is actually more than an optimization: we can't
    921 /// produce an l-value for variables that we never actually captured
    922 /// in a block or lambda, which means const int variables or constexpr
    923 /// literals or similar.
    924 CodeGenFunction::ConstantEmission
    925 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
    926   ValueDecl *value = refExpr->getDecl();
    927 
    928   // The value needs to be an enum constant or a constant variable.
    929   ConstantEmissionKind CEK;
    930   if (isa<ParmVarDecl>(value)) {
    931     CEK = CEK_None;
    932   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
    933     CEK = checkVarTypeForConstantEmission(var->getType());
    934   } else if (isa<EnumConstantDecl>(value)) {
    935     CEK = CEK_AsValueOnly;
    936   } else {
    937     CEK = CEK_None;
    938   }
    939   if (CEK == CEK_None) return ConstantEmission();
    940 
    941   Expr::EvalResult result;
    942   bool resultIsReference;
    943   QualType resultType;
    944 
    945   // It's best to evaluate all the way as an r-value if that's permitted.
    946   if (CEK != CEK_AsReferenceOnly &&
    947       refExpr->EvaluateAsRValue(result, getContext())) {
    948     resultIsReference = false;
    949     resultType = refExpr->getType();
    950 
    951   // Otherwise, try to evaluate as an l-value.
    952   } else if (CEK != CEK_AsValueOnly &&
    953              refExpr->EvaluateAsLValue(result, getContext())) {
    954     resultIsReference = true;
    955     resultType = value->getType();
    956 
    957   // Failure.
    958   } else {
    959     return ConstantEmission();
    960   }
    961 
    962   // In any case, if the initializer has side-effects, abandon ship.
    963   if (result.HasSideEffects)
    964     return ConstantEmission();
    965 
    966   // Emit as a constant.
    967   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
    968 
    969   // Make sure we emit a debug reference to the global variable.
    970   // This should probably fire even for
    971   if (isa<VarDecl>(value)) {
    972     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
    973       EmitDeclRefExprDbgValue(refExpr, C);
    974   } else {
    975     assert(isa<EnumConstantDecl>(value));
    976     EmitDeclRefExprDbgValue(refExpr, C);
    977   }
    978 
    979   // If we emitted a reference constant, we need to dereference that.
    980   if (resultIsReference)
    981     return ConstantEmission::forReference(C);
    982 
    983   return ConstantEmission::forValue(C);
    984 }
    985 
    986 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
    987   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
    988                           lvalue.getAlignment().getQuantity(),
    989                           lvalue.getType(), lvalue.getTBAAInfo(),
    990                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
    991 }
    992 
    993 static bool hasBooleanRepresentation(QualType Ty) {
    994   if (Ty->isBooleanType())
    995     return true;
    996 
    997   if (const EnumType *ET = Ty->getAs<EnumType>())
    998     return ET->getDecl()->getIntegerType()->isBooleanType();
    999 
   1000   if (const AtomicType *AT = Ty->getAs<AtomicType>())
   1001     return hasBooleanRepresentation(AT->getValueType());
   1002 
   1003   return false;
   1004 }
   1005 
   1006 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
   1007                             llvm::APInt &Min, llvm::APInt &End,
   1008                             bool StrictEnums) {
   1009   const EnumType *ET = Ty->getAs<EnumType>();
   1010   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
   1011                                 ET && !ET->getDecl()->isFixed();
   1012   bool IsBool = hasBooleanRepresentation(Ty);
   1013   if (!IsBool && !IsRegularCPlusPlusEnum)
   1014     return false;
   1015 
   1016   if (IsBool) {
   1017     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
   1018     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
   1019   } else {
   1020     const EnumDecl *ED = ET->getDecl();
   1021     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
   1022     unsigned Bitwidth = LTy->getScalarSizeInBits();
   1023     unsigned NumNegativeBits = ED->getNumNegativeBits();
   1024     unsigned NumPositiveBits = ED->getNumPositiveBits();
   1025 
   1026     if (NumNegativeBits) {
   1027       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
   1028       assert(NumBits <= Bitwidth);
   1029       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
   1030       Min = -End;
   1031     } else {
   1032       assert(NumPositiveBits <= Bitwidth);
   1033       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
   1034       Min = llvm::APInt(Bitwidth, 0);
   1035     }
   1036   }
   1037   return true;
   1038 }
   1039 
   1040 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
   1041   llvm::APInt Min, End;
   1042   if (!getRangeForType(*this, Ty, Min, End,
   1043                        CGM.getCodeGenOpts().StrictEnums))
   1044     return 0;
   1045 
   1046   llvm::MDBuilder MDHelper(getLLVMContext());
   1047   return MDHelper.createRange(Min, End);
   1048 }
   1049 
   1050 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   1051                                               unsigned Alignment, QualType Ty,
   1052                                               llvm::MDNode *TBAAInfo,
   1053                                               QualType TBAABaseType,
   1054                                               uint64_t TBAAOffset) {
   1055   // For better performance, handle vector loads differently.
   1056   if (Ty->isVectorType()) {
   1057     llvm::Value *V;
   1058     const llvm::Type *EltTy =
   1059     cast<llvm::PointerType>(Addr->getType())->getElementType();
   1060 
   1061     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
   1062 
   1063     // Handle vectors of size 3, like size 4 for better performance.
   1064     if (VTy->getNumElements() == 3) {
   1065 
   1066       // Bitcast to vec4 type.
   1067       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
   1068                                                          4);
   1069       llvm::PointerType *ptVec4Ty =
   1070       llvm::PointerType::get(vec4Ty,
   1071                              (cast<llvm::PointerType>(
   1072                                       Addr->getType()))->getAddressSpace());
   1073       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
   1074                                                 "castToVec4");
   1075       // Now load value.
   1076       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
   1077 
   1078       // Shuffle vector to get vec3.
   1079       llvm::Constant *Mask[] = {
   1080         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
   1081         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
   1082         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
   1083       };
   1084 
   1085       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1086       V = Builder.CreateShuffleVector(LoadVal,
   1087                                       llvm::UndefValue::get(vec4Ty),
   1088                                       MaskV, "extractVec");
   1089       return EmitFromMemory(V, Ty);
   1090     }
   1091   }
   1092 
   1093   // Atomic operations have to be done on integral types.
   1094   if (Ty->isAtomicType()) {
   1095     LValue lvalue = LValue::MakeAddr(Addr, Ty,
   1096                                      CharUnits::fromQuantity(Alignment),
   1097                                      getContext(), TBAAInfo);
   1098     return EmitAtomicLoad(lvalue).getScalarVal();
   1099   }
   1100 
   1101   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
   1102   if (Volatile)
   1103     Load->setVolatile(true);
   1104   if (Alignment)
   1105     Load->setAlignment(Alignment);
   1106   if (TBAAInfo) {
   1107     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1108                                                       TBAAOffset);
   1109     CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
   1110   }
   1111 
   1112   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
   1113       (SanOpts->Enum && Ty->getAs<EnumType>())) {
   1114     llvm::APInt Min, End;
   1115     if (getRangeForType(*this, Ty, Min, End, true)) {
   1116       --End;
   1117       llvm::Value *Check;
   1118       if (!Min)
   1119         Check = Builder.CreateICmpULE(
   1120           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1121       else {
   1122         llvm::Value *Upper = Builder.CreateICmpSLE(
   1123           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1124         llvm::Value *Lower = Builder.CreateICmpSGE(
   1125           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
   1126         Check = Builder.CreateAnd(Upper, Lower);
   1127       }
   1128       // FIXME: Provide a SourceLocation.
   1129       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
   1130                 EmitCheckValue(Load), CRK_Recoverable);
   1131     }
   1132   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
   1133     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
   1134       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
   1135 
   1136   return EmitFromMemory(Load, Ty);
   1137 }
   1138 
   1139 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
   1140   // Bool has a different representation in memory than in registers.
   1141   if (hasBooleanRepresentation(Ty)) {
   1142     // This should really always be an i1, but sometimes it's already
   1143     // an i8, and it's awkward to track those cases down.
   1144     if (Value->getType()->isIntegerTy(1))
   1145       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
   1146     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1147            "wrong value rep of bool");
   1148   }
   1149 
   1150   return Value;
   1151 }
   1152 
   1153 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
   1154   // Bool has a different representation in memory than in registers.
   1155   if (hasBooleanRepresentation(Ty)) {
   1156     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1157            "wrong value rep of bool");
   1158     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
   1159   }
   1160 
   1161   return Value;
   1162 }
   1163 
   1164 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   1165                                         bool Volatile, unsigned Alignment,
   1166                                         QualType Ty,
   1167                                         llvm::MDNode *TBAAInfo,
   1168                                         bool isInit, QualType TBAABaseType,
   1169                                         uint64_t TBAAOffset) {
   1170 
   1171   // Handle vectors differently to get better performance.
   1172   if (Ty->isVectorType()) {
   1173     llvm::Type *SrcTy = Value->getType();
   1174     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
   1175     // Handle vec3 special.
   1176     if (VecTy->getNumElements() == 3) {
   1177       llvm::LLVMContext &VMContext = getLLVMContext();
   1178 
   1179       // Our source is a vec3, do a shuffle vector to make it a vec4.
   1180       SmallVector<llvm::Constant*, 4> Mask;
   1181       Mask.push_back(llvm::ConstantInt::get(
   1182                                             llvm::Type::getInt32Ty(VMContext),
   1183                                             0));
   1184       Mask.push_back(llvm::ConstantInt::get(
   1185                                             llvm::Type::getInt32Ty(VMContext),
   1186                                             1));
   1187       Mask.push_back(llvm::ConstantInt::get(
   1188                                             llvm::Type::getInt32Ty(VMContext),
   1189                                             2));
   1190       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
   1191 
   1192       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1193       Value = Builder.CreateShuffleVector(Value,
   1194                                           llvm::UndefValue::get(VecTy),
   1195                                           MaskV, "extractVec");
   1196       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
   1197     }
   1198     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
   1199     if (DstPtr->getElementType() != SrcTy) {
   1200       llvm::Type *MemTy =
   1201       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
   1202       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
   1203     }
   1204   }
   1205 
   1206   Value = EmitToMemory(Value, Ty);
   1207 
   1208   if (Ty->isAtomicType()) {
   1209     EmitAtomicStore(RValue::get(Value),
   1210                     LValue::MakeAddr(Addr, Ty,
   1211                                      CharUnits::fromQuantity(Alignment),
   1212                                      getContext(), TBAAInfo),
   1213                     isInit);
   1214     return;
   1215   }
   1216 
   1217   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
   1218   if (Alignment)
   1219     Store->setAlignment(Alignment);
   1220   if (TBAAInfo) {
   1221     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1222                                                       TBAAOffset);
   1223     CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
   1224   }
   1225 }
   1226 
   1227 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
   1228                                         bool isInit) {
   1229   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
   1230                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
   1231                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
   1232                     lvalue.getTBAAOffset());
   1233 }
   1234 
   1235 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
   1236 /// method emits the address of the lvalue, then loads the result as an rvalue,
   1237 /// returning the rvalue.
   1238 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
   1239   if (LV.isObjCWeak()) {
   1240     // load of a __weak object.
   1241     llvm::Value *AddrWeakObj = LV.getAddress();
   1242     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
   1243                                                              AddrWeakObj));
   1244   }
   1245   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1246     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
   1247     Object = EmitObjCConsumeObject(LV.getType(), Object);
   1248     return RValue::get(Object);
   1249   }
   1250 
   1251   if (LV.isSimple()) {
   1252     assert(!LV.getType()->isFunctionType());
   1253 
   1254     // Everything needs a load.
   1255     return RValue::get(EmitLoadOfScalar(LV));
   1256   }
   1257 
   1258   if (LV.isVectorElt()) {
   1259     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
   1260                                               LV.isVolatileQualified());
   1261     Load->setAlignment(LV.getAlignment().getQuantity());
   1262     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
   1263                                                     "vecext"));
   1264   }
   1265 
   1266   // If this is a reference to a subset of the elements of a vector, either
   1267   // shuffle the input or extract/insert them as appropriate.
   1268   if (LV.isExtVectorElt())
   1269     return EmitLoadOfExtVectorElementLValue(LV);
   1270 
   1271   assert(LV.isBitField() && "Unknown LValue type!");
   1272   return EmitLoadOfBitfieldLValue(LV);
   1273 }
   1274 
   1275 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
   1276   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
   1277 
   1278   // Get the output type.
   1279   llvm::Type *ResLTy = ConvertType(LV.getType());
   1280 
   1281   llvm::Value *Ptr = LV.getBitFieldAddr();
   1282   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
   1283                                         "bf.load");
   1284   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1285 
   1286   if (Info.IsSigned) {
   1287     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
   1288     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
   1289     if (HighBits)
   1290       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
   1291     if (Info.Offset + HighBits)
   1292       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
   1293   } else {
   1294     if (Info.Offset)
   1295       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
   1296     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
   1297       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
   1298                                                               Info.Size),
   1299                               "bf.clear");
   1300   }
   1301   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
   1302 
   1303   return RValue::get(Val);
   1304 }
   1305 
   1306 // If this is a reference to a subset of the elements of a vector, create an
   1307 // appropriate shufflevector.
   1308 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
   1309   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
   1310                                             LV.isVolatileQualified());
   1311   Load->setAlignment(LV.getAlignment().getQuantity());
   1312   llvm::Value *Vec = Load;
   1313 
   1314   const llvm::Constant *Elts = LV.getExtVectorElts();
   1315 
   1316   // If the result of the expression is a non-vector type, we must be extracting
   1317   // a single element.  Just codegen as an extractelement.
   1318   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1319   if (!ExprVT) {
   1320     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1321     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
   1322     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
   1323   }
   1324 
   1325   // Always use shuffle vector to try to retain the original program structure
   1326   unsigned NumResultElts = ExprVT->getNumElements();
   1327 
   1328   SmallVector<llvm::Constant*, 4> Mask;
   1329   for (unsigned i = 0; i != NumResultElts; ++i)
   1330     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
   1331 
   1332   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1333   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
   1334                                     MaskV);
   1335   return RValue::get(Vec);
   1336 }
   1337 
   1338 
   1339 
   1340 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1341 /// lvalue, where both are guaranteed to the have the same type, and that type
   1342 /// is 'Ty'.
   1343 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
   1344   if (!Dst.isSimple()) {
   1345     if (Dst.isVectorElt()) {
   1346       // Read/modify/write the vector, inserting the new element.
   1347       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
   1348                                                 Dst.isVolatileQualified());
   1349       Load->setAlignment(Dst.getAlignment().getQuantity());
   1350       llvm::Value *Vec = Load;
   1351       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
   1352                                         Dst.getVectorIdx(), "vecins");
   1353       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
   1354                                                    Dst.isVolatileQualified());
   1355       Store->setAlignment(Dst.getAlignment().getQuantity());
   1356       return;
   1357     }
   1358 
   1359     // If this is an update of extended vector elements, insert them as
   1360     // appropriate.
   1361     if (Dst.isExtVectorElt())
   1362       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
   1363 
   1364     assert(Dst.isBitField() && "Unknown LValue type");
   1365     return EmitStoreThroughBitfieldLValue(Src, Dst);
   1366   }
   1367 
   1368   // There's special magic for assigning into an ARC-qualified l-value.
   1369   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
   1370     switch (Lifetime) {
   1371     case Qualifiers::OCL_None:
   1372       llvm_unreachable("present but none");
   1373 
   1374     case Qualifiers::OCL_ExplicitNone:
   1375       // nothing special
   1376       break;
   1377 
   1378     case Qualifiers::OCL_Strong:
   1379       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
   1380       return;
   1381 
   1382     case Qualifiers::OCL_Weak:
   1383       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
   1384       return;
   1385 
   1386     case Qualifiers::OCL_Autoreleasing:
   1387       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
   1388                                                      Src.getScalarVal()));
   1389       // fall into the normal path
   1390       break;
   1391     }
   1392   }
   1393 
   1394   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
   1395     // load of a __weak object.
   1396     llvm::Value *LvalueDst = Dst.getAddress();
   1397     llvm::Value *src = Src.getScalarVal();
   1398      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
   1399     return;
   1400   }
   1401 
   1402   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1403     // load of a __strong object.
   1404     llvm::Value *LvalueDst = Dst.getAddress();
   1405     llvm::Value *src = Src.getScalarVal();
   1406     if (Dst.isObjCIvar()) {
   1407       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1408       llvm::Type *ResultType = ConvertType(getContext().LongTy);
   1409       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
   1410       llvm::Value *dst = RHS;
   1411       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1412       llvm::Value *LHS =
   1413         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
   1414       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1415       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1416                                               BytesBetween);
   1417     } else if (Dst.isGlobalObjCRef()) {
   1418       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1419                                                 Dst.isThreadLocalRef());
   1420     }
   1421     else
   1422       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1423     return;
   1424   }
   1425 
   1426   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1427   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
   1428 }
   1429 
   1430 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1431                                                      llvm::Value **Result) {
   1432   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1433   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1434   llvm::Value *Ptr = Dst.getBitFieldAddr();
   1435 
   1436   // Get the source value, truncated to the width of the bit-field.
   1437   llvm::Value *SrcVal = Src.getScalarVal();
   1438 
   1439   // Cast the source to the storage type and shift it into place.
   1440   SrcVal = Builder.CreateIntCast(SrcVal,
   1441                                  Ptr->getType()->getPointerElementType(),
   1442                                  /*IsSigned=*/false);
   1443   llvm::Value *MaskedVal = SrcVal;
   1444 
   1445   // See if there are other bits in the bitfield's storage we'll need to load
   1446   // and mask together with source before storing.
   1447   if (Info.StorageSize != Info.Size) {
   1448     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
   1449     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
   1450                                           "bf.load");
   1451     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
   1452 
   1453     // Mask the source value as needed.
   1454     if (!hasBooleanRepresentation(Dst.getType()))
   1455       SrcVal = Builder.CreateAnd(SrcVal,
   1456                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
   1457                                                             Info.Size),
   1458                                  "bf.value");
   1459     MaskedVal = SrcVal;
   1460     if (Info.Offset)
   1461       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
   1462 
   1463     // Mask out the original value.
   1464     Val = Builder.CreateAnd(Val,
   1465                             ~llvm::APInt::getBitsSet(Info.StorageSize,
   1466                                                      Info.Offset,
   1467                                                      Info.Offset + Info.Size),
   1468                             "bf.clear");
   1469 
   1470     // Or together the unchanged values and the source value.
   1471     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
   1472   } else {
   1473     assert(Info.Offset == 0);
   1474   }
   1475 
   1476   // Write the new value back out.
   1477   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
   1478                                                Dst.isVolatileQualified());
   1479   Store->setAlignment(Info.StorageAlignment);
   1480 
   1481   // Return the new value of the bit-field, if requested.
   1482   if (Result) {
   1483     llvm::Value *ResultVal = MaskedVal;
   1484 
   1485     // Sign extend the value if needed.
   1486     if (Info.IsSigned) {
   1487       assert(Info.Size <= Info.StorageSize);
   1488       unsigned HighBits = Info.StorageSize - Info.Size;
   1489       if (HighBits) {
   1490         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
   1491         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
   1492       }
   1493     }
   1494 
   1495     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
   1496                                       "bf.result.cast");
   1497     *Result = EmitFromMemory(ResultVal, Dst.getType());
   1498   }
   1499 }
   1500 
   1501 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1502                                                                LValue Dst) {
   1503   // This access turns into a read/modify/write of the vector.  Load the input
   1504   // value now.
   1505   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
   1506                                             Dst.isVolatileQualified());
   1507   Load->setAlignment(Dst.getAlignment().getQuantity());
   1508   llvm::Value *Vec = Load;
   1509   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1510 
   1511   llvm::Value *SrcVal = Src.getScalarVal();
   1512 
   1513   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1514     unsigned NumSrcElts = VTy->getNumElements();
   1515     unsigned NumDstElts =
   1516        cast<llvm::VectorType>(Vec->getType())->getNumElements();
   1517     if (NumDstElts == NumSrcElts) {
   1518       // Use shuffle vector is the src and destination are the same number of
   1519       // elements and restore the vector mask since it is on the side it will be
   1520       // stored.
   1521       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1522       for (unsigned i = 0; i != NumSrcElts; ++i)
   1523         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
   1524 
   1525       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1526       Vec = Builder.CreateShuffleVector(SrcVal,
   1527                                         llvm::UndefValue::get(Vec->getType()),
   1528                                         MaskV);
   1529     } else if (NumDstElts > NumSrcElts) {
   1530       // Extended the source vector to the same length and then shuffle it
   1531       // into the destination.
   1532       // FIXME: since we're shuffling with undef, can we just use the indices
   1533       //        into that?  This could be simpler.
   1534       SmallVector<llvm::Constant*, 4> ExtMask;
   1535       for (unsigned i = 0; i != NumSrcElts; ++i)
   1536         ExtMask.push_back(Builder.getInt32(i));
   1537       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
   1538       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1539       llvm::Value *ExtSrcVal =
   1540         Builder.CreateShuffleVector(SrcVal,
   1541                                     llvm::UndefValue::get(SrcVal->getType()),
   1542                                     ExtMaskV);
   1543       // build identity
   1544       SmallVector<llvm::Constant*, 4> Mask;
   1545       for (unsigned i = 0; i != NumDstElts; ++i)
   1546         Mask.push_back(Builder.getInt32(i));
   1547 
   1548       // modify when what gets shuffled in
   1549       for (unsigned i = 0; i != NumSrcElts; ++i)
   1550         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
   1551       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1552       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
   1553     } else {
   1554       // We should never shorten the vector
   1555       llvm_unreachable("unexpected shorten vector length");
   1556     }
   1557   } else {
   1558     // If the Src is a scalar (not a vector) it must be updating one element.
   1559     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1560     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
   1561     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
   1562   }
   1563 
   1564   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
   1565                                                Dst.isVolatileQualified());
   1566   Store->setAlignment(Dst.getAlignment().getQuantity());
   1567 }
   1568 
   1569 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
   1570 // generating write-barries API. It is currently a global, ivar,
   1571 // or neither.
   1572 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1573                                  LValue &LV,
   1574                                  bool IsMemberAccess=false) {
   1575   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
   1576     return;
   1577 
   1578   if (isa<ObjCIvarRefExpr>(E)) {
   1579     QualType ExpTy = E->getType();
   1580     if (IsMemberAccess && ExpTy->isPointerType()) {
   1581       // If ivar is a structure pointer, assigning to field of
   1582       // this struct follows gcc's behavior and makes it a non-ivar
   1583       // writer-barrier conservatively.
   1584       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1585       if (ExpTy->isRecordType()) {
   1586         LV.setObjCIvar(false);
   1587         return;
   1588       }
   1589     }
   1590     LV.setObjCIvar(true);
   1591     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
   1592     LV.setBaseIvarExp(Exp->getBase());
   1593     LV.setObjCArray(E->getType()->isArrayType());
   1594     return;
   1595   }
   1596 
   1597   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
   1598     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1599       if (VD->hasGlobalStorage()) {
   1600         LV.setGlobalObjCRef(true);
   1601         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
   1602       }
   1603     }
   1604     LV.setObjCArray(E->getType()->isArrayType());
   1605     return;
   1606   }
   1607 
   1608   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
   1609     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1610     return;
   1611   }
   1612 
   1613   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
   1614     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1615     if (LV.isObjCIvar()) {
   1616       // If cast is to a structure pointer, follow gcc's behavior and make it
   1617       // a non-ivar write-barrier.
   1618       QualType ExpTy = E->getType();
   1619       if (ExpTy->isPointerType())
   1620         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1621       if (ExpTy->isRecordType())
   1622         LV.setObjCIvar(false);
   1623     }
   1624     return;
   1625   }
   1626 
   1627   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1628     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1629     return;
   1630   }
   1631 
   1632   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1633     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1634     return;
   1635   }
   1636 
   1637   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1638     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1639     return;
   1640   }
   1641 
   1642   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1643     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1644     return;
   1645   }
   1646 
   1647   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1648     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1649     if (LV.isObjCIvar() && !LV.isObjCArray())
   1650       // Using array syntax to assigning to what an ivar points to is not
   1651       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1652       LV.setObjCIvar(false);
   1653     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1654       // Using array syntax to assigning to what global points to is not
   1655       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1656       LV.setGlobalObjCRef(false);
   1657     return;
   1658   }
   1659 
   1660   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
   1661     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
   1662     // We don't know if member is an 'ivar', but this flag is looked at
   1663     // only in the context of LV.isObjCIvar().
   1664     LV.setObjCArray(E->getType()->isArrayType());
   1665     return;
   1666   }
   1667 }
   1668 
   1669 static llvm::Value *
   1670 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1671                                 llvm::Value *V, llvm::Type *IRType,
   1672                                 StringRef Name = StringRef()) {
   1673   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1674   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1675 }
   1676 
   1677 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1678                                       const Expr *E, const VarDecl *VD) {
   1679   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1680   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
   1681   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   1682   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
   1683   QualType T = E->getType();
   1684   LValue LV;
   1685   if (VD->getType()->isReferenceType()) {
   1686     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
   1687     LI->setAlignment(Alignment.getQuantity());
   1688     V = LI;
   1689     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
   1690   } else {
   1691     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1692   }
   1693   setObjCGCLValueClass(CGF.getContext(), E, LV);
   1694   return LV;
   1695 }
   1696 
   1697 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   1698                                      const Expr *E, const FunctionDecl *FD) {
   1699   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   1700   if (!FD->hasPrototype()) {
   1701     if (const FunctionProtoType *Proto =
   1702             FD->getType()->getAs<FunctionProtoType>()) {
   1703       // Ugly case: for a K&R-style definition, the type of the definition
   1704       // isn't the same as the type of a use.  Correct for this with a
   1705       // bitcast.
   1706       QualType NoProtoType =
   1707           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
   1708       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   1709       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
   1710     }
   1711   }
   1712   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
   1713   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
   1714 }
   1715 
   1716 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
   1717                                       llvm::Value *ThisValue) {
   1718   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
   1719   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
   1720   return CGF.EmitLValueForField(LV, FD);
   1721 }
   1722 
   1723 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   1724   const NamedDecl *ND = E->getDecl();
   1725   CharUnits Alignment = getContext().getDeclAlign(ND);
   1726   QualType T = E->getType();
   1727 
   1728   // A DeclRefExpr for a reference initialized by a constant expression can
   1729   // appear without being odr-used. Directly emit the constant initializer.
   1730   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1731     const Expr *Init = VD->getAnyInitializer(VD);
   1732     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
   1733         VD->isUsableInConstantExpressions(getContext()) &&
   1734         VD->checkInitIsICE()) {
   1735       llvm::Constant *Val =
   1736         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
   1737       assert(Val && "failed to emit reference constant expression");
   1738       // FIXME: Eventually we will want to emit vector element references.
   1739       return MakeAddrLValue(Val, T, Alignment);
   1740     }
   1741   }
   1742 
   1743   // FIXME: We should be able to assert this for FunctionDecls as well!
   1744   // FIXME: We should be able to assert this for all DeclRefExprs, not just
   1745   // those with a valid source location.
   1746   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
   1747           !E->getLocation().isValid()) &&
   1748          "Should not use decl without marking it used!");
   1749 
   1750   if (ND->hasAttr<WeakRefAttr>()) {
   1751     const ValueDecl *VD = cast<ValueDecl>(ND);
   1752     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
   1753     return MakeAddrLValue(Aliasee, T, Alignment);
   1754   }
   1755 
   1756   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1757     // Check if this is a global variable.
   1758     if (VD->hasLinkage() || VD->isStaticDataMember()) {
   1759       // If it's thread_local, emit a call to its wrapper function instead.
   1760       if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
   1761         return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
   1762       return EmitGlobalVarDeclLValue(*this, E, VD);
   1763     }
   1764 
   1765     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
   1766 
   1767     llvm::Value *V = LocalDeclMap.lookup(VD);
   1768     if (!V && VD->isStaticLocal())
   1769       V = CGM.getStaticLocalDeclAddress(VD);
   1770 
   1771     // Use special handling for lambdas.
   1772     if (!V) {
   1773       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
   1774         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
   1775       } else if (CapturedStmtInfo) {
   1776         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
   1777           return EmitCapturedFieldLValue(*this, FD,
   1778                                          CapturedStmtInfo->getContextValue());
   1779       }
   1780 
   1781       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
   1782       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
   1783                             T, Alignment);
   1784     }
   1785 
   1786     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
   1787 
   1788     if (isBlockVariable)
   1789       V = BuildBlockByrefAddress(V, VD);
   1790 
   1791     LValue LV;
   1792     if (VD->getType()->isReferenceType()) {
   1793       llvm::LoadInst *LI = Builder.CreateLoad(V);
   1794       LI->setAlignment(Alignment.getQuantity());
   1795       V = LI;
   1796       LV = MakeNaturalAlignAddrLValue(V, T);
   1797     } else {
   1798       LV = MakeAddrLValue(V, T, Alignment);
   1799     }
   1800 
   1801     bool isLocalStorage = VD->hasLocalStorage();
   1802 
   1803     bool NonGCable = isLocalStorage &&
   1804                      !VD->getType()->isReferenceType() &&
   1805                      !isBlockVariable;
   1806     if (NonGCable) {
   1807       LV.getQuals().removeObjCGCAttr();
   1808       LV.setNonGC(true);
   1809     }
   1810 
   1811     bool isImpreciseLifetime =
   1812       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
   1813     if (isImpreciseLifetime)
   1814       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
   1815     setObjCGCLValueClass(getContext(), E, LV);
   1816     return LV;
   1817   }
   1818 
   1819   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
   1820     return EmitFunctionDeclLValue(*this, E, fn);
   1821 
   1822   llvm_unreachable("Unhandled DeclRefExpr");
   1823 }
   1824 
   1825 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   1826   // __extension__ doesn't affect lvalue-ness.
   1827   if (E->getOpcode() == UO_Extension)
   1828     return EmitLValue(E->getSubExpr());
   1829 
   1830   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   1831   switch (E->getOpcode()) {
   1832   default: llvm_unreachable("Unknown unary operator lvalue!");
   1833   case UO_Deref: {
   1834     QualType T = E->getSubExpr()->getType()->getPointeeType();
   1835     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   1836 
   1837     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
   1838     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   1839 
   1840     // We should not generate __weak write barrier on indirect reference
   1841     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   1842     // But, we continue to generate __strong write barrier on indirect write
   1843     // into a pointer to object.
   1844     if (getLangOpts().ObjC1 &&
   1845         getLangOpts().getGC() != LangOptions::NonGC &&
   1846         LV.isObjCWeak())
   1847       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   1848     return LV;
   1849   }
   1850   case UO_Real:
   1851   case UO_Imag: {
   1852     LValue LV = EmitLValue(E->getSubExpr());
   1853     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   1854     llvm::Value *Addr = LV.getAddress();
   1855 
   1856     // __real is valid on scalars.  This is a faster way of testing that.
   1857     // __imag can only produce an rvalue on scalars.
   1858     if (E->getOpcode() == UO_Real &&
   1859         !cast<llvm::PointerType>(Addr->getType())
   1860            ->getElementType()->isStructTy()) {
   1861       assert(E->getSubExpr()->getType()->isArithmeticType());
   1862       return LV;
   1863     }
   1864 
   1865     assert(E->getSubExpr()->getType()->isAnyComplexType());
   1866 
   1867     unsigned Idx = E->getOpcode() == UO_Imag;
   1868     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
   1869                                                   Idx, "idx"),
   1870                           ExprTy);
   1871   }
   1872   case UO_PreInc:
   1873   case UO_PreDec: {
   1874     LValue LV = EmitLValue(E->getSubExpr());
   1875     bool isInc = E->getOpcode() == UO_PreInc;
   1876 
   1877     if (E->getType()->isAnyComplexType())
   1878       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1879     else
   1880       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   1881     return LV;
   1882   }
   1883   }
   1884 }
   1885 
   1886 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   1887   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   1888                         E->getType());
   1889 }
   1890 
   1891 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   1892   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   1893                         E->getType());
   1894 }
   1895 
   1896 static llvm::Constant*
   1897 GetAddrOfConstantWideString(StringRef Str,
   1898                             const char *GlobalName,
   1899                             ASTContext &Context,
   1900                             QualType Ty, SourceLocation Loc,
   1901                             CodeGenModule &CGM) {
   1902 
   1903   StringLiteral *SL = StringLiteral::Create(Context,
   1904                                             Str,
   1905                                             StringLiteral::Wide,
   1906                                             /*Pascal = */false,
   1907                                             Ty, Loc);
   1908   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
   1909   llvm::GlobalVariable *GV =
   1910     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
   1911                              !CGM.getLangOpts().WritableStrings,
   1912                              llvm::GlobalValue::PrivateLinkage,
   1913                              C, GlobalName);
   1914   const unsigned WideAlignment =
   1915     Context.getTypeAlignInChars(Ty).getQuantity();
   1916   GV->setAlignment(WideAlignment);
   1917   return GV;
   1918 }
   1919 
   1920 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   1921                                     SmallString<32>& Target) {
   1922   Target.resize(CharByteWidth * (Source.size() + 1));
   1923   char *ResultPtr = &Target[0];
   1924   const UTF8 *ErrorPtr;
   1925   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   1926   (void)success;
   1927   assert(success);
   1928   Target.resize(ResultPtr - &Target[0]);
   1929 }
   1930 
   1931 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   1932   switch (E->getIdentType()) {
   1933   default:
   1934     return EmitUnsupportedLValue(E, "predefined expression");
   1935 
   1936   case PredefinedExpr::Func:
   1937   case PredefinedExpr::Function:
   1938   case PredefinedExpr::LFunction:
   1939   case PredefinedExpr::PrettyFunction: {
   1940     unsigned IdentType = E->getIdentType();
   1941     std::string GlobalVarName;
   1942 
   1943     switch (IdentType) {
   1944     default: llvm_unreachable("Invalid type");
   1945     case PredefinedExpr::Func:
   1946       GlobalVarName = "__func__.";
   1947       break;
   1948     case PredefinedExpr::Function:
   1949       GlobalVarName = "__FUNCTION__.";
   1950       break;
   1951     case PredefinedExpr::LFunction:
   1952       GlobalVarName = "L__FUNCTION__.";
   1953       break;
   1954     case PredefinedExpr::PrettyFunction:
   1955       GlobalVarName = "__PRETTY_FUNCTION__.";
   1956       break;
   1957     }
   1958 
   1959     StringRef FnName = CurFn->getName();
   1960     if (FnName.startswith("\01"))
   1961       FnName = FnName.substr(1);
   1962     GlobalVarName += FnName;
   1963 
   1964     const Decl *CurDecl = CurCodeDecl;
   1965     if (CurDecl == 0)
   1966       CurDecl = getContext().getTranslationUnitDecl();
   1967 
   1968     std::string FunctionName =
   1969         (isa<BlockDecl>(CurDecl)
   1970          ? FnName.str()
   1971          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType,
   1972                                        CurDecl));
   1973 
   1974     const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual();
   1975     llvm::Constant *C;
   1976     if (ElemType->isWideCharType()) {
   1977       SmallString<32> RawChars;
   1978       ConvertUTF8ToWideString(
   1979           getContext().getTypeSizeInChars(ElemType).getQuantity(),
   1980           FunctionName, RawChars);
   1981       C = GetAddrOfConstantWideString(RawChars,
   1982                                       GlobalVarName.c_str(),
   1983                                       getContext(),
   1984                                       E->getType(),
   1985                                       E->getLocation(),
   1986                                       CGM);
   1987     } else {
   1988       C = CGM.GetAddrOfConstantCString(FunctionName,
   1989                                        GlobalVarName.c_str(),
   1990                                        1);
   1991     }
   1992     return MakeAddrLValue(C, E->getType());
   1993   }
   1994   }
   1995 }
   1996 
   1997 /// Emit a type description suitable for use by a runtime sanitizer library. The
   1998 /// format of a type descriptor is
   1999 ///
   2000 /// \code
   2001 ///   { i16 TypeKind, i16 TypeInfo }
   2002 /// \endcode
   2003 ///
   2004 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
   2005 /// integer, 1 for a floating point value, and -1 for anything else.
   2006 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
   2007   // FIXME: Only emit each type's descriptor once.
   2008   uint16_t TypeKind = -1;
   2009   uint16_t TypeInfo = 0;
   2010 
   2011   if (T->isIntegerType()) {
   2012     TypeKind = 0;
   2013     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
   2014                (T->isSignedIntegerType() ? 1 : 0);
   2015   } else if (T->isFloatingType()) {
   2016     TypeKind = 1;
   2017     TypeInfo = getContext().getTypeSize(T);
   2018   }
   2019 
   2020   // Format the type name as if for a diagnostic, including quotes and
   2021   // optionally an 'aka'.
   2022   SmallString<32> Buffer;
   2023   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
   2024                                     (intptr_t)T.getAsOpaquePtr(),
   2025                                     0, 0, 0, 0, 0, 0, Buffer,
   2026                                     ArrayRef<intptr_t>());
   2027 
   2028   llvm::Constant *Components[] = {
   2029     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
   2030     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
   2031   };
   2032   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
   2033 
   2034   llvm::GlobalVariable *GV =
   2035     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
   2036                              /*isConstant=*/true,
   2037                              llvm::GlobalVariable::PrivateLinkage,
   2038                              Descriptor);
   2039   GV->setUnnamedAddr(true);
   2040   return GV;
   2041 }
   2042 
   2043 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
   2044   llvm::Type *TargetTy = IntPtrTy;
   2045 
   2046   // Floating-point types which fit into intptr_t are bitcast to integers
   2047   // and then passed directly (after zero-extension, if necessary).
   2048   if (V->getType()->isFloatingPointTy()) {
   2049     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
   2050     if (Bits <= TargetTy->getIntegerBitWidth())
   2051       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
   2052                                                          Bits));
   2053   }
   2054 
   2055   // Integers which fit in intptr_t are zero-extended and passed directly.
   2056   if (V->getType()->isIntegerTy() &&
   2057       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
   2058     return Builder.CreateZExt(V, TargetTy);
   2059 
   2060   // Pointers are passed directly, everything else is passed by address.
   2061   if (!V->getType()->isPointerTy()) {
   2062     llvm::Value *Ptr = CreateTempAlloca(V->getType());
   2063     Builder.CreateStore(V, Ptr);
   2064     V = Ptr;
   2065   }
   2066   return Builder.CreatePtrToInt(V, TargetTy);
   2067 }
   2068 
   2069 /// \brief Emit a representation of a SourceLocation for passing to a handler
   2070 /// in a sanitizer runtime library. The format for this data is:
   2071 /// \code
   2072 ///   struct SourceLocation {
   2073 ///     const char *Filename;
   2074 ///     int32_t Line, Column;
   2075 ///   };
   2076 /// \endcode
   2077 /// For an invalid SourceLocation, the Filename pointer is null.
   2078 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
   2079   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
   2080 
   2081   llvm::Constant *Data[] = {
   2082     // FIXME: Only emit each file name once.
   2083     PLoc.isValid() ? cast<llvm::Constant>(
   2084                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
   2085                    : llvm::Constant::getNullValue(Int8PtrTy),
   2086     Builder.getInt32(PLoc.getLine()),
   2087     Builder.getInt32(PLoc.getColumn())
   2088   };
   2089 
   2090   return llvm::ConstantStruct::getAnon(Data);
   2091 }
   2092 
   2093 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
   2094                                 ArrayRef<llvm::Constant *> StaticArgs,
   2095                                 ArrayRef<llvm::Value *> DynamicArgs,
   2096                                 CheckRecoverableKind RecoverKind) {
   2097   assert(SanOpts != &SanitizerOptions::Disabled);
   2098 
   2099   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
   2100     assert (RecoverKind != CRK_AlwaysRecoverable &&
   2101             "Runtime call required for AlwaysRecoverable kind!");
   2102     return EmitTrapCheck(Checked);
   2103   }
   2104 
   2105   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2106 
   2107   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
   2108 
   2109   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
   2110 
   2111   // Give hint that we very much don't expect to execute the handler
   2112   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
   2113   llvm::MDBuilder MDHelper(getLLVMContext());
   2114   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2115   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2116 
   2117   EmitBlock(Handler);
   2118 
   2119   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2120   llvm::GlobalValue *InfoPtr =
   2121       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2122                                llvm::GlobalVariable::PrivateLinkage, Info);
   2123   InfoPtr->setUnnamedAddr(true);
   2124 
   2125   SmallVector<llvm::Value *, 4> Args;
   2126   SmallVector<llvm::Type *, 4> ArgTypes;
   2127   Args.reserve(DynamicArgs.size() + 1);
   2128   ArgTypes.reserve(DynamicArgs.size() + 1);
   2129 
   2130   // Handler functions take an i8* pointing to the (handler-specific) static
   2131   // information block, followed by a sequence of intptr_t arguments
   2132   // representing operand values.
   2133   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
   2134   ArgTypes.push_back(Int8PtrTy);
   2135   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
   2136     Args.push_back(EmitCheckValue(DynamicArgs[i]));
   2137     ArgTypes.push_back(IntPtrTy);
   2138   }
   2139 
   2140   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
   2141                  ((RecoverKind == CRK_Recoverable) &&
   2142                    CGM.getCodeGenOpts().SanitizeRecover);
   2143 
   2144   llvm::FunctionType *FnType =
   2145     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
   2146   llvm::AttrBuilder B;
   2147   if (!Recover) {
   2148     B.addAttribute(llvm::Attribute::NoReturn)
   2149      .addAttribute(llvm::Attribute::NoUnwind);
   2150   }
   2151   B.addAttribute(llvm::Attribute::UWTable);
   2152 
   2153   // Checks that have two variants use a suffix to differentiate them
   2154   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
   2155                            !CGM.getCodeGenOpts().SanitizeRecover;
   2156   std::string FunctionName = ("__ubsan_handle_" + CheckName +
   2157                               (NeedsAbortSuffix? "_abort" : "")).str();
   2158   llvm::Value *Fn =
   2159     CGM.CreateRuntimeFunction(FnType, FunctionName,
   2160                               llvm::AttributeSet::get(getLLVMContext(),
   2161                                               llvm::AttributeSet::FunctionIndex,
   2162                                                       B));
   2163   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
   2164   if (Recover) {
   2165     Builder.CreateBr(Cont);
   2166   } else {
   2167     HandlerCall->setDoesNotReturn();
   2168     Builder.CreateUnreachable();
   2169   }
   2170 
   2171   EmitBlock(Cont);
   2172 }
   2173 
   2174 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
   2175   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2176 
   2177   // If we're optimizing, collapse all calls to trap down to just one per
   2178   // function to save on code size.
   2179   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
   2180     TrapBB = createBasicBlock("trap");
   2181     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2182     EmitBlock(TrapBB);
   2183     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
   2184     llvm::CallInst *TrapCall = Builder.CreateCall(F);
   2185     TrapCall->setDoesNotReturn();
   2186     TrapCall->setDoesNotThrow();
   2187     Builder.CreateUnreachable();
   2188   } else {
   2189     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2190   }
   2191 
   2192   EmitBlock(Cont);
   2193 }
   2194 
   2195 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   2196 /// array to pointer, return the array subexpression.
   2197 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   2198   // If this isn't just an array->pointer decay, bail out.
   2199   const CastExpr *CE = dyn_cast<CastExpr>(E);
   2200   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
   2201     return 0;
   2202 
   2203   // If this is a decay from variable width array, bail out.
   2204   const Expr *SubExpr = CE->getSubExpr();
   2205   if (SubExpr->getType()->isVariableArrayType())
   2206     return 0;
   2207 
   2208   return SubExpr;
   2209 }
   2210 
   2211 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2212                                                bool Accessed) {
   2213   // The index must always be an integer, which is not an aggregate.  Emit it.
   2214   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   2215   QualType IdxTy  = E->getIdx()->getType();
   2216   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   2217 
   2218   if (SanOpts->Bounds)
   2219     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
   2220 
   2221   // If the base is a vector type, then we are forming a vector element lvalue
   2222   // with this subscript.
   2223   if (E->getBase()->getType()->isVectorType()) {
   2224     // Emit the vector as an lvalue to get its address.
   2225     LValue LHS = EmitLValue(E->getBase());
   2226     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   2227     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
   2228     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   2229                                  E->getBase()->getType(), LHS.getAlignment());
   2230   }
   2231 
   2232   // Extend or truncate the index type to 32 or 64-bits.
   2233   if (Idx->getType() != IntPtrTy)
   2234     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   2235 
   2236   // We know that the pointer points to a type of the correct size, unless the
   2237   // size is a VLA or Objective-C interface.
   2238   llvm::Value *Address = 0;
   2239   CharUnits ArrayAlignment;
   2240   if (const VariableArrayType *vla =
   2241         getContext().getAsVariableArrayType(E->getType())) {
   2242     // The base must be a pointer, which is not an aggregate.  Emit
   2243     // it.  It needs to be emitted first in case it's what captures
   2244     // the VLA bounds.
   2245     Address = EmitScalarExpr(E->getBase());
   2246 
   2247     // The element count here is the total number of non-VLA elements.
   2248     llvm::Value *numElements = getVLASize(vla).first;
   2249 
   2250     // Effectively, the multiply by the VLA size is part of the GEP.
   2251     // GEP indexes are signed, and scaling an index isn't permitted to
   2252     // signed-overflow, so we use the same semantics for our explicit
   2253     // multiply.  We suppress this if overflow is not undefined behavior.
   2254     if (getLangOpts().isSignedOverflowDefined()) {
   2255       Idx = Builder.CreateMul(Idx, numElements);
   2256       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2257     } else {
   2258       Idx = Builder.CreateNSWMul(Idx, numElements);
   2259       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
   2260     }
   2261   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   2262     // Indexing over an interface, as in "NSString *P; P[4];"
   2263     llvm::Value *InterfaceSize =
   2264       llvm::ConstantInt::get(Idx->getType(),
   2265           getContext().getTypeSizeInChars(OIT).getQuantity());
   2266 
   2267     Idx = Builder.CreateMul(Idx, InterfaceSize);
   2268 
   2269     // The base must be a pointer, which is not an aggregate.  Emit it.
   2270     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2271     Address = EmitCastToVoidPtr(Base);
   2272     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
   2273     Address = Builder.CreateBitCast(Address, Base->getType());
   2274   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   2275     // If this is A[i] where A is an array, the frontend will have decayed the
   2276     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   2277     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   2278     // "gep x, i" here.  Emit one "gep A, 0, i".
   2279     assert(Array->getType()->isArrayType() &&
   2280            "Array to pointer decay must have array source type!");
   2281     LValue ArrayLV;
   2282     // For simple multidimensional array indexing, set the 'accessed' flag for
   2283     // better bounds-checking of the base expression.
   2284     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   2285       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   2286     else
   2287       ArrayLV = EmitLValue(Array);
   2288     llvm::Value *ArrayPtr = ArrayLV.getAddress();
   2289     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
   2290     llvm::Value *Args[] = { Zero, Idx };
   2291 
   2292     // Propagate the alignment from the array itself to the result.
   2293     ArrayAlignment = ArrayLV.getAlignment();
   2294 
   2295     if (getLangOpts().isSignedOverflowDefined())
   2296       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
   2297     else
   2298       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
   2299   } else {
   2300     // The base must be a pointer, which is not an aggregate.  Emit it.
   2301     llvm::Value *Base = EmitScalarExpr(E->getBase());
   2302     if (getLangOpts().isSignedOverflowDefined())
   2303       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
   2304     else
   2305       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
   2306   }
   2307 
   2308   QualType T = E->getBase()->getType()->getPointeeType();
   2309   assert(!T.isNull() &&
   2310          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
   2311 
   2312 
   2313   // Limit the alignment to that of the result type.
   2314   LValue LV;
   2315   if (!ArrayAlignment.isZero()) {
   2316     CharUnits Align = getContext().getTypeAlignInChars(T);
   2317     ArrayAlignment = std::min(Align, ArrayAlignment);
   2318     LV = MakeAddrLValue(Address, T, ArrayAlignment);
   2319   } else {
   2320     LV = MakeNaturalAlignAddrLValue(Address, T);
   2321   }
   2322 
   2323   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
   2324 
   2325   if (getLangOpts().ObjC1 &&
   2326       getLangOpts().getGC() != LangOptions::NonGC) {
   2327     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2328     setObjCGCLValueClass(getContext(), E, LV);
   2329   }
   2330   return LV;
   2331 }
   2332 
   2333 static
   2334 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
   2335                                        SmallVectorImpl<unsigned> &Elts) {
   2336   SmallVector<llvm::Constant*, 4> CElts;
   2337   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
   2338     CElts.push_back(Builder.getInt32(Elts[i]));
   2339 
   2340   return llvm::ConstantVector::get(CElts);
   2341 }
   2342 
   2343 LValue CodeGenFunction::
   2344 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   2345   // Emit the base vector as an l-value.
   2346   LValue Base;
   2347 
   2348   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   2349   if (E->isArrow()) {
   2350     // If it is a pointer to a vector, emit the address and form an lvalue with
   2351     // it.
   2352     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
   2353     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   2354     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
   2355     Base.getQuals().removeObjCGCAttr();
   2356   } else if (E->getBase()->isGLValue()) {
   2357     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   2358     // emit the base as an lvalue.
   2359     assert(E->getBase()->getType()->isVectorType());
   2360     Base = EmitLValue(E->getBase());
   2361   } else {
   2362     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   2363     assert(E->getBase()->getType()->isVectorType() &&
   2364            "Result must be a vector");
   2365     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   2366 
   2367     // Store the vector to memory (because LValue wants an address).
   2368     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
   2369     Builder.CreateStore(Vec, VecMem);
   2370     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
   2371   }
   2372 
   2373   QualType type =
   2374     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   2375 
   2376   // Encode the element access list into a vector of unsigned indices.
   2377   SmallVector<unsigned, 4> Indices;
   2378   E->getEncodedElementAccess(Indices);
   2379 
   2380   if (Base.isSimple()) {
   2381     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
   2382     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
   2383                                     Base.getAlignment());
   2384   }
   2385   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   2386 
   2387   llvm::Constant *BaseElts = Base.getExtVectorElts();
   2388   SmallVector<llvm::Constant *, 4> CElts;
   2389 
   2390   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   2391     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
   2392   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   2393   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
   2394                                   Base.getAlignment());
   2395 }
   2396 
   2397 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   2398   Expr *BaseExpr = E->getBase();
   2399 
   2400   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   2401   LValue BaseLV;
   2402   if (E->isArrow()) {
   2403     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
   2404     QualType PtrTy = BaseExpr->getType()->getPointeeType();
   2405     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
   2406     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
   2407   } else
   2408     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
   2409 
   2410   NamedDecl *ND = E->getMemberDecl();
   2411   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
   2412     LValue LV = EmitLValueForField(BaseLV, Field);
   2413     setObjCGCLValueClass(getContext(), E, LV);
   2414     return LV;
   2415   }
   2416 
   2417   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
   2418     return EmitGlobalVarDeclLValue(*this, E, VD);
   2419 
   2420   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
   2421     return EmitFunctionDeclLValue(*this, E, FD);
   2422 
   2423   llvm_unreachable("Unhandled member declaration!");
   2424 }
   2425 
   2426 /// Given that we are currently emitting a lambda, emit an l-value for
   2427 /// one of its members.
   2428 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
   2429   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
   2430   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
   2431   QualType LambdaTagType =
   2432     getContext().getTagDeclType(Field->getParent());
   2433   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
   2434   return EmitLValueForField(LambdaLV, Field);
   2435 }
   2436 
   2437 LValue CodeGenFunction::EmitLValueForField(LValue base,
   2438                                            const FieldDecl *field) {
   2439   if (field->isBitField()) {
   2440     const CGRecordLayout &RL =
   2441       CGM.getTypes().getCGRecordLayout(field->getParent());
   2442     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
   2443     llvm::Value *Addr = base.getAddress();
   2444     unsigned Idx = RL.getLLVMFieldNo(field);
   2445     if (Idx != 0)
   2446       // For structs, we GEP to the field that the record layout suggests.
   2447       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
   2448     // Get the access type.
   2449     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
   2450       getLLVMContext(), Info.StorageSize,
   2451       CGM.getContext().getTargetAddressSpace(base.getType()));
   2452     if (Addr->getType() != PtrTy)
   2453       Addr = Builder.CreateBitCast(Addr, PtrTy);
   2454 
   2455     QualType fieldType =
   2456       field->getType().withCVRQualifiers(base.getVRQualifiers());
   2457     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
   2458   }
   2459 
   2460   const RecordDecl *rec = field->getParent();
   2461   QualType type = field->getType();
   2462   CharUnits alignment = getContext().getDeclAlign(field);
   2463 
   2464   // FIXME: It should be impossible to have an LValue without alignment for a
   2465   // complete type.
   2466   if (!base.getAlignment().isZero())
   2467     alignment = std::min(alignment, base.getAlignment());
   2468 
   2469   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   2470 
   2471   llvm::Value *addr = base.getAddress();
   2472   unsigned cvr = base.getVRQualifiers();
   2473   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
   2474   if (rec->isUnion()) {
   2475     // For unions, there is no pointer adjustment.
   2476     assert(!type->isReferenceType() && "union has reference member");
   2477     // TODO: handle path-aware TBAA for union.
   2478     TBAAPath = false;
   2479   } else {
   2480     // For structs, we GEP to the field that the record layout suggests.
   2481     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   2482     addr = Builder.CreateStructGEP(addr, idx, field->getName());
   2483 
   2484     // If this is a reference field, load the reference right now.
   2485     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   2486       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   2487       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   2488       load->setAlignment(alignment.getQuantity());
   2489 
   2490       // Loading the reference will disable path-aware TBAA.
   2491       TBAAPath = false;
   2492       if (CGM.shouldUseTBAA()) {
   2493         llvm::MDNode *tbaa;
   2494         if (mayAlias)
   2495           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   2496         else
   2497           tbaa = CGM.getTBAAInfo(type);
   2498         CGM.DecorateInstruction(load, tbaa);
   2499       }
   2500 
   2501       addr = load;
   2502       mayAlias = false;
   2503       type = refType->getPointeeType();
   2504       if (type->isIncompleteType())
   2505         alignment = CharUnits();
   2506       else
   2507         alignment = getContext().getTypeAlignInChars(type);
   2508       cvr = 0; // qualifiers don't recursively apply to referencee
   2509     }
   2510   }
   2511 
   2512   // Make sure that the address is pointing to the right type.  This is critical
   2513   // for both unions and structs.  A union needs a bitcast, a struct element
   2514   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2515   // type.
   2516   addr = EmitBitCastOfLValueToProperType(*this, addr,
   2517                                          CGM.getTypes().ConvertTypeForMem(type),
   2518                                          field->getName());
   2519 
   2520   if (field->hasAttr<AnnotateAttr>())
   2521     addr = EmitFieldAnnotations(field, addr);
   2522 
   2523   LValue LV = MakeAddrLValue(addr, type, alignment);
   2524   LV.getQuals().addCVRQualifiers(cvr);
   2525   if (TBAAPath) {
   2526     const ASTRecordLayout &Layout =
   2527         getContext().getASTRecordLayout(field->getParent());
   2528     // Set the base type to be the base type of the base LValue and
   2529     // update offset to be relative to the base type.
   2530     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
   2531     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
   2532                      Layout.getFieldOffset(field->getFieldIndex()) /
   2533                                            getContext().getCharWidth());
   2534   }
   2535 
   2536   // __weak attribute on a field is ignored.
   2537   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   2538     LV.getQuals().removeObjCGCAttr();
   2539 
   2540   // Fields of may_alias structs act like 'char' for TBAA purposes.
   2541   // FIXME: this should get propagated down through anonymous structs
   2542   // and unions.
   2543   if (mayAlias && LV.getTBAAInfo())
   2544     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   2545 
   2546   return LV;
   2547 }
   2548 
   2549 LValue
   2550 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
   2551                                                   const FieldDecl *Field) {
   2552   QualType FieldType = Field->getType();
   2553 
   2554   if (!FieldType->isReferenceType())
   2555     return EmitLValueForField(Base, Field);
   2556 
   2557   const CGRecordLayout &RL =
   2558     CGM.getTypes().getCGRecordLayout(Field->getParent());
   2559   unsigned idx = RL.getLLVMFieldNo(Field);
   2560   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
   2561   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
   2562 
   2563   // Make sure that the address is pointing to the right type.  This is critical
   2564   // for both unions and structs.  A union needs a bitcast, a struct element
   2565   // will need a bitcast if the LLVM type laid out doesn't match the desired
   2566   // type.
   2567   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   2568   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
   2569 
   2570   CharUnits Alignment = getContext().getDeclAlign(Field);
   2571 
   2572   // FIXME: It should be impossible to have an LValue without alignment for a
   2573   // complete type.
   2574   if (!Base.getAlignment().isZero())
   2575     Alignment = std::min(Alignment, Base.getAlignment());
   2576 
   2577   return MakeAddrLValue(V, FieldType, Alignment);
   2578 }
   2579 
   2580 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   2581   if (E->isFileScope()) {
   2582     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
   2583     return MakeAddrLValue(GlobalPtr, E->getType());
   2584   }
   2585   if (E->getType()->isVariablyModifiedType())
   2586     // make sure to emit the VLA size.
   2587     EmitVariablyModifiedType(E->getType());
   2588 
   2589   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   2590   const Expr *InitExpr = E->getInitializer();
   2591   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
   2592 
   2593   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   2594                    /*Init*/ true);
   2595 
   2596   return Result;
   2597 }
   2598 
   2599 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
   2600   if (!E->isGLValue())
   2601     // Initializing an aggregate temporary in C++11: T{...}.
   2602     return EmitAggExprToLValue(E);
   2603 
   2604   // An lvalue initializer list must be initializing a reference.
   2605   assert(E->getNumInits() == 1 && "reference init with multiple values");
   2606   return EmitLValue(E->getInit(0));
   2607 }
   2608 
   2609 LValue CodeGenFunction::
   2610 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   2611   if (!expr->isGLValue()) {
   2612     // ?: here should be an aggregate.
   2613     assert(hasAggregateEvaluationKind(expr->getType()) &&
   2614            "Unexpected conditional operator!");
   2615     return EmitAggExprToLValue(expr);
   2616   }
   2617 
   2618   OpaqueValueMapping binding(*this, expr);
   2619 
   2620   const Expr *condExpr = expr->getCond();
   2621   bool CondExprBool;
   2622   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   2623     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   2624     if (!CondExprBool) std::swap(live, dead);
   2625 
   2626     if (!ContainsLabel(dead))
   2627       return EmitLValue(live);
   2628   }
   2629 
   2630   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   2631   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   2632   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   2633 
   2634   ConditionalEvaluation eval(*this);
   2635   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
   2636 
   2637   // Any temporaries created here are conditional.
   2638   EmitBlock(lhsBlock);
   2639   eval.begin(*this);
   2640   LValue lhs = EmitLValue(expr->getTrueExpr());
   2641   eval.end(*this);
   2642 
   2643   if (!lhs.isSimple())
   2644     return EmitUnsupportedLValue(expr, "conditional operator");
   2645 
   2646   lhsBlock = Builder.GetInsertBlock();
   2647   Builder.CreateBr(contBlock);
   2648 
   2649   // Any temporaries created here are conditional.
   2650   EmitBlock(rhsBlock);
   2651   eval.begin(*this);
   2652   LValue rhs = EmitLValue(expr->getFalseExpr());
   2653   eval.end(*this);
   2654   if (!rhs.isSimple())
   2655     return EmitUnsupportedLValue(expr, "conditional operator");
   2656   rhsBlock = Builder.GetInsertBlock();
   2657 
   2658   EmitBlock(contBlock);
   2659 
   2660   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
   2661                                          "cond-lvalue");
   2662   phi->addIncoming(lhs.getAddress(), lhsBlock);
   2663   phi->addIncoming(rhs.getAddress(), rhsBlock);
   2664   return MakeAddrLValue(phi, expr->getType());
   2665 }
   2666 
   2667 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
   2668 /// type. If the cast is to a reference, we can have the usual lvalue result,
   2669 /// otherwise if a cast is needed by the code generator in an lvalue context,
   2670 /// then it must mean that we need the address of an aggregate in order to
   2671 /// access one of its members.  This can happen for all the reasons that casts
   2672 /// are permitted with aggregate result, including noop aggregate casts, and
   2673 /// cast from scalar to union.
   2674 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   2675   switch (E->getCastKind()) {
   2676   case CK_ToVoid:
   2677   case CK_BitCast:
   2678   case CK_ArrayToPointerDecay:
   2679   case CK_FunctionToPointerDecay:
   2680   case CK_NullToMemberPointer:
   2681   case CK_NullToPointer:
   2682   case CK_IntegralToPointer:
   2683   case CK_PointerToIntegral:
   2684   case CK_PointerToBoolean:
   2685   case CK_VectorSplat:
   2686   case CK_IntegralCast:
   2687   case CK_IntegralToBoolean:
   2688   case CK_IntegralToFloating:
   2689   case CK_FloatingToIntegral:
   2690   case CK_FloatingToBoolean:
   2691   case CK_FloatingCast:
   2692   case CK_FloatingRealToComplex:
   2693   case CK_FloatingComplexToReal:
   2694   case CK_FloatingComplexToBoolean:
   2695   case CK_FloatingComplexCast:
   2696   case CK_FloatingComplexToIntegralComplex:
   2697   case CK_IntegralRealToComplex:
   2698   case CK_IntegralComplexToReal:
   2699   case CK_IntegralComplexToBoolean:
   2700   case CK_IntegralComplexCast:
   2701   case CK_IntegralComplexToFloatingComplex:
   2702   case CK_DerivedToBaseMemberPointer:
   2703   case CK_BaseToDerivedMemberPointer:
   2704   case CK_MemberPointerToBoolean:
   2705   case CK_ReinterpretMemberPointer:
   2706   case CK_AnyPointerToBlockPointerCast:
   2707   case CK_ARCProduceObject:
   2708   case CK_ARCConsumeObject:
   2709   case CK_ARCReclaimReturnedObject:
   2710   case CK_ARCExtendBlockObject:
   2711   case CK_CopyAndAutoreleaseBlockObject:
   2712     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   2713 
   2714   case CK_Dependent:
   2715     llvm_unreachable("dependent cast kind in IR gen!");
   2716 
   2717   case CK_BuiltinFnToFnPtr:
   2718     llvm_unreachable("builtin functions are handled elsewhere");
   2719 
   2720   // These are never l-values; just use the aggregate emission code.
   2721   case CK_NonAtomicToAtomic:
   2722   case CK_AtomicToNonAtomic:
   2723     return EmitAggExprToLValue(E);
   2724 
   2725   case CK_Dynamic: {
   2726     LValue LV = EmitLValue(E->getSubExpr());
   2727     llvm::Value *V = LV.getAddress();
   2728     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
   2729     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   2730   }
   2731 
   2732   case CK_ConstructorConversion:
   2733   case CK_UserDefinedConversion:
   2734   case CK_CPointerToObjCPointerCast:
   2735   case CK_BlockPointerToObjCPointerCast:
   2736   case CK_NoOp:
   2737   case CK_LValueToRValue:
   2738     return EmitLValue(E->getSubExpr());
   2739 
   2740   case CK_UncheckedDerivedToBase:
   2741   case CK_DerivedToBase: {
   2742     const RecordType *DerivedClassTy =
   2743       E->getSubExpr()->getType()->getAs<RecordType>();
   2744     CXXRecordDecl *DerivedClassDecl =
   2745       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2746 
   2747     LValue LV = EmitLValue(E->getSubExpr());
   2748     llvm::Value *This = LV.getAddress();
   2749 
   2750     // Perform the derived-to-base conversion
   2751     llvm::Value *Base =
   2752       GetAddressOfBaseClass(This, DerivedClassDecl,
   2753                             E->path_begin(), E->path_end(),
   2754                             /*NullCheckValue=*/false);
   2755 
   2756     return MakeAddrLValue(Base, E->getType());
   2757   }
   2758   case CK_ToUnion:
   2759     return EmitAggExprToLValue(E);
   2760   case CK_BaseToDerived: {
   2761     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   2762     CXXRecordDecl *DerivedClassDecl =
   2763       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   2764 
   2765     LValue LV = EmitLValue(E->getSubExpr());
   2766 
   2767     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
   2768     // performed and the object is not of the derived type.
   2769     if (SanitizePerformTypeCheck)
   2770       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
   2771                     LV.getAddress(), E->getType());
   2772 
   2773     // Perform the base-to-derived conversion
   2774     llvm::Value *Derived =
   2775       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   2776                                E->path_begin(), E->path_end(),
   2777                                /*NullCheckValue=*/false);
   2778 
   2779     return MakeAddrLValue(Derived, E->getType());
   2780   }
   2781   case CK_LValueBitCast: {
   2782     // This must be a reinterpret_cast (or c-style equivalent).
   2783     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
   2784 
   2785     LValue LV = EmitLValue(E->getSubExpr());
   2786     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2787                                            ConvertType(CE->getTypeAsWritten()));
   2788     return MakeAddrLValue(V, E->getType());
   2789   }
   2790   case CK_ObjCObjectLValueCast: {
   2791     LValue LV = EmitLValue(E->getSubExpr());
   2792     QualType ToType = getContext().getLValueReferenceType(E->getType());
   2793     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
   2794                                            ConvertType(ToType));
   2795     return MakeAddrLValue(V, E->getType());
   2796   }
   2797   case CK_ZeroToOCLEvent:
   2798     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
   2799   }
   2800 
   2801   llvm_unreachable("Unhandled lvalue cast kind?");
   2802 }
   2803 
   2804 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   2805   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
   2806   return getOpaqueLValueMapping(e);
   2807 }
   2808 
   2809 RValue CodeGenFunction::EmitRValueForField(LValue LV,
   2810                                            const FieldDecl *FD) {
   2811   QualType FT = FD->getType();
   2812   LValue FieldLV = EmitLValueForField(LV, FD);
   2813   switch (getEvaluationKind(FT)) {
   2814   case TEK_Complex:
   2815     return RValue::getComplex(EmitLoadOfComplex(FieldLV));
   2816   case TEK_Aggregate:
   2817     return FieldLV.asAggregateRValue();
   2818   case TEK_Scalar:
   2819     return EmitLoadOfLValue(FieldLV);
   2820   }
   2821   llvm_unreachable("bad evaluation kind");
   2822 }
   2823 
   2824 //===--------------------------------------------------------------------===//
   2825 //                             Expression Emission
   2826 //===--------------------------------------------------------------------===//
   2827 
   2828 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   2829                                      ReturnValueSlot ReturnValue) {
   2830   if (CGDebugInfo *DI = getDebugInfo()) {
   2831     SourceLocation Loc = E->getLocStart();
   2832     // Force column info to be generated so we can differentiate
   2833     // multiple call sites on the same line in the debug info.
   2834     const FunctionDecl* Callee = E->getDirectCallee();
   2835     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
   2836     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
   2837   }
   2838 
   2839   // Builtins never have block type.
   2840   if (E->getCallee()->getType()->isBlockPointerType())
   2841     return EmitBlockCallExpr(E, ReturnValue);
   2842 
   2843   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
   2844     return EmitCXXMemberCallExpr(CE, ReturnValue);
   2845 
   2846   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
   2847     return EmitCUDAKernelCallExpr(CE, ReturnValue);
   2848 
   2849   const Decl *TargetDecl = E->getCalleeDecl();
   2850   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   2851     if (unsigned builtinID = FD->getBuiltinID())
   2852       return EmitBuiltinExpr(FD, builtinID, E);
   2853   }
   2854 
   2855   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
   2856     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   2857       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   2858 
   2859   if (const CXXPseudoDestructorExpr *PseudoDtor
   2860           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   2861     QualType DestroyedType = PseudoDtor->getDestroyedType();
   2862     if (getLangOpts().ObjCAutoRefCount &&
   2863         DestroyedType->isObjCLifetimeType() &&
   2864         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
   2865          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
   2866       // Automatic Reference Counting:
   2867       //   If the pseudo-expression names a retainable object with weak or
   2868       //   strong lifetime, the object shall be released.
   2869       Expr *BaseExpr = PseudoDtor->getBase();
   2870       llvm::Value *BaseValue = NULL;
   2871       Qualifiers BaseQuals;
   2872 
   2873       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   2874       if (PseudoDtor->isArrow()) {
   2875         BaseValue = EmitScalarExpr(BaseExpr);
   2876         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   2877         BaseQuals = PTy->getPointeeType().getQualifiers();
   2878       } else {
   2879         LValue BaseLV = EmitLValue(BaseExpr);
   2880         BaseValue = BaseLV.getAddress();
   2881         QualType BaseTy = BaseExpr->getType();
   2882         BaseQuals = BaseTy.getQualifiers();
   2883       }
   2884 
   2885       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
   2886       case Qualifiers::OCL_None:
   2887       case Qualifiers::OCL_ExplicitNone:
   2888       case Qualifiers::OCL_Autoreleasing:
   2889         break;
   2890 
   2891       case Qualifiers::OCL_Strong:
   2892         EmitARCRelease(Builder.CreateLoad(BaseValue,
   2893                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   2894                        ARCPreciseLifetime);
   2895         break;
   2896 
   2897       case Qualifiers::OCL_Weak:
   2898         EmitARCDestroyWeak(BaseValue);
   2899         break;
   2900       }
   2901     } else {
   2902       // C++ [expr.pseudo]p1:
   2903       //   The result shall only be used as the operand for the function call
   2904       //   operator (), and the result of such a call has type void. The only
   2905       //   effect is the evaluation of the postfix-expression before the dot or
   2906       //   arrow.
   2907       EmitScalarExpr(E->getCallee());
   2908     }
   2909 
   2910     return RValue::get(0);
   2911   }
   2912 
   2913   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   2914   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
   2915                   E->arg_begin(), E->arg_end(), TargetDecl);
   2916 }
   2917 
   2918 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   2919   // Comma expressions just emit their LHS then their RHS as an l-value.
   2920   if (E->getOpcode() == BO_Comma) {
   2921     EmitIgnoredExpr(E->getLHS());
   2922     EnsureInsertPoint();
   2923     return EmitLValue(E->getRHS());
   2924   }
   2925 
   2926   if (E->getOpcode() == BO_PtrMemD ||
   2927       E->getOpcode() == BO_PtrMemI)
   2928     return EmitPointerToDataMemberBinaryExpr(E);
   2929 
   2930   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   2931 
   2932   // Note that in all of these cases, __block variables need the RHS
   2933   // evaluated first just in case the variable gets moved by the RHS.
   2934 
   2935   switch (getEvaluationKind(E->getType())) {
   2936   case TEK_Scalar: {
   2937     switch (E->getLHS()->getType().getObjCLifetime()) {
   2938     case Qualifiers::OCL_Strong:
   2939       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   2940 
   2941     case Qualifiers::OCL_Autoreleasing:
   2942       return EmitARCStoreAutoreleasing(E).first;
   2943 
   2944     // No reason to do any of these differently.
   2945     case Qualifiers::OCL_None:
   2946     case Qualifiers::OCL_ExplicitNone:
   2947     case Qualifiers::OCL_Weak:
   2948       break;
   2949     }
   2950 
   2951     RValue RV = EmitAnyExpr(E->getRHS());
   2952     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
   2953     EmitStoreThroughLValue(RV, LV);
   2954     return LV;
   2955   }
   2956 
   2957   case TEK_Complex:
   2958     return EmitComplexAssignmentLValue(E);
   2959 
   2960   case TEK_Aggregate:
   2961     return EmitAggExprToLValue(E);
   2962   }
   2963   llvm_unreachable("bad evaluation kind");
   2964 }
   2965 
   2966 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   2967   RValue RV = EmitCallExpr(E);
   2968 
   2969   if (!RV.isScalar())
   2970     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   2971 
   2972   assert(E->getCallReturnType()->isReferenceType() &&
   2973          "Can't have a scalar return unless the return type is a "
   2974          "reference type!");
   2975 
   2976   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   2977 }
   2978 
   2979 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   2980   // FIXME: This shouldn't require another copy.
   2981   return EmitAggExprToLValue(E);
   2982 }
   2983 
   2984 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   2985   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   2986          && "binding l-value to type which needs a temporary");
   2987   AggValueSlot Slot = CreateAggTemp(E->getType());
   2988   EmitCXXConstructExpr(E, Slot);
   2989   return MakeAddrLValue(Slot.getAddr(), E->getType());
   2990 }
   2991 
   2992 LValue
   2993 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   2994   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   2995 }
   2996 
   2997 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
   2998   return CGM.GetAddrOfUuidDescriptor(E);
   2999 }
   3000 
   3001 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
   3002   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
   3003 }
   3004 
   3005 LValue
   3006 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   3007   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3008   Slot.setExternallyDestructed();
   3009   EmitAggExpr(E->getSubExpr(), Slot);
   3010   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
   3011   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3012 }
   3013 
   3014 LValue
   3015 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
   3016   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3017   EmitLambdaExpr(E, Slot);
   3018   return MakeAddrLValue(Slot.getAddr(), E->getType());
   3019 }
   3020 
   3021 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   3022   RValue RV = EmitObjCMessageExpr(E);
   3023 
   3024   if (!RV.isScalar())
   3025     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3026 
   3027   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
   3028          "Can't have a scalar return unless the return type is a "
   3029          "reference type!");
   3030 
   3031   return MakeAddrLValue(RV.getScalarVal(), E->getType());
   3032 }
   3033 
   3034 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   3035   llvm::Value *V =
   3036     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
   3037   return MakeAddrLValue(V, E->getType());
   3038 }
   3039 
   3040 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   3041                                              const ObjCIvarDecl *Ivar) {
   3042   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   3043 }
   3044 
   3045 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   3046                                           llvm::Value *BaseValue,
   3047                                           const ObjCIvarDecl *Ivar,
   3048                                           unsigned CVRQualifiers) {
   3049   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   3050                                                    Ivar, CVRQualifiers);
   3051 }
   3052 
   3053 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   3054   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   3055   llvm::Value *BaseValue = 0;
   3056   const Expr *BaseExpr = E->getBase();
   3057   Qualifiers BaseQuals;
   3058   QualType ObjectTy;
   3059   if (E->isArrow()) {
   3060     BaseValue = EmitScalarExpr(BaseExpr);
   3061     ObjectTy = BaseExpr->getType()->getPointeeType();
   3062     BaseQuals = ObjectTy.getQualifiers();
   3063   } else {
   3064     LValue BaseLV = EmitLValue(BaseExpr);
   3065     // FIXME: this isn't right for bitfields.
   3066     BaseValue = BaseLV.getAddress();
   3067     ObjectTy = BaseExpr->getType();
   3068     BaseQuals = ObjectTy.getQualifiers();
   3069   }
   3070 
   3071   LValue LV =
   3072     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   3073                       BaseQuals.getCVRQualifiers());
   3074   setObjCGCLValueClass(getContext(), E, LV);
   3075   return LV;
   3076 }
   3077 
   3078 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   3079   // Can only get l-value for message expression returning aggregate type
   3080   RValue RV = EmitAnyExprToTemp(E);
   3081   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
   3082 }
   3083 
   3084 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   3085                                  ReturnValueSlot ReturnValue,
   3086                                  CallExpr::const_arg_iterator ArgBeg,
   3087                                  CallExpr::const_arg_iterator ArgEnd,
   3088                                  const Decl *TargetDecl) {
   3089   // Get the actual function type. The callee type will always be a pointer to
   3090   // function type or a block pointer type.
   3091   assert(CalleeType->isFunctionPointerType() &&
   3092          "Call must have function pointer type!");
   3093 
   3094   CalleeType = getContext().getCanonicalType(CalleeType);
   3095 
   3096   const FunctionType *FnType
   3097     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   3098 
   3099   // Force column info to differentiate multiple inlined call sites on
   3100   // the same line, analoguous to EmitCallExpr.
   3101   bool ForceColumnInfo = false;
   3102   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
   3103     ForceColumnInfo = FD->isInlineSpecified();
   3104 
   3105   CallArgList Args;
   3106   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
   3107                ForceColumnInfo);
   3108 
   3109   const CGFunctionInfo &FnInfo =
   3110     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
   3111 
   3112   // C99 6.5.2.2p6:
   3113   //   If the expression that denotes the called function has a type
   3114   //   that does not include a prototype, [the default argument
   3115   //   promotions are performed]. If the number of arguments does not
   3116   //   equal the number of parameters, the behavior is undefined. If
   3117   //   the function is defined with a type that includes a prototype,
   3118   //   and either the prototype ends with an ellipsis (, ...) or the
   3119   //   types of the arguments after promotion are not compatible with
   3120   //   the types of the parameters, the behavior is undefined. If the
   3121   //   function is defined with a type that does not include a
   3122   //   prototype, and the types of the arguments after promotion are
   3123   //   not compatible with those of the parameters after promotion,
   3124   //   the behavior is undefined [except in some trivial cases].
   3125   // That is, in the general case, we should assume that a call
   3126   // through an unprototyped function type works like a *non-variadic*
   3127   // call.  The way we make this work is to cast to the exact type
   3128   // of the promoted arguments.
   3129   if (isa<FunctionNoProtoType>(FnType)) {
   3130     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
   3131     CalleeTy = CalleeTy->getPointerTo();
   3132     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
   3133   }
   3134 
   3135   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
   3136 }
   3137 
   3138 LValue CodeGenFunction::
   3139 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   3140   llvm::Value *BaseV;
   3141   if (E->getOpcode() == BO_PtrMemI)
   3142     BaseV = EmitScalarExpr(E->getLHS());
   3143   else
   3144     BaseV = EmitLValue(E->getLHS()).getAddress();
   3145 
   3146   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   3147 
   3148   const MemberPointerType *MPT
   3149     = E->getRHS()->getType()->getAs<MemberPointerType>();
   3150 
   3151   llvm::Value *AddV =
   3152     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
   3153 
   3154   return MakeAddrLValue(AddV, MPT->getPointeeType());
   3155 }
   3156 
   3157 /// Given the address of a temporary variable, produce an r-value of
   3158 /// its type.
   3159 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
   3160                                             QualType type) {
   3161   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
   3162   switch (getEvaluationKind(type)) {
   3163   case TEK_Complex:
   3164     return RValue::getComplex(EmitLoadOfComplex(lvalue));
   3165   case TEK_Aggregate:
   3166     return lvalue.asAggregateRValue();
   3167   case TEK_Scalar:
   3168     return RValue::get(EmitLoadOfScalar(lvalue));
   3169   }
   3170   llvm_unreachable("bad evaluation kind");
   3171 }
   3172 
   3173 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
   3174   assert(Val->getType()->isFPOrFPVectorTy());
   3175   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
   3176     return;
   3177 
   3178   llvm::MDBuilder MDHelper(getLLVMContext());
   3179   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
   3180 
   3181   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
   3182 }
   3183 
   3184 namespace {
   3185   struct LValueOrRValue {
   3186     LValue LV;
   3187     RValue RV;
   3188   };
   3189 }
   3190 
   3191 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
   3192                                            const PseudoObjectExpr *E,
   3193                                            bool forLValue,
   3194                                            AggValueSlot slot) {
   3195   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   3196 
   3197   // Find the result expression, if any.
   3198   const Expr *resultExpr = E->getResultExpr();
   3199   LValueOrRValue result;
   3200 
   3201   for (PseudoObjectExpr::const_semantics_iterator
   3202          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   3203     const Expr *semantic = *i;
   3204 
   3205     // If this semantic expression is an opaque value, bind it
   3206     // to the result of its source expression.
   3207     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   3208 
   3209       // If this is the result expression, we may need to evaluate
   3210       // directly into the slot.
   3211       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   3212       OVMA opaqueData;
   3213       if (ov == resultExpr && ov->isRValue() && !forLValue &&
   3214           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
   3215         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
   3216 
   3217         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
   3218         opaqueData = OVMA::bind(CGF, ov, LV);
   3219         result.RV = slot.asRValue();
   3220 
   3221       // Otherwise, emit as normal.
   3222       } else {
   3223         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   3224 
   3225         // If this is the result, also evaluate the result now.
   3226         if (ov == resultExpr) {
   3227           if (forLValue)
   3228             result.LV = CGF.EmitLValue(ov);
   3229           else
   3230             result.RV = CGF.EmitAnyExpr(ov, slot);
   3231         }
   3232       }
   3233 
   3234       opaques.push_back(opaqueData);
   3235 
   3236     // Otherwise, if the expression is the result, evaluate it
   3237     // and remember the result.
   3238     } else if (semantic == resultExpr) {
   3239       if (forLValue)
   3240         result.LV = CGF.EmitLValue(semantic);
   3241       else
   3242         result.RV = CGF.EmitAnyExpr(semantic, slot);
   3243 
   3244     // Otherwise, evaluate the expression in an ignored context.
   3245     } else {
   3246       CGF.EmitIgnoredExpr(semantic);
   3247     }
   3248   }
   3249 
   3250   // Unbind all the opaques now.
   3251   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   3252     opaques[i].unbind(CGF);
   3253 
   3254   return result;
   3255 }
   3256 
   3257 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
   3258                                                AggValueSlot slot) {
   3259   return emitPseudoObjectExpr(*this, E, false, slot).RV;
   3260 }
   3261 
   3262 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
   3263   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
   3264 }
   3265