1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/Hashing.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/Support/ConvertUTF.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===--------------------------------------------------------------------===// 36 // Miscellaneous Helper Methods 37 //===--------------------------------------------------------------------===// 38 39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49 } 50 51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 52 /// block. 53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58 } 59 60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65 } 66 67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74 } 75 76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83 } 84 85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86 /// expression and compare the result against zero, returning an Int1Ty value. 87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 89 llvm::Value *MemPtr = EmitScalarExpr(E); 90 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 91 } 92 93 QualType BoolTy = getContext().BoolTy; 94 if (!E->getType()->isAnyComplexType()) 95 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 96 97 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 98 } 99 100 /// EmitIgnoredExpr - Emit code to compute the specified expression, 101 /// ignoring the result. 102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 103 if (E->isRValue()) 104 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 105 106 // Just emit it as an l-value and drop the result. 107 EmitLValue(E); 108 } 109 110 /// EmitAnyExpr - Emit code to compute the specified expression which 111 /// can have any type. The result is returned as an RValue struct. 112 /// If this is an aggregate expression, AggSlot indicates where the 113 /// result should be returned. 114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 115 AggValueSlot aggSlot, 116 bool ignoreResult) { 117 switch (getEvaluationKind(E->getType())) { 118 case TEK_Scalar: 119 return RValue::get(EmitScalarExpr(E, ignoreResult)); 120 case TEK_Complex: 121 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 122 case TEK_Aggregate: 123 if (!ignoreResult && aggSlot.isIgnored()) 124 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 125 EmitAggExpr(E, aggSlot); 126 return aggSlot.asRValue(); 127 } 128 llvm_unreachable("bad evaluation kind"); 129 } 130 131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 132 /// always be accessible even if no aggregate location is provided. 133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 134 AggValueSlot AggSlot = AggValueSlot::ignored(); 135 136 if (hasAggregateEvaluationKind(E->getType())) 137 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 138 return EmitAnyExpr(E, AggSlot); 139 } 140 141 /// EmitAnyExprToMem - Evaluate an expression into a given memory 142 /// location. 143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 144 llvm::Value *Location, 145 Qualifiers Quals, 146 bool IsInit) { 147 // FIXME: This function should take an LValue as an argument. 148 switch (getEvaluationKind(E->getType())) { 149 case TEK_Complex: 150 EmitComplexExprIntoLValue(E, 151 MakeNaturalAlignAddrLValue(Location, E->getType()), 152 /*isInit*/ false); 153 return; 154 155 case TEK_Aggregate: { 156 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 157 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 158 AggValueSlot::IsDestructed_t(IsInit), 159 AggValueSlot::DoesNotNeedGCBarriers, 160 AggValueSlot::IsAliased_t(!IsInit))); 161 return; 162 } 163 164 case TEK_Scalar: { 165 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 166 LValue LV = MakeAddrLValue(Location, E->getType()); 167 EmitStoreThroughLValue(RV, LV); 168 return; 169 } 170 } 171 llvm_unreachable("bad evaluation kind"); 172 } 173 174 static void 175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 176 const Expr *E, llvm::Value *ReferenceTemporary) { 177 // Objective-C++ ARC: 178 // If we are binding a reference to a temporary that has ownership, we 179 // need to perform retain/release operations on the temporary. 180 // 181 // FIXME: This should be looking at E, not M. 182 if (CGF.getLangOpts().ObjCAutoRefCount && 183 M->getType()->isObjCLifetimeType()) { 184 QualType ObjCARCReferenceLifetimeType = M->getType(); 185 switch (Qualifiers::ObjCLifetime Lifetime = 186 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 187 case Qualifiers::OCL_None: 188 case Qualifiers::OCL_ExplicitNone: 189 // Carry on to normal cleanup handling. 190 break; 191 192 case Qualifiers::OCL_Autoreleasing: 193 // Nothing to do; cleaned up by an autorelease pool. 194 return; 195 196 case Qualifiers::OCL_Strong: 197 case Qualifiers::OCL_Weak: 198 switch (StorageDuration Duration = M->getStorageDuration()) { 199 case SD_Static: 200 // Note: we intentionally do not register a cleanup to release 201 // the object on program termination. 202 return; 203 204 case SD_Thread: 205 // FIXME: We should probably register a cleanup in this case. 206 return; 207 208 case SD_Automatic: 209 case SD_FullExpression: 210 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 211 CodeGenFunction::Destroyer *Destroy; 212 CleanupKind CleanupKind; 213 if (Lifetime == Qualifiers::OCL_Strong) { 214 const ValueDecl *VD = M->getExtendingDecl(); 215 bool Precise = 216 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 217 CleanupKind = CGF.getARCCleanupKind(); 218 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 219 : &CodeGenFunction::destroyARCStrongImprecise; 220 } else { 221 // __weak objects always get EH cleanups; otherwise, exceptions 222 // could cause really nasty crashes instead of mere leaks. 223 CleanupKind = NormalAndEHCleanup; 224 Destroy = &CodeGenFunction::destroyARCWeak; 225 } 226 if (Duration == SD_FullExpression) 227 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 228 ObjCARCReferenceLifetimeType, *Destroy, 229 CleanupKind & EHCleanup); 230 else 231 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 232 ObjCARCReferenceLifetimeType, 233 *Destroy, CleanupKind & EHCleanup); 234 return; 235 236 case SD_Dynamic: 237 llvm_unreachable("temporary cannot have dynamic storage duration"); 238 } 239 llvm_unreachable("unknown storage duration"); 240 } 241 } 242 243 CXXDestructorDecl *ReferenceTemporaryDtor = 0; 244 if (const RecordType *RT = 245 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 246 // Get the destructor for the reference temporary. 247 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 248 if (!ClassDecl->hasTrivialDestructor()) 249 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 250 } 251 252 if (!ReferenceTemporaryDtor) 253 return; 254 255 // Call the destructor for the temporary. 256 switch (M->getStorageDuration()) { 257 case SD_Static: 258 case SD_Thread: { 259 llvm::Constant *CleanupFn; 260 llvm::Constant *CleanupArg; 261 if (E->getType()->isArrayType()) { 262 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 263 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 264 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions); 265 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 266 } else { 267 CleanupFn = 268 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 269 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 270 } 271 CGF.CGM.getCXXABI().registerGlobalDtor( 272 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 273 break; 274 } 275 276 case SD_FullExpression: 277 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 278 CodeGenFunction::destroyCXXObject, 279 CGF.getLangOpts().Exceptions); 280 break; 281 282 case SD_Automatic: 283 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 284 ReferenceTemporary, E->getType(), 285 CodeGenFunction::destroyCXXObject, 286 CGF.getLangOpts().Exceptions); 287 break; 288 289 case SD_Dynamic: 290 llvm_unreachable("temporary cannot have dynamic storage duration"); 291 } 292 } 293 294 static llvm::Value * 295 createReferenceTemporary(CodeGenFunction &CGF, 296 const MaterializeTemporaryExpr *M, const Expr *Inner) { 297 switch (M->getStorageDuration()) { 298 case SD_FullExpression: 299 case SD_Automatic: 300 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 301 302 case SD_Thread: 303 case SD_Static: 304 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 305 306 case SD_Dynamic: 307 llvm_unreachable("temporary can't have dynamic storage duration"); 308 } 309 llvm_unreachable("unknown storage duration"); 310 } 311 312 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 313 const MaterializeTemporaryExpr *M) { 314 const Expr *E = M->GetTemporaryExpr(); 315 316 if (getLangOpts().ObjCAutoRefCount && 317 M->getType()->isObjCLifetimeType() && 318 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 319 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 320 // FIXME: Fold this into the general case below. 321 llvm::Value *Object = createReferenceTemporary(*this, M, E); 322 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 323 324 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 325 // We should not have emitted the initializer for this temporary as a 326 // constant. 327 assert(!Var->hasInitializer()); 328 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 329 } 330 331 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 332 333 pushTemporaryCleanup(*this, M, E, Object); 334 return RefTempDst; 335 } 336 337 SmallVector<const Expr *, 2> CommaLHSs; 338 SmallVector<SubobjectAdjustment, 2> Adjustments; 339 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 340 341 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 342 EmitIgnoredExpr(CommaLHSs[I]); 343 344 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) { 345 if (opaque->getType()->isRecordType()) { 346 assert(Adjustments.empty()); 347 return EmitOpaqueValueLValue(opaque); 348 } 349 } 350 351 // Create and initialize the reference temporary. 352 llvm::Value *Object = createReferenceTemporary(*this, M, E); 353 if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 354 // If the temporary is a global and has a constant initializer, we may 355 // have already initialized it. 356 if (!Var->hasInitializer()) { 357 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 358 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 359 } 360 } else { 361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 362 } 363 pushTemporaryCleanup(*this, M, E, Object); 364 365 // Perform derived-to-base casts and/or field accesses, to get from the 366 // temporary object we created (and, potentially, for which we extended 367 // the lifetime) to the subobject we're binding the reference to. 368 for (unsigned I = Adjustments.size(); I != 0; --I) { 369 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 370 switch (Adjustment.Kind) { 371 case SubobjectAdjustment::DerivedToBaseAdjustment: 372 Object = 373 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 374 Adjustment.DerivedToBase.BasePath->path_begin(), 375 Adjustment.DerivedToBase.BasePath->path_end(), 376 /*NullCheckValue=*/ false); 377 break; 378 379 case SubobjectAdjustment::FieldAdjustment: { 380 LValue LV = MakeAddrLValue(Object, E->getType()); 381 LV = EmitLValueForField(LV, Adjustment.Field); 382 assert(LV.isSimple() && 383 "materialized temporary field is not a simple lvalue"); 384 Object = LV.getAddress(); 385 break; 386 } 387 388 case SubobjectAdjustment::MemberPointerAdjustment: { 389 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 390 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 391 *this, Object, Ptr, Adjustment.Ptr.MPT); 392 break; 393 } 394 } 395 } 396 397 return MakeAddrLValue(Object, M->getType()); 398 } 399 400 RValue 401 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 402 // Emit the expression as an lvalue. 403 LValue LV = EmitLValue(E); 404 assert(LV.isSimple()); 405 llvm::Value *Value = LV.getAddress(); 406 407 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 408 // C++11 [dcl.ref]p5 (as amended by core issue 453): 409 // If a glvalue to which a reference is directly bound designates neither 410 // an existing object or function of an appropriate type nor a region of 411 // storage of suitable size and alignment to contain an object of the 412 // reference's type, the behavior is undefined. 413 QualType Ty = E->getType(); 414 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 415 } 416 417 return RValue::get(Value); 418 } 419 420 421 /// getAccessedFieldNo - Given an encoded value and a result number, return the 422 /// input field number being accessed. 423 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 424 const llvm::Constant *Elts) { 425 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 426 ->getZExtValue(); 427 } 428 429 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 430 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 431 llvm::Value *High) { 432 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 433 llvm::Value *K47 = Builder.getInt64(47); 434 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 435 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 436 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 437 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 438 return Builder.CreateMul(B1, KMul); 439 } 440 441 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 442 llvm::Value *Address, 443 QualType Ty, CharUnits Alignment) { 444 if (!SanitizePerformTypeCheck) 445 return; 446 447 // Don't check pointers outside the default address space. The null check 448 // isn't correct, the object-size check isn't supported by LLVM, and we can't 449 // communicate the addresses to the runtime handler for the vptr check. 450 if (Address->getType()->getPointerAddressSpace()) 451 return; 452 453 llvm::Value *Cond = 0; 454 llvm::BasicBlock *Done = 0; 455 456 if (SanOpts->Null) { 457 // The glvalue must not be an empty glvalue. 458 Cond = Builder.CreateICmpNE( 459 Address, llvm::Constant::getNullValue(Address->getType())); 460 461 if (TCK == TCK_DowncastPointer) { 462 // When performing a pointer downcast, it's OK if the value is null. 463 // Skip the remaining checks in that case. 464 Done = createBasicBlock("null"); 465 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 466 Builder.CreateCondBr(Cond, Rest, Done); 467 EmitBlock(Rest); 468 Cond = 0; 469 } 470 } 471 472 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 473 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 474 475 // The glvalue must refer to a large enough storage region. 476 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 477 // to check this. 478 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 479 llvm::Value *Min = Builder.getFalse(); 480 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 481 llvm::Value *LargeEnough = 482 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 483 llvm::ConstantInt::get(IntPtrTy, Size)); 484 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 485 } 486 487 uint64_t AlignVal = 0; 488 489 if (SanOpts->Alignment) { 490 AlignVal = Alignment.getQuantity(); 491 if (!Ty->isIncompleteType() && !AlignVal) 492 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 493 494 // The glvalue must be suitably aligned. 495 if (AlignVal) { 496 llvm::Value *Align = 497 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 498 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 499 llvm::Value *Aligned = 500 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 501 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 502 } 503 } 504 505 if (Cond) { 506 llvm::Constant *StaticData[] = { 507 EmitCheckSourceLocation(Loc), 508 EmitCheckTypeDescriptor(Ty), 509 llvm::ConstantInt::get(SizeTy, AlignVal), 510 llvm::ConstantInt::get(Int8Ty, TCK) 511 }; 512 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 513 } 514 515 // If possible, check that the vptr indicates that there is a subobject of 516 // type Ty at offset zero within this object. 517 // 518 // C++11 [basic.life]p5,6: 519 // [For storage which does not refer to an object within its lifetime] 520 // The program has undefined behavior if: 521 // -- the [pointer or glvalue] is used to access a non-static data member 522 // or call a non-static member function 523 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 524 if (SanOpts->Vptr && 525 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 526 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 527 RD && RD->hasDefinition() && RD->isDynamicClass()) { 528 // Compute a hash of the mangled name of the type. 529 // 530 // FIXME: This is not guaranteed to be deterministic! Move to a 531 // fingerprinting mechanism once LLVM provides one. For the time 532 // being the implementation happens to be deterministic. 533 SmallString<64> MangledName; 534 llvm::raw_svector_ostream Out(MangledName); 535 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 536 Out); 537 llvm::hash_code TypeHash = hash_value(Out.str()); 538 539 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 540 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 541 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 542 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 543 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 544 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 545 546 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 547 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 548 549 // Look the hash up in our cache. 550 const int CacheSize = 128; 551 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 552 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 553 "__ubsan_vptr_type_cache"); 554 llvm::Value *Slot = Builder.CreateAnd(Hash, 555 llvm::ConstantInt::get(IntPtrTy, 556 CacheSize-1)); 557 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 558 llvm::Value *CacheVal = 559 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 560 561 // If the hash isn't in the cache, call a runtime handler to perform the 562 // hard work of checking whether the vptr is for an object of the right 563 // type. This will either fill in the cache and return, or produce a 564 // diagnostic. 565 llvm::Constant *StaticData[] = { 566 EmitCheckSourceLocation(Loc), 567 EmitCheckTypeDescriptor(Ty), 568 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 569 llvm::ConstantInt::get(Int8Ty, TCK) 570 }; 571 llvm::Value *DynamicData[] = { Address, Hash }; 572 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 573 "dynamic_type_cache_miss", StaticData, DynamicData, 574 CRK_AlwaysRecoverable); 575 } 576 577 if (Done) { 578 Builder.CreateBr(Done); 579 EmitBlock(Done); 580 } 581 } 582 583 /// Determine whether this expression refers to a flexible array member in a 584 /// struct. We disable array bounds checks for such members. 585 static bool isFlexibleArrayMemberExpr(const Expr *E) { 586 // For compatibility with existing code, we treat arrays of length 0 or 587 // 1 as flexible array members. 588 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 589 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 590 if (CAT->getSize().ugt(1)) 591 return false; 592 } else if (!isa<IncompleteArrayType>(AT)) 593 return false; 594 595 E = E->IgnoreParens(); 596 597 // A flexible array member must be the last member in the class. 598 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 599 // FIXME: If the base type of the member expr is not FD->getParent(), 600 // this should not be treated as a flexible array member access. 601 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 602 RecordDecl::field_iterator FI( 603 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 604 return ++FI == FD->getParent()->field_end(); 605 } 606 } 607 608 return false; 609 } 610 611 /// If Base is known to point to the start of an array, return the length of 612 /// that array. Return 0 if the length cannot be determined. 613 static llvm::Value *getArrayIndexingBound( 614 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 615 // For the vector indexing extension, the bound is the number of elements. 616 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 617 IndexedType = Base->getType(); 618 return CGF.Builder.getInt32(VT->getNumElements()); 619 } 620 621 Base = Base->IgnoreParens(); 622 623 if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) { 624 if (CE->getCastKind() == CK_ArrayToPointerDecay && 625 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 626 IndexedType = CE->getSubExpr()->getType(); 627 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 628 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 629 return CGF.Builder.getInt(CAT->getSize()); 630 else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) 631 return CGF.getVLASize(VAT).first; 632 } 633 } 634 635 return 0; 636 } 637 638 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 639 llvm::Value *Index, QualType IndexType, 640 bool Accessed) { 641 assert(SanOpts->Bounds && "should not be called unless adding bounds checks"); 642 643 QualType IndexedType; 644 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 645 if (!Bound) 646 return; 647 648 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 649 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 650 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 651 652 llvm::Constant *StaticData[] = { 653 EmitCheckSourceLocation(E->getExprLoc()), 654 EmitCheckTypeDescriptor(IndexedType), 655 EmitCheckTypeDescriptor(IndexType) 656 }; 657 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 658 : Builder.CreateICmpULE(IndexVal, BoundVal); 659 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 660 } 661 662 663 CodeGenFunction::ComplexPairTy CodeGenFunction:: 664 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 665 bool isInc, bool isPre) { 666 ComplexPairTy InVal = EmitLoadOfComplex(LV); 667 668 llvm::Value *NextVal; 669 if (isa<llvm::IntegerType>(InVal.first->getType())) { 670 uint64_t AmountVal = isInc ? 1 : -1; 671 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 672 673 // Add the inc/dec to the real part. 674 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 675 } else { 676 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 677 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 678 if (!isInc) 679 FVal.changeSign(); 680 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 681 682 // Add the inc/dec to the real part. 683 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 684 } 685 686 ComplexPairTy IncVal(NextVal, InVal.second); 687 688 // Store the updated result through the lvalue. 689 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 690 691 // If this is a postinc, return the value read from memory, otherwise use the 692 // updated value. 693 return isPre ? IncVal : InVal; 694 } 695 696 697 //===----------------------------------------------------------------------===// 698 // LValue Expression Emission 699 //===----------------------------------------------------------------------===// 700 701 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 702 if (Ty->isVoidType()) 703 return RValue::get(0); 704 705 switch (getEvaluationKind(Ty)) { 706 case TEK_Complex: { 707 llvm::Type *EltTy = 708 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 709 llvm::Value *U = llvm::UndefValue::get(EltTy); 710 return RValue::getComplex(std::make_pair(U, U)); 711 } 712 713 // If this is a use of an undefined aggregate type, the aggregate must have an 714 // identifiable address. Just because the contents of the value are undefined 715 // doesn't mean that the address can't be taken and compared. 716 case TEK_Aggregate: { 717 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 718 return RValue::getAggregate(DestPtr); 719 } 720 721 case TEK_Scalar: 722 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 723 } 724 llvm_unreachable("bad evaluation kind"); 725 } 726 727 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 728 const char *Name) { 729 ErrorUnsupported(E, Name); 730 return GetUndefRValue(E->getType()); 731 } 732 733 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 734 const char *Name) { 735 ErrorUnsupported(E, Name); 736 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 737 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 738 } 739 740 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 741 LValue LV; 742 if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E)) 743 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 744 else 745 LV = EmitLValue(E); 746 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 747 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 748 E->getType(), LV.getAlignment()); 749 return LV; 750 } 751 752 /// EmitLValue - Emit code to compute a designator that specifies the location 753 /// of the expression. 754 /// 755 /// This can return one of two things: a simple address or a bitfield reference. 756 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 757 /// an LLVM pointer type. 758 /// 759 /// If this returns a bitfield reference, nothing about the pointee type of the 760 /// LLVM value is known: For example, it may not be a pointer to an integer. 761 /// 762 /// If this returns a normal address, and if the lvalue's C type is fixed size, 763 /// this method guarantees that the returned pointer type will point to an LLVM 764 /// type of the same size of the lvalue's type. If the lvalue has a variable 765 /// length type, this is not possible. 766 /// 767 LValue CodeGenFunction::EmitLValue(const Expr *E) { 768 switch (E->getStmtClass()) { 769 default: return EmitUnsupportedLValue(E, "l-value expression"); 770 771 case Expr::ObjCPropertyRefExprClass: 772 llvm_unreachable("cannot emit a property reference directly"); 773 774 case Expr::ObjCSelectorExprClass: 775 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 776 case Expr::ObjCIsaExprClass: 777 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 778 case Expr::BinaryOperatorClass: 779 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 780 case Expr::CompoundAssignOperatorClass: 781 if (!E->getType()->isAnyComplexType()) 782 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 783 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 784 case Expr::CallExprClass: 785 case Expr::CXXMemberCallExprClass: 786 case Expr::CXXOperatorCallExprClass: 787 case Expr::UserDefinedLiteralClass: 788 return EmitCallExprLValue(cast<CallExpr>(E)); 789 case Expr::VAArgExprClass: 790 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 791 case Expr::DeclRefExprClass: 792 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 793 case Expr::ParenExprClass: 794 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 795 case Expr::GenericSelectionExprClass: 796 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 797 case Expr::PredefinedExprClass: 798 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 799 case Expr::StringLiteralClass: 800 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 801 case Expr::ObjCEncodeExprClass: 802 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 803 case Expr::PseudoObjectExprClass: 804 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 805 case Expr::InitListExprClass: 806 return EmitInitListLValue(cast<InitListExpr>(E)); 807 case Expr::CXXTemporaryObjectExprClass: 808 case Expr::CXXConstructExprClass: 809 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 810 case Expr::CXXBindTemporaryExprClass: 811 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 812 case Expr::CXXUuidofExprClass: 813 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 814 case Expr::LambdaExprClass: 815 return EmitLambdaLValue(cast<LambdaExpr>(E)); 816 817 case Expr::ExprWithCleanupsClass: { 818 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 819 enterFullExpression(cleanups); 820 RunCleanupsScope Scope(*this); 821 return EmitLValue(cleanups->getSubExpr()); 822 } 823 824 case Expr::CXXDefaultArgExprClass: 825 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 826 case Expr::CXXDefaultInitExprClass: { 827 CXXDefaultInitExprScope Scope(*this); 828 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 829 } 830 case Expr::CXXTypeidExprClass: 831 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 832 833 case Expr::ObjCMessageExprClass: 834 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 835 case Expr::ObjCIvarRefExprClass: 836 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 837 case Expr::StmtExprClass: 838 return EmitStmtExprLValue(cast<StmtExpr>(E)); 839 case Expr::UnaryOperatorClass: 840 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 841 case Expr::ArraySubscriptExprClass: 842 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 843 case Expr::ExtVectorElementExprClass: 844 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 845 case Expr::MemberExprClass: 846 return EmitMemberExpr(cast<MemberExpr>(E)); 847 case Expr::CompoundLiteralExprClass: 848 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 849 case Expr::ConditionalOperatorClass: 850 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 851 case Expr::BinaryConditionalOperatorClass: 852 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 853 case Expr::ChooseExprClass: 854 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 855 case Expr::OpaqueValueExprClass: 856 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 857 case Expr::SubstNonTypeTemplateParmExprClass: 858 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 859 case Expr::ImplicitCastExprClass: 860 case Expr::CStyleCastExprClass: 861 case Expr::CXXFunctionalCastExprClass: 862 case Expr::CXXStaticCastExprClass: 863 case Expr::CXXDynamicCastExprClass: 864 case Expr::CXXReinterpretCastExprClass: 865 case Expr::CXXConstCastExprClass: 866 case Expr::ObjCBridgedCastExprClass: 867 return EmitCastLValue(cast<CastExpr>(E)); 868 869 case Expr::MaterializeTemporaryExprClass: 870 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 871 } 872 } 873 874 /// Given an object of the given canonical type, can we safely copy a 875 /// value out of it based on its initializer? 876 static bool isConstantEmittableObjectType(QualType type) { 877 assert(type.isCanonical()); 878 assert(!type->isReferenceType()); 879 880 // Must be const-qualified but non-volatile. 881 Qualifiers qs = type.getLocalQualifiers(); 882 if (!qs.hasConst() || qs.hasVolatile()) return false; 883 884 // Otherwise, all object types satisfy this except C++ classes with 885 // mutable subobjects or non-trivial copy/destroy behavior. 886 if (const RecordType *RT = dyn_cast<RecordType>(type)) 887 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 888 if (RD->hasMutableFields() || !RD->isTrivial()) 889 return false; 890 891 return true; 892 } 893 894 /// Can we constant-emit a load of a reference to a variable of the 895 /// given type? This is different from predicates like 896 /// Decl::isUsableInConstantExpressions because we do want it to apply 897 /// in situations that don't necessarily satisfy the language's rules 898 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 899 /// to do this with const float variables even if those variables 900 /// aren't marked 'constexpr'. 901 enum ConstantEmissionKind { 902 CEK_None, 903 CEK_AsReferenceOnly, 904 CEK_AsValueOrReference, 905 CEK_AsValueOnly 906 }; 907 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 908 type = type.getCanonicalType(); 909 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 910 if (isConstantEmittableObjectType(ref->getPointeeType())) 911 return CEK_AsValueOrReference; 912 return CEK_AsReferenceOnly; 913 } 914 if (isConstantEmittableObjectType(type)) 915 return CEK_AsValueOnly; 916 return CEK_None; 917 } 918 919 /// Try to emit a reference to the given value without producing it as 920 /// an l-value. This is actually more than an optimization: we can't 921 /// produce an l-value for variables that we never actually captured 922 /// in a block or lambda, which means const int variables or constexpr 923 /// literals or similar. 924 CodeGenFunction::ConstantEmission 925 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 926 ValueDecl *value = refExpr->getDecl(); 927 928 // The value needs to be an enum constant or a constant variable. 929 ConstantEmissionKind CEK; 930 if (isa<ParmVarDecl>(value)) { 931 CEK = CEK_None; 932 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 933 CEK = checkVarTypeForConstantEmission(var->getType()); 934 } else if (isa<EnumConstantDecl>(value)) { 935 CEK = CEK_AsValueOnly; 936 } else { 937 CEK = CEK_None; 938 } 939 if (CEK == CEK_None) return ConstantEmission(); 940 941 Expr::EvalResult result; 942 bool resultIsReference; 943 QualType resultType; 944 945 // It's best to evaluate all the way as an r-value if that's permitted. 946 if (CEK != CEK_AsReferenceOnly && 947 refExpr->EvaluateAsRValue(result, getContext())) { 948 resultIsReference = false; 949 resultType = refExpr->getType(); 950 951 // Otherwise, try to evaluate as an l-value. 952 } else if (CEK != CEK_AsValueOnly && 953 refExpr->EvaluateAsLValue(result, getContext())) { 954 resultIsReference = true; 955 resultType = value->getType(); 956 957 // Failure. 958 } else { 959 return ConstantEmission(); 960 } 961 962 // In any case, if the initializer has side-effects, abandon ship. 963 if (result.HasSideEffects) 964 return ConstantEmission(); 965 966 // Emit as a constant. 967 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 968 969 // Make sure we emit a debug reference to the global variable. 970 // This should probably fire even for 971 if (isa<VarDecl>(value)) { 972 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 973 EmitDeclRefExprDbgValue(refExpr, C); 974 } else { 975 assert(isa<EnumConstantDecl>(value)); 976 EmitDeclRefExprDbgValue(refExpr, C); 977 } 978 979 // If we emitted a reference constant, we need to dereference that. 980 if (resultIsReference) 981 return ConstantEmission::forReference(C); 982 983 return ConstantEmission::forValue(C); 984 } 985 986 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 987 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 988 lvalue.getAlignment().getQuantity(), 989 lvalue.getType(), lvalue.getTBAAInfo(), 990 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 991 } 992 993 static bool hasBooleanRepresentation(QualType Ty) { 994 if (Ty->isBooleanType()) 995 return true; 996 997 if (const EnumType *ET = Ty->getAs<EnumType>()) 998 return ET->getDecl()->getIntegerType()->isBooleanType(); 999 1000 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1001 return hasBooleanRepresentation(AT->getValueType()); 1002 1003 return false; 1004 } 1005 1006 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1007 llvm::APInt &Min, llvm::APInt &End, 1008 bool StrictEnums) { 1009 const EnumType *ET = Ty->getAs<EnumType>(); 1010 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1011 ET && !ET->getDecl()->isFixed(); 1012 bool IsBool = hasBooleanRepresentation(Ty); 1013 if (!IsBool && !IsRegularCPlusPlusEnum) 1014 return false; 1015 1016 if (IsBool) { 1017 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1018 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1019 } else { 1020 const EnumDecl *ED = ET->getDecl(); 1021 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1022 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1023 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1024 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1025 1026 if (NumNegativeBits) { 1027 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1028 assert(NumBits <= Bitwidth); 1029 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1030 Min = -End; 1031 } else { 1032 assert(NumPositiveBits <= Bitwidth); 1033 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1034 Min = llvm::APInt(Bitwidth, 0); 1035 } 1036 } 1037 return true; 1038 } 1039 1040 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1041 llvm::APInt Min, End; 1042 if (!getRangeForType(*this, Ty, Min, End, 1043 CGM.getCodeGenOpts().StrictEnums)) 1044 return 0; 1045 1046 llvm::MDBuilder MDHelper(getLLVMContext()); 1047 return MDHelper.createRange(Min, End); 1048 } 1049 1050 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1051 unsigned Alignment, QualType Ty, 1052 llvm::MDNode *TBAAInfo, 1053 QualType TBAABaseType, 1054 uint64_t TBAAOffset) { 1055 // For better performance, handle vector loads differently. 1056 if (Ty->isVectorType()) { 1057 llvm::Value *V; 1058 const llvm::Type *EltTy = 1059 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1060 1061 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 1062 1063 // Handle vectors of size 3, like size 4 for better performance. 1064 if (VTy->getNumElements() == 3) { 1065 1066 // Bitcast to vec4 type. 1067 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1068 4); 1069 llvm::PointerType *ptVec4Ty = 1070 llvm::PointerType::get(vec4Ty, 1071 (cast<llvm::PointerType>( 1072 Addr->getType()))->getAddressSpace()); 1073 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1074 "castToVec4"); 1075 // Now load value. 1076 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1077 1078 // Shuffle vector to get vec3. 1079 llvm::Constant *Mask[] = { 1080 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1081 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1082 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1083 }; 1084 1085 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1086 V = Builder.CreateShuffleVector(LoadVal, 1087 llvm::UndefValue::get(vec4Ty), 1088 MaskV, "extractVec"); 1089 return EmitFromMemory(V, Ty); 1090 } 1091 } 1092 1093 // Atomic operations have to be done on integral types. 1094 if (Ty->isAtomicType()) { 1095 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1096 CharUnits::fromQuantity(Alignment), 1097 getContext(), TBAAInfo); 1098 return EmitAtomicLoad(lvalue).getScalarVal(); 1099 } 1100 1101 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1102 if (Volatile) 1103 Load->setVolatile(true); 1104 if (Alignment) 1105 Load->setAlignment(Alignment); 1106 if (TBAAInfo) { 1107 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1108 TBAAOffset); 1109 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1110 } 1111 1112 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1113 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1114 llvm::APInt Min, End; 1115 if (getRangeForType(*this, Ty, Min, End, true)) { 1116 --End; 1117 llvm::Value *Check; 1118 if (!Min) 1119 Check = Builder.CreateICmpULE( 1120 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1121 else { 1122 llvm::Value *Upper = Builder.CreateICmpSLE( 1123 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1124 llvm::Value *Lower = Builder.CreateICmpSGE( 1125 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1126 Check = Builder.CreateAnd(Upper, Lower); 1127 } 1128 // FIXME: Provide a SourceLocation. 1129 EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty), 1130 EmitCheckValue(Load), CRK_Recoverable); 1131 } 1132 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1133 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1134 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1135 1136 return EmitFromMemory(Load, Ty); 1137 } 1138 1139 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1140 // Bool has a different representation in memory than in registers. 1141 if (hasBooleanRepresentation(Ty)) { 1142 // This should really always be an i1, but sometimes it's already 1143 // an i8, and it's awkward to track those cases down. 1144 if (Value->getType()->isIntegerTy(1)) 1145 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1146 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1147 "wrong value rep of bool"); 1148 } 1149 1150 return Value; 1151 } 1152 1153 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1154 // Bool has a different representation in memory than in registers. 1155 if (hasBooleanRepresentation(Ty)) { 1156 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1157 "wrong value rep of bool"); 1158 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1159 } 1160 1161 return Value; 1162 } 1163 1164 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1165 bool Volatile, unsigned Alignment, 1166 QualType Ty, 1167 llvm::MDNode *TBAAInfo, 1168 bool isInit, QualType TBAABaseType, 1169 uint64_t TBAAOffset) { 1170 1171 // Handle vectors differently to get better performance. 1172 if (Ty->isVectorType()) { 1173 llvm::Type *SrcTy = Value->getType(); 1174 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1175 // Handle vec3 special. 1176 if (VecTy->getNumElements() == 3) { 1177 llvm::LLVMContext &VMContext = getLLVMContext(); 1178 1179 // Our source is a vec3, do a shuffle vector to make it a vec4. 1180 SmallVector<llvm::Constant*, 4> Mask; 1181 Mask.push_back(llvm::ConstantInt::get( 1182 llvm::Type::getInt32Ty(VMContext), 1183 0)); 1184 Mask.push_back(llvm::ConstantInt::get( 1185 llvm::Type::getInt32Ty(VMContext), 1186 1)); 1187 Mask.push_back(llvm::ConstantInt::get( 1188 llvm::Type::getInt32Ty(VMContext), 1189 2)); 1190 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1191 1192 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1193 Value = Builder.CreateShuffleVector(Value, 1194 llvm::UndefValue::get(VecTy), 1195 MaskV, "extractVec"); 1196 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1197 } 1198 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1199 if (DstPtr->getElementType() != SrcTy) { 1200 llvm::Type *MemTy = 1201 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1202 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1203 } 1204 } 1205 1206 Value = EmitToMemory(Value, Ty); 1207 1208 if (Ty->isAtomicType()) { 1209 EmitAtomicStore(RValue::get(Value), 1210 LValue::MakeAddr(Addr, Ty, 1211 CharUnits::fromQuantity(Alignment), 1212 getContext(), TBAAInfo), 1213 isInit); 1214 return; 1215 } 1216 1217 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1218 if (Alignment) 1219 Store->setAlignment(Alignment); 1220 if (TBAAInfo) { 1221 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1222 TBAAOffset); 1223 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1224 } 1225 } 1226 1227 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1228 bool isInit) { 1229 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1230 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1231 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1232 lvalue.getTBAAOffset()); 1233 } 1234 1235 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1236 /// method emits the address of the lvalue, then loads the result as an rvalue, 1237 /// returning the rvalue. 1238 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1239 if (LV.isObjCWeak()) { 1240 // load of a __weak object. 1241 llvm::Value *AddrWeakObj = LV.getAddress(); 1242 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1243 AddrWeakObj)); 1244 } 1245 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1246 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1247 Object = EmitObjCConsumeObject(LV.getType(), Object); 1248 return RValue::get(Object); 1249 } 1250 1251 if (LV.isSimple()) { 1252 assert(!LV.getType()->isFunctionType()); 1253 1254 // Everything needs a load. 1255 return RValue::get(EmitLoadOfScalar(LV)); 1256 } 1257 1258 if (LV.isVectorElt()) { 1259 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1260 LV.isVolatileQualified()); 1261 Load->setAlignment(LV.getAlignment().getQuantity()); 1262 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1263 "vecext")); 1264 } 1265 1266 // If this is a reference to a subset of the elements of a vector, either 1267 // shuffle the input or extract/insert them as appropriate. 1268 if (LV.isExtVectorElt()) 1269 return EmitLoadOfExtVectorElementLValue(LV); 1270 1271 assert(LV.isBitField() && "Unknown LValue type!"); 1272 return EmitLoadOfBitfieldLValue(LV); 1273 } 1274 1275 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1276 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1277 1278 // Get the output type. 1279 llvm::Type *ResLTy = ConvertType(LV.getType()); 1280 1281 llvm::Value *Ptr = LV.getBitFieldAddr(); 1282 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1283 "bf.load"); 1284 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1285 1286 if (Info.IsSigned) { 1287 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1288 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1289 if (HighBits) 1290 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1291 if (Info.Offset + HighBits) 1292 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1293 } else { 1294 if (Info.Offset) 1295 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1296 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1297 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1298 Info.Size), 1299 "bf.clear"); 1300 } 1301 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1302 1303 return RValue::get(Val); 1304 } 1305 1306 // If this is a reference to a subset of the elements of a vector, create an 1307 // appropriate shufflevector. 1308 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1309 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1310 LV.isVolatileQualified()); 1311 Load->setAlignment(LV.getAlignment().getQuantity()); 1312 llvm::Value *Vec = Load; 1313 1314 const llvm::Constant *Elts = LV.getExtVectorElts(); 1315 1316 // If the result of the expression is a non-vector type, we must be extracting 1317 // a single element. Just codegen as an extractelement. 1318 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1319 if (!ExprVT) { 1320 unsigned InIdx = getAccessedFieldNo(0, Elts); 1321 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1322 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1323 } 1324 1325 // Always use shuffle vector to try to retain the original program structure 1326 unsigned NumResultElts = ExprVT->getNumElements(); 1327 1328 SmallVector<llvm::Constant*, 4> Mask; 1329 for (unsigned i = 0; i != NumResultElts; ++i) 1330 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1331 1332 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1333 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1334 MaskV); 1335 return RValue::get(Vec); 1336 } 1337 1338 1339 1340 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1341 /// lvalue, where both are guaranteed to the have the same type, and that type 1342 /// is 'Ty'. 1343 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1344 if (!Dst.isSimple()) { 1345 if (Dst.isVectorElt()) { 1346 // Read/modify/write the vector, inserting the new element. 1347 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1348 Dst.isVolatileQualified()); 1349 Load->setAlignment(Dst.getAlignment().getQuantity()); 1350 llvm::Value *Vec = Load; 1351 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1352 Dst.getVectorIdx(), "vecins"); 1353 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1354 Dst.isVolatileQualified()); 1355 Store->setAlignment(Dst.getAlignment().getQuantity()); 1356 return; 1357 } 1358 1359 // If this is an update of extended vector elements, insert them as 1360 // appropriate. 1361 if (Dst.isExtVectorElt()) 1362 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1363 1364 assert(Dst.isBitField() && "Unknown LValue type"); 1365 return EmitStoreThroughBitfieldLValue(Src, Dst); 1366 } 1367 1368 // There's special magic for assigning into an ARC-qualified l-value. 1369 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1370 switch (Lifetime) { 1371 case Qualifiers::OCL_None: 1372 llvm_unreachable("present but none"); 1373 1374 case Qualifiers::OCL_ExplicitNone: 1375 // nothing special 1376 break; 1377 1378 case Qualifiers::OCL_Strong: 1379 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1380 return; 1381 1382 case Qualifiers::OCL_Weak: 1383 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1384 return; 1385 1386 case Qualifiers::OCL_Autoreleasing: 1387 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1388 Src.getScalarVal())); 1389 // fall into the normal path 1390 break; 1391 } 1392 } 1393 1394 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1395 // load of a __weak object. 1396 llvm::Value *LvalueDst = Dst.getAddress(); 1397 llvm::Value *src = Src.getScalarVal(); 1398 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1399 return; 1400 } 1401 1402 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1403 // load of a __strong object. 1404 llvm::Value *LvalueDst = Dst.getAddress(); 1405 llvm::Value *src = Src.getScalarVal(); 1406 if (Dst.isObjCIvar()) { 1407 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1408 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1409 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1410 llvm::Value *dst = RHS; 1411 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1412 llvm::Value *LHS = 1413 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1414 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1415 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1416 BytesBetween); 1417 } else if (Dst.isGlobalObjCRef()) { 1418 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1419 Dst.isThreadLocalRef()); 1420 } 1421 else 1422 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1423 return; 1424 } 1425 1426 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1427 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1428 } 1429 1430 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1431 llvm::Value **Result) { 1432 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1433 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1434 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1435 1436 // Get the source value, truncated to the width of the bit-field. 1437 llvm::Value *SrcVal = Src.getScalarVal(); 1438 1439 // Cast the source to the storage type and shift it into place. 1440 SrcVal = Builder.CreateIntCast(SrcVal, 1441 Ptr->getType()->getPointerElementType(), 1442 /*IsSigned=*/false); 1443 llvm::Value *MaskedVal = SrcVal; 1444 1445 // See if there are other bits in the bitfield's storage we'll need to load 1446 // and mask together with source before storing. 1447 if (Info.StorageSize != Info.Size) { 1448 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1449 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1450 "bf.load"); 1451 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1452 1453 // Mask the source value as needed. 1454 if (!hasBooleanRepresentation(Dst.getType())) 1455 SrcVal = Builder.CreateAnd(SrcVal, 1456 llvm::APInt::getLowBitsSet(Info.StorageSize, 1457 Info.Size), 1458 "bf.value"); 1459 MaskedVal = SrcVal; 1460 if (Info.Offset) 1461 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1462 1463 // Mask out the original value. 1464 Val = Builder.CreateAnd(Val, 1465 ~llvm::APInt::getBitsSet(Info.StorageSize, 1466 Info.Offset, 1467 Info.Offset + Info.Size), 1468 "bf.clear"); 1469 1470 // Or together the unchanged values and the source value. 1471 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1472 } else { 1473 assert(Info.Offset == 0); 1474 } 1475 1476 // Write the new value back out. 1477 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1478 Dst.isVolatileQualified()); 1479 Store->setAlignment(Info.StorageAlignment); 1480 1481 // Return the new value of the bit-field, if requested. 1482 if (Result) { 1483 llvm::Value *ResultVal = MaskedVal; 1484 1485 // Sign extend the value if needed. 1486 if (Info.IsSigned) { 1487 assert(Info.Size <= Info.StorageSize); 1488 unsigned HighBits = Info.StorageSize - Info.Size; 1489 if (HighBits) { 1490 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1491 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1492 } 1493 } 1494 1495 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1496 "bf.result.cast"); 1497 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1498 } 1499 } 1500 1501 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1502 LValue Dst) { 1503 // This access turns into a read/modify/write of the vector. Load the input 1504 // value now. 1505 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1506 Dst.isVolatileQualified()); 1507 Load->setAlignment(Dst.getAlignment().getQuantity()); 1508 llvm::Value *Vec = Load; 1509 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1510 1511 llvm::Value *SrcVal = Src.getScalarVal(); 1512 1513 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1514 unsigned NumSrcElts = VTy->getNumElements(); 1515 unsigned NumDstElts = 1516 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1517 if (NumDstElts == NumSrcElts) { 1518 // Use shuffle vector is the src and destination are the same number of 1519 // elements and restore the vector mask since it is on the side it will be 1520 // stored. 1521 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1522 for (unsigned i = 0; i != NumSrcElts; ++i) 1523 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1524 1525 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1526 Vec = Builder.CreateShuffleVector(SrcVal, 1527 llvm::UndefValue::get(Vec->getType()), 1528 MaskV); 1529 } else if (NumDstElts > NumSrcElts) { 1530 // Extended the source vector to the same length and then shuffle it 1531 // into the destination. 1532 // FIXME: since we're shuffling with undef, can we just use the indices 1533 // into that? This could be simpler. 1534 SmallVector<llvm::Constant*, 4> ExtMask; 1535 for (unsigned i = 0; i != NumSrcElts; ++i) 1536 ExtMask.push_back(Builder.getInt32(i)); 1537 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1538 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1539 llvm::Value *ExtSrcVal = 1540 Builder.CreateShuffleVector(SrcVal, 1541 llvm::UndefValue::get(SrcVal->getType()), 1542 ExtMaskV); 1543 // build identity 1544 SmallVector<llvm::Constant*, 4> Mask; 1545 for (unsigned i = 0; i != NumDstElts; ++i) 1546 Mask.push_back(Builder.getInt32(i)); 1547 1548 // modify when what gets shuffled in 1549 for (unsigned i = 0; i != NumSrcElts; ++i) 1550 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1551 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1552 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1553 } else { 1554 // We should never shorten the vector 1555 llvm_unreachable("unexpected shorten vector length"); 1556 } 1557 } else { 1558 // If the Src is a scalar (not a vector) it must be updating one element. 1559 unsigned InIdx = getAccessedFieldNo(0, Elts); 1560 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1561 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1562 } 1563 1564 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1565 Dst.isVolatileQualified()); 1566 Store->setAlignment(Dst.getAlignment().getQuantity()); 1567 } 1568 1569 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1570 // generating write-barries API. It is currently a global, ivar, 1571 // or neither. 1572 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1573 LValue &LV, 1574 bool IsMemberAccess=false) { 1575 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1576 return; 1577 1578 if (isa<ObjCIvarRefExpr>(E)) { 1579 QualType ExpTy = E->getType(); 1580 if (IsMemberAccess && ExpTy->isPointerType()) { 1581 // If ivar is a structure pointer, assigning to field of 1582 // this struct follows gcc's behavior and makes it a non-ivar 1583 // writer-barrier conservatively. 1584 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1585 if (ExpTy->isRecordType()) { 1586 LV.setObjCIvar(false); 1587 return; 1588 } 1589 } 1590 LV.setObjCIvar(true); 1591 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1592 LV.setBaseIvarExp(Exp->getBase()); 1593 LV.setObjCArray(E->getType()->isArrayType()); 1594 return; 1595 } 1596 1597 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1598 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1599 if (VD->hasGlobalStorage()) { 1600 LV.setGlobalObjCRef(true); 1601 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1602 } 1603 } 1604 LV.setObjCArray(E->getType()->isArrayType()); 1605 return; 1606 } 1607 1608 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1609 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1610 return; 1611 } 1612 1613 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1614 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1615 if (LV.isObjCIvar()) { 1616 // If cast is to a structure pointer, follow gcc's behavior and make it 1617 // a non-ivar write-barrier. 1618 QualType ExpTy = E->getType(); 1619 if (ExpTy->isPointerType()) 1620 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1621 if (ExpTy->isRecordType()) 1622 LV.setObjCIvar(false); 1623 } 1624 return; 1625 } 1626 1627 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1628 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1629 return; 1630 } 1631 1632 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1633 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1634 return; 1635 } 1636 1637 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1638 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1639 return; 1640 } 1641 1642 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1643 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1644 return; 1645 } 1646 1647 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1648 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1649 if (LV.isObjCIvar() && !LV.isObjCArray()) 1650 // Using array syntax to assigning to what an ivar points to is not 1651 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1652 LV.setObjCIvar(false); 1653 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1654 // Using array syntax to assigning to what global points to is not 1655 // same as assigning to the global itself. {id *G;} G[i] = 0; 1656 LV.setGlobalObjCRef(false); 1657 return; 1658 } 1659 1660 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1661 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1662 // We don't know if member is an 'ivar', but this flag is looked at 1663 // only in the context of LV.isObjCIvar(). 1664 LV.setObjCArray(E->getType()->isArrayType()); 1665 return; 1666 } 1667 } 1668 1669 static llvm::Value * 1670 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1671 llvm::Value *V, llvm::Type *IRType, 1672 StringRef Name = StringRef()) { 1673 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1674 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1675 } 1676 1677 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1678 const Expr *E, const VarDecl *VD) { 1679 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1680 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1681 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1682 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1683 QualType T = E->getType(); 1684 LValue LV; 1685 if (VD->getType()->isReferenceType()) { 1686 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1687 LI->setAlignment(Alignment.getQuantity()); 1688 V = LI; 1689 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1690 } else { 1691 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1692 } 1693 setObjCGCLValueClass(CGF.getContext(), E, LV); 1694 return LV; 1695 } 1696 1697 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1698 const Expr *E, const FunctionDecl *FD) { 1699 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1700 if (!FD->hasPrototype()) { 1701 if (const FunctionProtoType *Proto = 1702 FD->getType()->getAs<FunctionProtoType>()) { 1703 // Ugly case: for a K&R-style definition, the type of the definition 1704 // isn't the same as the type of a use. Correct for this with a 1705 // bitcast. 1706 QualType NoProtoType = 1707 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1708 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1709 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1710 } 1711 } 1712 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1713 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1714 } 1715 1716 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1717 llvm::Value *ThisValue) { 1718 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1719 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1720 return CGF.EmitLValueForField(LV, FD); 1721 } 1722 1723 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1724 const NamedDecl *ND = E->getDecl(); 1725 CharUnits Alignment = getContext().getDeclAlign(ND); 1726 QualType T = E->getType(); 1727 1728 // A DeclRefExpr for a reference initialized by a constant expression can 1729 // appear without being odr-used. Directly emit the constant initializer. 1730 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1731 const Expr *Init = VD->getAnyInitializer(VD); 1732 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1733 VD->isUsableInConstantExpressions(getContext()) && 1734 VD->checkInitIsICE()) { 1735 llvm::Constant *Val = 1736 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1737 assert(Val && "failed to emit reference constant expression"); 1738 // FIXME: Eventually we will want to emit vector element references. 1739 return MakeAddrLValue(Val, T, Alignment); 1740 } 1741 } 1742 1743 // FIXME: We should be able to assert this for FunctionDecls as well! 1744 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1745 // those with a valid source location. 1746 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1747 !E->getLocation().isValid()) && 1748 "Should not use decl without marking it used!"); 1749 1750 if (ND->hasAttr<WeakRefAttr>()) { 1751 const ValueDecl *VD = cast<ValueDecl>(ND); 1752 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1753 return MakeAddrLValue(Aliasee, T, Alignment); 1754 } 1755 1756 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1757 // Check if this is a global variable. 1758 if (VD->hasLinkage() || VD->isStaticDataMember()) { 1759 // If it's thread_local, emit a call to its wrapper function instead. 1760 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1761 return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E); 1762 return EmitGlobalVarDeclLValue(*this, E, VD); 1763 } 1764 1765 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1766 1767 llvm::Value *V = LocalDeclMap.lookup(VD); 1768 if (!V && VD->isStaticLocal()) 1769 V = CGM.getStaticLocalDeclAddress(VD); 1770 1771 // Use special handling for lambdas. 1772 if (!V) { 1773 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1774 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1775 } else if (CapturedStmtInfo) { 1776 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1777 return EmitCapturedFieldLValue(*this, FD, 1778 CapturedStmtInfo->getContextValue()); 1779 } 1780 1781 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1782 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1783 T, Alignment); 1784 } 1785 1786 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1787 1788 if (isBlockVariable) 1789 V = BuildBlockByrefAddress(V, VD); 1790 1791 LValue LV; 1792 if (VD->getType()->isReferenceType()) { 1793 llvm::LoadInst *LI = Builder.CreateLoad(V); 1794 LI->setAlignment(Alignment.getQuantity()); 1795 V = LI; 1796 LV = MakeNaturalAlignAddrLValue(V, T); 1797 } else { 1798 LV = MakeAddrLValue(V, T, Alignment); 1799 } 1800 1801 bool isLocalStorage = VD->hasLocalStorage(); 1802 1803 bool NonGCable = isLocalStorage && 1804 !VD->getType()->isReferenceType() && 1805 !isBlockVariable; 1806 if (NonGCable) { 1807 LV.getQuals().removeObjCGCAttr(); 1808 LV.setNonGC(true); 1809 } 1810 1811 bool isImpreciseLifetime = 1812 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1813 if (isImpreciseLifetime) 1814 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1815 setObjCGCLValueClass(getContext(), E, LV); 1816 return LV; 1817 } 1818 1819 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1820 return EmitFunctionDeclLValue(*this, E, fn); 1821 1822 llvm_unreachable("Unhandled DeclRefExpr"); 1823 } 1824 1825 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1826 // __extension__ doesn't affect lvalue-ness. 1827 if (E->getOpcode() == UO_Extension) 1828 return EmitLValue(E->getSubExpr()); 1829 1830 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1831 switch (E->getOpcode()) { 1832 default: llvm_unreachable("Unknown unary operator lvalue!"); 1833 case UO_Deref: { 1834 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1835 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1836 1837 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1838 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1839 1840 // We should not generate __weak write barrier on indirect reference 1841 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1842 // But, we continue to generate __strong write barrier on indirect write 1843 // into a pointer to object. 1844 if (getLangOpts().ObjC1 && 1845 getLangOpts().getGC() != LangOptions::NonGC && 1846 LV.isObjCWeak()) 1847 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1848 return LV; 1849 } 1850 case UO_Real: 1851 case UO_Imag: { 1852 LValue LV = EmitLValue(E->getSubExpr()); 1853 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1854 llvm::Value *Addr = LV.getAddress(); 1855 1856 // __real is valid on scalars. This is a faster way of testing that. 1857 // __imag can only produce an rvalue on scalars. 1858 if (E->getOpcode() == UO_Real && 1859 !cast<llvm::PointerType>(Addr->getType()) 1860 ->getElementType()->isStructTy()) { 1861 assert(E->getSubExpr()->getType()->isArithmeticType()); 1862 return LV; 1863 } 1864 1865 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1866 1867 unsigned Idx = E->getOpcode() == UO_Imag; 1868 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1869 Idx, "idx"), 1870 ExprTy); 1871 } 1872 case UO_PreInc: 1873 case UO_PreDec: { 1874 LValue LV = EmitLValue(E->getSubExpr()); 1875 bool isInc = E->getOpcode() == UO_PreInc; 1876 1877 if (E->getType()->isAnyComplexType()) 1878 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1879 else 1880 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1881 return LV; 1882 } 1883 } 1884 } 1885 1886 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1887 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1888 E->getType()); 1889 } 1890 1891 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1892 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1893 E->getType()); 1894 } 1895 1896 static llvm::Constant* 1897 GetAddrOfConstantWideString(StringRef Str, 1898 const char *GlobalName, 1899 ASTContext &Context, 1900 QualType Ty, SourceLocation Loc, 1901 CodeGenModule &CGM) { 1902 1903 StringLiteral *SL = StringLiteral::Create(Context, 1904 Str, 1905 StringLiteral::Wide, 1906 /*Pascal = */false, 1907 Ty, Loc); 1908 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1909 llvm::GlobalVariable *GV = 1910 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1911 !CGM.getLangOpts().WritableStrings, 1912 llvm::GlobalValue::PrivateLinkage, 1913 C, GlobalName); 1914 const unsigned WideAlignment = 1915 Context.getTypeAlignInChars(Ty).getQuantity(); 1916 GV->setAlignment(WideAlignment); 1917 return GV; 1918 } 1919 1920 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1921 SmallString<32>& Target) { 1922 Target.resize(CharByteWidth * (Source.size() + 1)); 1923 char *ResultPtr = &Target[0]; 1924 const UTF8 *ErrorPtr; 1925 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1926 (void)success; 1927 assert(success); 1928 Target.resize(ResultPtr - &Target[0]); 1929 } 1930 1931 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1932 switch (E->getIdentType()) { 1933 default: 1934 return EmitUnsupportedLValue(E, "predefined expression"); 1935 1936 case PredefinedExpr::Func: 1937 case PredefinedExpr::Function: 1938 case PredefinedExpr::LFunction: 1939 case PredefinedExpr::PrettyFunction: { 1940 unsigned IdentType = E->getIdentType(); 1941 std::string GlobalVarName; 1942 1943 switch (IdentType) { 1944 default: llvm_unreachable("Invalid type"); 1945 case PredefinedExpr::Func: 1946 GlobalVarName = "__func__."; 1947 break; 1948 case PredefinedExpr::Function: 1949 GlobalVarName = "__FUNCTION__."; 1950 break; 1951 case PredefinedExpr::LFunction: 1952 GlobalVarName = "L__FUNCTION__."; 1953 break; 1954 case PredefinedExpr::PrettyFunction: 1955 GlobalVarName = "__PRETTY_FUNCTION__."; 1956 break; 1957 } 1958 1959 StringRef FnName = CurFn->getName(); 1960 if (FnName.startswith("\01")) 1961 FnName = FnName.substr(1); 1962 GlobalVarName += FnName; 1963 1964 const Decl *CurDecl = CurCodeDecl; 1965 if (CurDecl == 0) 1966 CurDecl = getContext().getTranslationUnitDecl(); 1967 1968 std::string FunctionName = 1969 (isa<BlockDecl>(CurDecl) 1970 ? FnName.str() 1971 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1972 CurDecl)); 1973 1974 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1975 llvm::Constant *C; 1976 if (ElemType->isWideCharType()) { 1977 SmallString<32> RawChars; 1978 ConvertUTF8ToWideString( 1979 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1980 FunctionName, RawChars); 1981 C = GetAddrOfConstantWideString(RawChars, 1982 GlobalVarName.c_str(), 1983 getContext(), 1984 E->getType(), 1985 E->getLocation(), 1986 CGM); 1987 } else { 1988 C = CGM.GetAddrOfConstantCString(FunctionName, 1989 GlobalVarName.c_str(), 1990 1); 1991 } 1992 return MakeAddrLValue(C, E->getType()); 1993 } 1994 } 1995 } 1996 1997 /// Emit a type description suitable for use by a runtime sanitizer library. The 1998 /// format of a type descriptor is 1999 /// 2000 /// \code 2001 /// { i16 TypeKind, i16 TypeInfo } 2002 /// \endcode 2003 /// 2004 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2005 /// integer, 1 for a floating point value, and -1 for anything else. 2006 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2007 // FIXME: Only emit each type's descriptor once. 2008 uint16_t TypeKind = -1; 2009 uint16_t TypeInfo = 0; 2010 2011 if (T->isIntegerType()) { 2012 TypeKind = 0; 2013 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2014 (T->isSignedIntegerType() ? 1 : 0); 2015 } else if (T->isFloatingType()) { 2016 TypeKind = 1; 2017 TypeInfo = getContext().getTypeSize(T); 2018 } 2019 2020 // Format the type name as if for a diagnostic, including quotes and 2021 // optionally an 'aka'. 2022 SmallString<32> Buffer; 2023 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2024 (intptr_t)T.getAsOpaquePtr(), 2025 0, 0, 0, 0, 0, 0, Buffer, 2026 ArrayRef<intptr_t>()); 2027 2028 llvm::Constant *Components[] = { 2029 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2030 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2031 }; 2032 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2033 2034 llvm::GlobalVariable *GV = 2035 new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(), 2036 /*isConstant=*/true, 2037 llvm::GlobalVariable::PrivateLinkage, 2038 Descriptor); 2039 GV->setUnnamedAddr(true); 2040 return GV; 2041 } 2042 2043 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2044 llvm::Type *TargetTy = IntPtrTy; 2045 2046 // Floating-point types which fit into intptr_t are bitcast to integers 2047 // and then passed directly (after zero-extension, if necessary). 2048 if (V->getType()->isFloatingPointTy()) { 2049 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2050 if (Bits <= TargetTy->getIntegerBitWidth()) 2051 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2052 Bits)); 2053 } 2054 2055 // Integers which fit in intptr_t are zero-extended and passed directly. 2056 if (V->getType()->isIntegerTy() && 2057 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2058 return Builder.CreateZExt(V, TargetTy); 2059 2060 // Pointers are passed directly, everything else is passed by address. 2061 if (!V->getType()->isPointerTy()) { 2062 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2063 Builder.CreateStore(V, Ptr); 2064 V = Ptr; 2065 } 2066 return Builder.CreatePtrToInt(V, TargetTy); 2067 } 2068 2069 /// \brief Emit a representation of a SourceLocation for passing to a handler 2070 /// in a sanitizer runtime library. The format for this data is: 2071 /// \code 2072 /// struct SourceLocation { 2073 /// const char *Filename; 2074 /// int32_t Line, Column; 2075 /// }; 2076 /// \endcode 2077 /// For an invalid SourceLocation, the Filename pointer is null. 2078 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2079 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2080 2081 llvm::Constant *Data[] = { 2082 // FIXME: Only emit each file name once. 2083 PLoc.isValid() ? cast<llvm::Constant>( 2084 Builder.CreateGlobalStringPtr(PLoc.getFilename())) 2085 : llvm::Constant::getNullValue(Int8PtrTy), 2086 Builder.getInt32(PLoc.getLine()), 2087 Builder.getInt32(PLoc.getColumn()) 2088 }; 2089 2090 return llvm::ConstantStruct::getAnon(Data); 2091 } 2092 2093 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2094 ArrayRef<llvm::Constant *> StaticArgs, 2095 ArrayRef<llvm::Value *> DynamicArgs, 2096 CheckRecoverableKind RecoverKind) { 2097 assert(SanOpts != &SanitizerOptions::Disabled); 2098 2099 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2100 assert (RecoverKind != CRK_AlwaysRecoverable && 2101 "Runtime call required for AlwaysRecoverable kind!"); 2102 return EmitTrapCheck(Checked); 2103 } 2104 2105 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2106 2107 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2108 2109 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2110 2111 // Give hint that we very much don't expect to execute the handler 2112 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2113 llvm::MDBuilder MDHelper(getLLVMContext()); 2114 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2115 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2116 2117 EmitBlock(Handler); 2118 2119 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2120 llvm::GlobalValue *InfoPtr = 2121 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2122 llvm::GlobalVariable::PrivateLinkage, Info); 2123 InfoPtr->setUnnamedAddr(true); 2124 2125 SmallVector<llvm::Value *, 4> Args; 2126 SmallVector<llvm::Type *, 4> ArgTypes; 2127 Args.reserve(DynamicArgs.size() + 1); 2128 ArgTypes.reserve(DynamicArgs.size() + 1); 2129 2130 // Handler functions take an i8* pointing to the (handler-specific) static 2131 // information block, followed by a sequence of intptr_t arguments 2132 // representing operand values. 2133 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2134 ArgTypes.push_back(Int8PtrTy); 2135 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2136 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2137 ArgTypes.push_back(IntPtrTy); 2138 } 2139 2140 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2141 ((RecoverKind == CRK_Recoverable) && 2142 CGM.getCodeGenOpts().SanitizeRecover); 2143 2144 llvm::FunctionType *FnType = 2145 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2146 llvm::AttrBuilder B; 2147 if (!Recover) { 2148 B.addAttribute(llvm::Attribute::NoReturn) 2149 .addAttribute(llvm::Attribute::NoUnwind); 2150 } 2151 B.addAttribute(llvm::Attribute::UWTable); 2152 2153 // Checks that have two variants use a suffix to differentiate them 2154 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2155 !CGM.getCodeGenOpts().SanitizeRecover; 2156 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2157 (NeedsAbortSuffix? "_abort" : "")).str(); 2158 llvm::Value *Fn = 2159 CGM.CreateRuntimeFunction(FnType, FunctionName, 2160 llvm::AttributeSet::get(getLLVMContext(), 2161 llvm::AttributeSet::FunctionIndex, 2162 B)); 2163 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2164 if (Recover) { 2165 Builder.CreateBr(Cont); 2166 } else { 2167 HandlerCall->setDoesNotReturn(); 2168 Builder.CreateUnreachable(); 2169 } 2170 2171 EmitBlock(Cont); 2172 } 2173 2174 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2175 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2176 2177 // If we're optimizing, collapse all calls to trap down to just one per 2178 // function to save on code size. 2179 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2180 TrapBB = createBasicBlock("trap"); 2181 Builder.CreateCondBr(Checked, Cont, TrapBB); 2182 EmitBlock(TrapBB); 2183 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2184 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2185 TrapCall->setDoesNotReturn(); 2186 TrapCall->setDoesNotThrow(); 2187 Builder.CreateUnreachable(); 2188 } else { 2189 Builder.CreateCondBr(Checked, Cont, TrapBB); 2190 } 2191 2192 EmitBlock(Cont); 2193 } 2194 2195 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2196 /// array to pointer, return the array subexpression. 2197 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2198 // If this isn't just an array->pointer decay, bail out. 2199 const CastExpr *CE = dyn_cast<CastExpr>(E); 2200 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2201 return 0; 2202 2203 // If this is a decay from variable width array, bail out. 2204 const Expr *SubExpr = CE->getSubExpr(); 2205 if (SubExpr->getType()->isVariableArrayType()) 2206 return 0; 2207 2208 return SubExpr; 2209 } 2210 2211 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2212 bool Accessed) { 2213 // The index must always be an integer, which is not an aggregate. Emit it. 2214 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2215 QualType IdxTy = E->getIdx()->getType(); 2216 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2217 2218 if (SanOpts->Bounds) 2219 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2220 2221 // If the base is a vector type, then we are forming a vector element lvalue 2222 // with this subscript. 2223 if (E->getBase()->getType()->isVectorType()) { 2224 // Emit the vector as an lvalue to get its address. 2225 LValue LHS = EmitLValue(E->getBase()); 2226 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2227 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2228 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2229 E->getBase()->getType(), LHS.getAlignment()); 2230 } 2231 2232 // Extend or truncate the index type to 32 or 64-bits. 2233 if (Idx->getType() != IntPtrTy) 2234 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2235 2236 // We know that the pointer points to a type of the correct size, unless the 2237 // size is a VLA or Objective-C interface. 2238 llvm::Value *Address = 0; 2239 CharUnits ArrayAlignment; 2240 if (const VariableArrayType *vla = 2241 getContext().getAsVariableArrayType(E->getType())) { 2242 // The base must be a pointer, which is not an aggregate. Emit 2243 // it. It needs to be emitted first in case it's what captures 2244 // the VLA bounds. 2245 Address = EmitScalarExpr(E->getBase()); 2246 2247 // The element count here is the total number of non-VLA elements. 2248 llvm::Value *numElements = getVLASize(vla).first; 2249 2250 // Effectively, the multiply by the VLA size is part of the GEP. 2251 // GEP indexes are signed, and scaling an index isn't permitted to 2252 // signed-overflow, so we use the same semantics for our explicit 2253 // multiply. We suppress this if overflow is not undefined behavior. 2254 if (getLangOpts().isSignedOverflowDefined()) { 2255 Idx = Builder.CreateMul(Idx, numElements); 2256 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2257 } else { 2258 Idx = Builder.CreateNSWMul(Idx, numElements); 2259 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2260 } 2261 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2262 // Indexing over an interface, as in "NSString *P; P[4];" 2263 llvm::Value *InterfaceSize = 2264 llvm::ConstantInt::get(Idx->getType(), 2265 getContext().getTypeSizeInChars(OIT).getQuantity()); 2266 2267 Idx = Builder.CreateMul(Idx, InterfaceSize); 2268 2269 // The base must be a pointer, which is not an aggregate. Emit it. 2270 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2271 Address = EmitCastToVoidPtr(Base); 2272 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2273 Address = Builder.CreateBitCast(Address, Base->getType()); 2274 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2275 // If this is A[i] where A is an array, the frontend will have decayed the 2276 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2277 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2278 // "gep x, i" here. Emit one "gep A, 0, i". 2279 assert(Array->getType()->isArrayType() && 2280 "Array to pointer decay must have array source type!"); 2281 LValue ArrayLV; 2282 // For simple multidimensional array indexing, set the 'accessed' flag for 2283 // better bounds-checking of the base expression. 2284 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2285 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2286 else 2287 ArrayLV = EmitLValue(Array); 2288 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2289 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2290 llvm::Value *Args[] = { Zero, Idx }; 2291 2292 // Propagate the alignment from the array itself to the result. 2293 ArrayAlignment = ArrayLV.getAlignment(); 2294 2295 if (getLangOpts().isSignedOverflowDefined()) 2296 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2297 else 2298 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2299 } else { 2300 // The base must be a pointer, which is not an aggregate. Emit it. 2301 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2302 if (getLangOpts().isSignedOverflowDefined()) 2303 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2304 else 2305 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2306 } 2307 2308 QualType T = E->getBase()->getType()->getPointeeType(); 2309 assert(!T.isNull() && 2310 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2311 2312 2313 // Limit the alignment to that of the result type. 2314 LValue LV; 2315 if (!ArrayAlignment.isZero()) { 2316 CharUnits Align = getContext().getTypeAlignInChars(T); 2317 ArrayAlignment = std::min(Align, ArrayAlignment); 2318 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2319 } else { 2320 LV = MakeNaturalAlignAddrLValue(Address, T); 2321 } 2322 2323 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2324 2325 if (getLangOpts().ObjC1 && 2326 getLangOpts().getGC() != LangOptions::NonGC) { 2327 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2328 setObjCGCLValueClass(getContext(), E, LV); 2329 } 2330 return LV; 2331 } 2332 2333 static 2334 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2335 SmallVectorImpl<unsigned> &Elts) { 2336 SmallVector<llvm::Constant*, 4> CElts; 2337 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2338 CElts.push_back(Builder.getInt32(Elts[i])); 2339 2340 return llvm::ConstantVector::get(CElts); 2341 } 2342 2343 LValue CodeGenFunction:: 2344 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2345 // Emit the base vector as an l-value. 2346 LValue Base; 2347 2348 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2349 if (E->isArrow()) { 2350 // If it is a pointer to a vector, emit the address and form an lvalue with 2351 // it. 2352 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2353 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2354 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2355 Base.getQuals().removeObjCGCAttr(); 2356 } else if (E->getBase()->isGLValue()) { 2357 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2358 // emit the base as an lvalue. 2359 assert(E->getBase()->getType()->isVectorType()); 2360 Base = EmitLValue(E->getBase()); 2361 } else { 2362 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2363 assert(E->getBase()->getType()->isVectorType() && 2364 "Result must be a vector"); 2365 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2366 2367 // Store the vector to memory (because LValue wants an address). 2368 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2369 Builder.CreateStore(Vec, VecMem); 2370 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2371 } 2372 2373 QualType type = 2374 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2375 2376 // Encode the element access list into a vector of unsigned indices. 2377 SmallVector<unsigned, 4> Indices; 2378 E->getEncodedElementAccess(Indices); 2379 2380 if (Base.isSimple()) { 2381 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2382 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2383 Base.getAlignment()); 2384 } 2385 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2386 2387 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2388 SmallVector<llvm::Constant *, 4> CElts; 2389 2390 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2391 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2392 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2393 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2394 Base.getAlignment()); 2395 } 2396 2397 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2398 Expr *BaseExpr = E->getBase(); 2399 2400 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2401 LValue BaseLV; 2402 if (E->isArrow()) { 2403 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2404 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2405 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2406 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2407 } else 2408 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2409 2410 NamedDecl *ND = E->getMemberDecl(); 2411 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2412 LValue LV = EmitLValueForField(BaseLV, Field); 2413 setObjCGCLValueClass(getContext(), E, LV); 2414 return LV; 2415 } 2416 2417 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2418 return EmitGlobalVarDeclLValue(*this, E, VD); 2419 2420 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2421 return EmitFunctionDeclLValue(*this, E, FD); 2422 2423 llvm_unreachable("Unhandled member declaration!"); 2424 } 2425 2426 /// Given that we are currently emitting a lambda, emit an l-value for 2427 /// one of its members. 2428 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2429 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2430 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2431 QualType LambdaTagType = 2432 getContext().getTagDeclType(Field->getParent()); 2433 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2434 return EmitLValueForField(LambdaLV, Field); 2435 } 2436 2437 LValue CodeGenFunction::EmitLValueForField(LValue base, 2438 const FieldDecl *field) { 2439 if (field->isBitField()) { 2440 const CGRecordLayout &RL = 2441 CGM.getTypes().getCGRecordLayout(field->getParent()); 2442 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2443 llvm::Value *Addr = base.getAddress(); 2444 unsigned Idx = RL.getLLVMFieldNo(field); 2445 if (Idx != 0) 2446 // For structs, we GEP to the field that the record layout suggests. 2447 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2448 // Get the access type. 2449 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2450 getLLVMContext(), Info.StorageSize, 2451 CGM.getContext().getTargetAddressSpace(base.getType())); 2452 if (Addr->getType() != PtrTy) 2453 Addr = Builder.CreateBitCast(Addr, PtrTy); 2454 2455 QualType fieldType = 2456 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2457 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2458 } 2459 2460 const RecordDecl *rec = field->getParent(); 2461 QualType type = field->getType(); 2462 CharUnits alignment = getContext().getDeclAlign(field); 2463 2464 // FIXME: It should be impossible to have an LValue without alignment for a 2465 // complete type. 2466 if (!base.getAlignment().isZero()) 2467 alignment = std::min(alignment, base.getAlignment()); 2468 2469 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2470 2471 llvm::Value *addr = base.getAddress(); 2472 unsigned cvr = base.getVRQualifiers(); 2473 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2474 if (rec->isUnion()) { 2475 // For unions, there is no pointer adjustment. 2476 assert(!type->isReferenceType() && "union has reference member"); 2477 // TODO: handle path-aware TBAA for union. 2478 TBAAPath = false; 2479 } else { 2480 // For structs, we GEP to the field that the record layout suggests. 2481 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2482 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2483 2484 // If this is a reference field, load the reference right now. 2485 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2486 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2487 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2488 load->setAlignment(alignment.getQuantity()); 2489 2490 // Loading the reference will disable path-aware TBAA. 2491 TBAAPath = false; 2492 if (CGM.shouldUseTBAA()) { 2493 llvm::MDNode *tbaa; 2494 if (mayAlias) 2495 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2496 else 2497 tbaa = CGM.getTBAAInfo(type); 2498 CGM.DecorateInstruction(load, tbaa); 2499 } 2500 2501 addr = load; 2502 mayAlias = false; 2503 type = refType->getPointeeType(); 2504 if (type->isIncompleteType()) 2505 alignment = CharUnits(); 2506 else 2507 alignment = getContext().getTypeAlignInChars(type); 2508 cvr = 0; // qualifiers don't recursively apply to referencee 2509 } 2510 } 2511 2512 // Make sure that the address is pointing to the right type. This is critical 2513 // for both unions and structs. A union needs a bitcast, a struct element 2514 // will need a bitcast if the LLVM type laid out doesn't match the desired 2515 // type. 2516 addr = EmitBitCastOfLValueToProperType(*this, addr, 2517 CGM.getTypes().ConvertTypeForMem(type), 2518 field->getName()); 2519 2520 if (field->hasAttr<AnnotateAttr>()) 2521 addr = EmitFieldAnnotations(field, addr); 2522 2523 LValue LV = MakeAddrLValue(addr, type, alignment); 2524 LV.getQuals().addCVRQualifiers(cvr); 2525 if (TBAAPath) { 2526 const ASTRecordLayout &Layout = 2527 getContext().getASTRecordLayout(field->getParent()); 2528 // Set the base type to be the base type of the base LValue and 2529 // update offset to be relative to the base type. 2530 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2531 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2532 Layout.getFieldOffset(field->getFieldIndex()) / 2533 getContext().getCharWidth()); 2534 } 2535 2536 // __weak attribute on a field is ignored. 2537 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2538 LV.getQuals().removeObjCGCAttr(); 2539 2540 // Fields of may_alias structs act like 'char' for TBAA purposes. 2541 // FIXME: this should get propagated down through anonymous structs 2542 // and unions. 2543 if (mayAlias && LV.getTBAAInfo()) 2544 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2545 2546 return LV; 2547 } 2548 2549 LValue 2550 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2551 const FieldDecl *Field) { 2552 QualType FieldType = Field->getType(); 2553 2554 if (!FieldType->isReferenceType()) 2555 return EmitLValueForField(Base, Field); 2556 2557 const CGRecordLayout &RL = 2558 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2559 unsigned idx = RL.getLLVMFieldNo(Field); 2560 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2561 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2562 2563 // Make sure that the address is pointing to the right type. This is critical 2564 // for both unions and structs. A union needs a bitcast, a struct element 2565 // will need a bitcast if the LLVM type laid out doesn't match the desired 2566 // type. 2567 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2568 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2569 2570 CharUnits Alignment = getContext().getDeclAlign(Field); 2571 2572 // FIXME: It should be impossible to have an LValue without alignment for a 2573 // complete type. 2574 if (!Base.getAlignment().isZero()) 2575 Alignment = std::min(Alignment, Base.getAlignment()); 2576 2577 return MakeAddrLValue(V, FieldType, Alignment); 2578 } 2579 2580 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2581 if (E->isFileScope()) { 2582 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2583 return MakeAddrLValue(GlobalPtr, E->getType()); 2584 } 2585 if (E->getType()->isVariablyModifiedType()) 2586 // make sure to emit the VLA size. 2587 EmitVariablyModifiedType(E->getType()); 2588 2589 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2590 const Expr *InitExpr = E->getInitializer(); 2591 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2592 2593 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2594 /*Init*/ true); 2595 2596 return Result; 2597 } 2598 2599 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2600 if (!E->isGLValue()) 2601 // Initializing an aggregate temporary in C++11: T{...}. 2602 return EmitAggExprToLValue(E); 2603 2604 // An lvalue initializer list must be initializing a reference. 2605 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2606 return EmitLValue(E->getInit(0)); 2607 } 2608 2609 LValue CodeGenFunction:: 2610 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2611 if (!expr->isGLValue()) { 2612 // ?: here should be an aggregate. 2613 assert(hasAggregateEvaluationKind(expr->getType()) && 2614 "Unexpected conditional operator!"); 2615 return EmitAggExprToLValue(expr); 2616 } 2617 2618 OpaqueValueMapping binding(*this, expr); 2619 2620 const Expr *condExpr = expr->getCond(); 2621 bool CondExprBool; 2622 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2623 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2624 if (!CondExprBool) std::swap(live, dead); 2625 2626 if (!ContainsLabel(dead)) 2627 return EmitLValue(live); 2628 } 2629 2630 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2631 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2632 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2633 2634 ConditionalEvaluation eval(*this); 2635 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2636 2637 // Any temporaries created here are conditional. 2638 EmitBlock(lhsBlock); 2639 eval.begin(*this); 2640 LValue lhs = EmitLValue(expr->getTrueExpr()); 2641 eval.end(*this); 2642 2643 if (!lhs.isSimple()) 2644 return EmitUnsupportedLValue(expr, "conditional operator"); 2645 2646 lhsBlock = Builder.GetInsertBlock(); 2647 Builder.CreateBr(contBlock); 2648 2649 // Any temporaries created here are conditional. 2650 EmitBlock(rhsBlock); 2651 eval.begin(*this); 2652 LValue rhs = EmitLValue(expr->getFalseExpr()); 2653 eval.end(*this); 2654 if (!rhs.isSimple()) 2655 return EmitUnsupportedLValue(expr, "conditional operator"); 2656 rhsBlock = Builder.GetInsertBlock(); 2657 2658 EmitBlock(contBlock); 2659 2660 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2661 "cond-lvalue"); 2662 phi->addIncoming(lhs.getAddress(), lhsBlock); 2663 phi->addIncoming(rhs.getAddress(), rhsBlock); 2664 return MakeAddrLValue(phi, expr->getType()); 2665 } 2666 2667 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2668 /// type. If the cast is to a reference, we can have the usual lvalue result, 2669 /// otherwise if a cast is needed by the code generator in an lvalue context, 2670 /// then it must mean that we need the address of an aggregate in order to 2671 /// access one of its members. This can happen for all the reasons that casts 2672 /// are permitted with aggregate result, including noop aggregate casts, and 2673 /// cast from scalar to union. 2674 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2675 switch (E->getCastKind()) { 2676 case CK_ToVoid: 2677 case CK_BitCast: 2678 case CK_ArrayToPointerDecay: 2679 case CK_FunctionToPointerDecay: 2680 case CK_NullToMemberPointer: 2681 case CK_NullToPointer: 2682 case CK_IntegralToPointer: 2683 case CK_PointerToIntegral: 2684 case CK_PointerToBoolean: 2685 case CK_VectorSplat: 2686 case CK_IntegralCast: 2687 case CK_IntegralToBoolean: 2688 case CK_IntegralToFloating: 2689 case CK_FloatingToIntegral: 2690 case CK_FloatingToBoolean: 2691 case CK_FloatingCast: 2692 case CK_FloatingRealToComplex: 2693 case CK_FloatingComplexToReal: 2694 case CK_FloatingComplexToBoolean: 2695 case CK_FloatingComplexCast: 2696 case CK_FloatingComplexToIntegralComplex: 2697 case CK_IntegralRealToComplex: 2698 case CK_IntegralComplexToReal: 2699 case CK_IntegralComplexToBoolean: 2700 case CK_IntegralComplexCast: 2701 case CK_IntegralComplexToFloatingComplex: 2702 case CK_DerivedToBaseMemberPointer: 2703 case CK_BaseToDerivedMemberPointer: 2704 case CK_MemberPointerToBoolean: 2705 case CK_ReinterpretMemberPointer: 2706 case CK_AnyPointerToBlockPointerCast: 2707 case CK_ARCProduceObject: 2708 case CK_ARCConsumeObject: 2709 case CK_ARCReclaimReturnedObject: 2710 case CK_ARCExtendBlockObject: 2711 case CK_CopyAndAutoreleaseBlockObject: 2712 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2713 2714 case CK_Dependent: 2715 llvm_unreachable("dependent cast kind in IR gen!"); 2716 2717 case CK_BuiltinFnToFnPtr: 2718 llvm_unreachable("builtin functions are handled elsewhere"); 2719 2720 // These are never l-values; just use the aggregate emission code. 2721 case CK_NonAtomicToAtomic: 2722 case CK_AtomicToNonAtomic: 2723 return EmitAggExprToLValue(E); 2724 2725 case CK_Dynamic: { 2726 LValue LV = EmitLValue(E->getSubExpr()); 2727 llvm::Value *V = LV.getAddress(); 2728 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2729 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2730 } 2731 2732 case CK_ConstructorConversion: 2733 case CK_UserDefinedConversion: 2734 case CK_CPointerToObjCPointerCast: 2735 case CK_BlockPointerToObjCPointerCast: 2736 case CK_NoOp: 2737 case CK_LValueToRValue: 2738 return EmitLValue(E->getSubExpr()); 2739 2740 case CK_UncheckedDerivedToBase: 2741 case CK_DerivedToBase: { 2742 const RecordType *DerivedClassTy = 2743 E->getSubExpr()->getType()->getAs<RecordType>(); 2744 CXXRecordDecl *DerivedClassDecl = 2745 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2746 2747 LValue LV = EmitLValue(E->getSubExpr()); 2748 llvm::Value *This = LV.getAddress(); 2749 2750 // Perform the derived-to-base conversion 2751 llvm::Value *Base = 2752 GetAddressOfBaseClass(This, DerivedClassDecl, 2753 E->path_begin(), E->path_end(), 2754 /*NullCheckValue=*/false); 2755 2756 return MakeAddrLValue(Base, E->getType()); 2757 } 2758 case CK_ToUnion: 2759 return EmitAggExprToLValue(E); 2760 case CK_BaseToDerived: { 2761 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2762 CXXRecordDecl *DerivedClassDecl = 2763 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2764 2765 LValue LV = EmitLValue(E->getSubExpr()); 2766 2767 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2768 // performed and the object is not of the derived type. 2769 if (SanitizePerformTypeCheck) 2770 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2771 LV.getAddress(), E->getType()); 2772 2773 // Perform the base-to-derived conversion 2774 llvm::Value *Derived = 2775 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2776 E->path_begin(), E->path_end(), 2777 /*NullCheckValue=*/false); 2778 2779 return MakeAddrLValue(Derived, E->getType()); 2780 } 2781 case CK_LValueBitCast: { 2782 // This must be a reinterpret_cast (or c-style equivalent). 2783 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2784 2785 LValue LV = EmitLValue(E->getSubExpr()); 2786 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2787 ConvertType(CE->getTypeAsWritten())); 2788 return MakeAddrLValue(V, E->getType()); 2789 } 2790 case CK_ObjCObjectLValueCast: { 2791 LValue LV = EmitLValue(E->getSubExpr()); 2792 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2793 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2794 ConvertType(ToType)); 2795 return MakeAddrLValue(V, E->getType()); 2796 } 2797 case CK_ZeroToOCLEvent: 2798 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2799 } 2800 2801 llvm_unreachable("Unhandled lvalue cast kind?"); 2802 } 2803 2804 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2805 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2806 return getOpaqueLValueMapping(e); 2807 } 2808 2809 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2810 const FieldDecl *FD) { 2811 QualType FT = FD->getType(); 2812 LValue FieldLV = EmitLValueForField(LV, FD); 2813 switch (getEvaluationKind(FT)) { 2814 case TEK_Complex: 2815 return RValue::getComplex(EmitLoadOfComplex(FieldLV)); 2816 case TEK_Aggregate: 2817 return FieldLV.asAggregateRValue(); 2818 case TEK_Scalar: 2819 return EmitLoadOfLValue(FieldLV); 2820 } 2821 llvm_unreachable("bad evaluation kind"); 2822 } 2823 2824 //===--------------------------------------------------------------------===// 2825 // Expression Emission 2826 //===--------------------------------------------------------------------===// 2827 2828 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2829 ReturnValueSlot ReturnValue) { 2830 if (CGDebugInfo *DI = getDebugInfo()) { 2831 SourceLocation Loc = E->getLocStart(); 2832 // Force column info to be generated so we can differentiate 2833 // multiple call sites on the same line in the debug info. 2834 const FunctionDecl* Callee = E->getDirectCallee(); 2835 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2836 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2837 } 2838 2839 // Builtins never have block type. 2840 if (E->getCallee()->getType()->isBlockPointerType()) 2841 return EmitBlockCallExpr(E, ReturnValue); 2842 2843 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2844 return EmitCXXMemberCallExpr(CE, ReturnValue); 2845 2846 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2847 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2848 2849 const Decl *TargetDecl = E->getCalleeDecl(); 2850 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2851 if (unsigned builtinID = FD->getBuiltinID()) 2852 return EmitBuiltinExpr(FD, builtinID, E); 2853 } 2854 2855 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2856 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2857 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2858 2859 if (const CXXPseudoDestructorExpr *PseudoDtor 2860 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2861 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2862 if (getLangOpts().ObjCAutoRefCount && 2863 DestroyedType->isObjCLifetimeType() && 2864 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2865 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2866 // Automatic Reference Counting: 2867 // If the pseudo-expression names a retainable object with weak or 2868 // strong lifetime, the object shall be released. 2869 Expr *BaseExpr = PseudoDtor->getBase(); 2870 llvm::Value *BaseValue = NULL; 2871 Qualifiers BaseQuals; 2872 2873 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2874 if (PseudoDtor->isArrow()) { 2875 BaseValue = EmitScalarExpr(BaseExpr); 2876 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2877 BaseQuals = PTy->getPointeeType().getQualifiers(); 2878 } else { 2879 LValue BaseLV = EmitLValue(BaseExpr); 2880 BaseValue = BaseLV.getAddress(); 2881 QualType BaseTy = BaseExpr->getType(); 2882 BaseQuals = BaseTy.getQualifiers(); 2883 } 2884 2885 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2886 case Qualifiers::OCL_None: 2887 case Qualifiers::OCL_ExplicitNone: 2888 case Qualifiers::OCL_Autoreleasing: 2889 break; 2890 2891 case Qualifiers::OCL_Strong: 2892 EmitARCRelease(Builder.CreateLoad(BaseValue, 2893 PseudoDtor->getDestroyedType().isVolatileQualified()), 2894 ARCPreciseLifetime); 2895 break; 2896 2897 case Qualifiers::OCL_Weak: 2898 EmitARCDestroyWeak(BaseValue); 2899 break; 2900 } 2901 } else { 2902 // C++ [expr.pseudo]p1: 2903 // The result shall only be used as the operand for the function call 2904 // operator (), and the result of such a call has type void. The only 2905 // effect is the evaluation of the postfix-expression before the dot or 2906 // arrow. 2907 EmitScalarExpr(E->getCallee()); 2908 } 2909 2910 return RValue::get(0); 2911 } 2912 2913 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2914 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2915 E->arg_begin(), E->arg_end(), TargetDecl); 2916 } 2917 2918 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2919 // Comma expressions just emit their LHS then their RHS as an l-value. 2920 if (E->getOpcode() == BO_Comma) { 2921 EmitIgnoredExpr(E->getLHS()); 2922 EnsureInsertPoint(); 2923 return EmitLValue(E->getRHS()); 2924 } 2925 2926 if (E->getOpcode() == BO_PtrMemD || 2927 E->getOpcode() == BO_PtrMemI) 2928 return EmitPointerToDataMemberBinaryExpr(E); 2929 2930 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2931 2932 // Note that in all of these cases, __block variables need the RHS 2933 // evaluated first just in case the variable gets moved by the RHS. 2934 2935 switch (getEvaluationKind(E->getType())) { 2936 case TEK_Scalar: { 2937 switch (E->getLHS()->getType().getObjCLifetime()) { 2938 case Qualifiers::OCL_Strong: 2939 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2940 2941 case Qualifiers::OCL_Autoreleasing: 2942 return EmitARCStoreAutoreleasing(E).first; 2943 2944 // No reason to do any of these differently. 2945 case Qualifiers::OCL_None: 2946 case Qualifiers::OCL_ExplicitNone: 2947 case Qualifiers::OCL_Weak: 2948 break; 2949 } 2950 2951 RValue RV = EmitAnyExpr(E->getRHS()); 2952 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2953 EmitStoreThroughLValue(RV, LV); 2954 return LV; 2955 } 2956 2957 case TEK_Complex: 2958 return EmitComplexAssignmentLValue(E); 2959 2960 case TEK_Aggregate: 2961 return EmitAggExprToLValue(E); 2962 } 2963 llvm_unreachable("bad evaluation kind"); 2964 } 2965 2966 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2967 RValue RV = EmitCallExpr(E); 2968 2969 if (!RV.isScalar()) 2970 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2971 2972 assert(E->getCallReturnType()->isReferenceType() && 2973 "Can't have a scalar return unless the return type is a " 2974 "reference type!"); 2975 2976 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2977 } 2978 2979 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2980 // FIXME: This shouldn't require another copy. 2981 return EmitAggExprToLValue(E); 2982 } 2983 2984 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2985 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2986 && "binding l-value to type which needs a temporary"); 2987 AggValueSlot Slot = CreateAggTemp(E->getType()); 2988 EmitCXXConstructExpr(E, Slot); 2989 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2990 } 2991 2992 LValue 2993 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2994 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2995 } 2996 2997 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 2998 return CGM.GetAddrOfUuidDescriptor(E); 2999 } 3000 3001 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3002 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3003 } 3004 3005 LValue 3006 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3007 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3008 Slot.setExternallyDestructed(); 3009 EmitAggExpr(E->getSubExpr(), Slot); 3010 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3011 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3012 } 3013 3014 LValue 3015 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3016 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3017 EmitLambdaExpr(E, Slot); 3018 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3019 } 3020 3021 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3022 RValue RV = EmitObjCMessageExpr(E); 3023 3024 if (!RV.isScalar()) 3025 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3026 3027 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 3028 "Can't have a scalar return unless the return type is a " 3029 "reference type!"); 3030 3031 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3032 } 3033 3034 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3035 llvm::Value *V = 3036 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3037 return MakeAddrLValue(V, E->getType()); 3038 } 3039 3040 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3041 const ObjCIvarDecl *Ivar) { 3042 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3043 } 3044 3045 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3046 llvm::Value *BaseValue, 3047 const ObjCIvarDecl *Ivar, 3048 unsigned CVRQualifiers) { 3049 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3050 Ivar, CVRQualifiers); 3051 } 3052 3053 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3054 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3055 llvm::Value *BaseValue = 0; 3056 const Expr *BaseExpr = E->getBase(); 3057 Qualifiers BaseQuals; 3058 QualType ObjectTy; 3059 if (E->isArrow()) { 3060 BaseValue = EmitScalarExpr(BaseExpr); 3061 ObjectTy = BaseExpr->getType()->getPointeeType(); 3062 BaseQuals = ObjectTy.getQualifiers(); 3063 } else { 3064 LValue BaseLV = EmitLValue(BaseExpr); 3065 // FIXME: this isn't right for bitfields. 3066 BaseValue = BaseLV.getAddress(); 3067 ObjectTy = BaseExpr->getType(); 3068 BaseQuals = ObjectTy.getQualifiers(); 3069 } 3070 3071 LValue LV = 3072 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3073 BaseQuals.getCVRQualifiers()); 3074 setObjCGCLValueClass(getContext(), E, LV); 3075 return LV; 3076 } 3077 3078 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3079 // Can only get l-value for message expression returning aggregate type 3080 RValue RV = EmitAnyExprToTemp(E); 3081 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3082 } 3083 3084 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3085 ReturnValueSlot ReturnValue, 3086 CallExpr::const_arg_iterator ArgBeg, 3087 CallExpr::const_arg_iterator ArgEnd, 3088 const Decl *TargetDecl) { 3089 // Get the actual function type. The callee type will always be a pointer to 3090 // function type or a block pointer type. 3091 assert(CalleeType->isFunctionPointerType() && 3092 "Call must have function pointer type!"); 3093 3094 CalleeType = getContext().getCanonicalType(CalleeType); 3095 3096 const FunctionType *FnType 3097 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3098 3099 // Force column info to differentiate multiple inlined call sites on 3100 // the same line, analoguous to EmitCallExpr. 3101 bool ForceColumnInfo = false; 3102 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3103 ForceColumnInfo = FD->isInlineSpecified(); 3104 3105 CallArgList Args; 3106 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3107 ForceColumnInfo); 3108 3109 const CGFunctionInfo &FnInfo = 3110 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3111 3112 // C99 6.5.2.2p6: 3113 // If the expression that denotes the called function has a type 3114 // that does not include a prototype, [the default argument 3115 // promotions are performed]. If the number of arguments does not 3116 // equal the number of parameters, the behavior is undefined. If 3117 // the function is defined with a type that includes a prototype, 3118 // and either the prototype ends with an ellipsis (, ...) or the 3119 // types of the arguments after promotion are not compatible with 3120 // the types of the parameters, the behavior is undefined. If the 3121 // function is defined with a type that does not include a 3122 // prototype, and the types of the arguments after promotion are 3123 // not compatible with those of the parameters after promotion, 3124 // the behavior is undefined [except in some trivial cases]. 3125 // That is, in the general case, we should assume that a call 3126 // through an unprototyped function type works like a *non-variadic* 3127 // call. The way we make this work is to cast to the exact type 3128 // of the promoted arguments. 3129 if (isa<FunctionNoProtoType>(FnType)) { 3130 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3131 CalleeTy = CalleeTy->getPointerTo(); 3132 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3133 } 3134 3135 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3136 } 3137 3138 LValue CodeGenFunction:: 3139 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3140 llvm::Value *BaseV; 3141 if (E->getOpcode() == BO_PtrMemI) 3142 BaseV = EmitScalarExpr(E->getLHS()); 3143 else 3144 BaseV = EmitLValue(E->getLHS()).getAddress(); 3145 3146 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3147 3148 const MemberPointerType *MPT 3149 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3150 3151 llvm::Value *AddV = 3152 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 3153 3154 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3155 } 3156 3157 /// Given the address of a temporary variable, produce an r-value of 3158 /// its type. 3159 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3160 QualType type) { 3161 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3162 switch (getEvaluationKind(type)) { 3163 case TEK_Complex: 3164 return RValue::getComplex(EmitLoadOfComplex(lvalue)); 3165 case TEK_Aggregate: 3166 return lvalue.asAggregateRValue(); 3167 case TEK_Scalar: 3168 return RValue::get(EmitLoadOfScalar(lvalue)); 3169 } 3170 llvm_unreachable("bad evaluation kind"); 3171 } 3172 3173 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3174 assert(Val->getType()->isFPOrFPVectorTy()); 3175 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3176 return; 3177 3178 llvm::MDBuilder MDHelper(getLLVMContext()); 3179 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3180 3181 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3182 } 3183 3184 namespace { 3185 struct LValueOrRValue { 3186 LValue LV; 3187 RValue RV; 3188 }; 3189 } 3190 3191 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3192 const PseudoObjectExpr *E, 3193 bool forLValue, 3194 AggValueSlot slot) { 3195 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3196 3197 // Find the result expression, if any. 3198 const Expr *resultExpr = E->getResultExpr(); 3199 LValueOrRValue result; 3200 3201 for (PseudoObjectExpr::const_semantics_iterator 3202 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3203 const Expr *semantic = *i; 3204 3205 // If this semantic expression is an opaque value, bind it 3206 // to the result of its source expression. 3207 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3208 3209 // If this is the result expression, we may need to evaluate 3210 // directly into the slot. 3211 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3212 OVMA opaqueData; 3213 if (ov == resultExpr && ov->isRValue() && !forLValue && 3214 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3215 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3216 3217 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3218 opaqueData = OVMA::bind(CGF, ov, LV); 3219 result.RV = slot.asRValue(); 3220 3221 // Otherwise, emit as normal. 3222 } else { 3223 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3224 3225 // If this is the result, also evaluate the result now. 3226 if (ov == resultExpr) { 3227 if (forLValue) 3228 result.LV = CGF.EmitLValue(ov); 3229 else 3230 result.RV = CGF.EmitAnyExpr(ov, slot); 3231 } 3232 } 3233 3234 opaques.push_back(opaqueData); 3235 3236 // Otherwise, if the expression is the result, evaluate it 3237 // and remember the result. 3238 } else if (semantic == resultExpr) { 3239 if (forLValue) 3240 result.LV = CGF.EmitLValue(semantic); 3241 else 3242 result.RV = CGF.EmitAnyExpr(semantic, slot); 3243 3244 // Otherwise, evaluate the expression in an ignored context. 3245 } else { 3246 CGF.EmitIgnoredExpr(semantic); 3247 } 3248 } 3249 3250 // Unbind all the opaques now. 3251 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3252 opaques[i].unbind(CGF); 3253 3254 return result; 3255 } 3256 3257 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3258 AggValueSlot slot) { 3259 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3260 } 3261 3262 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3263 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3264 } 3265