Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
     11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
     12 // is common code shared among the LegalizeTypes*.cpp files.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "LegalizeTypes.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/IR/CallingConv.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 static cl::opt<bool>
     26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
     27 
     28 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
     29 void DAGTypeLegalizer::PerformExpensiveChecks() {
     30   // If a node is not processed, then none of its values should be mapped by any
     31   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     32 
     33   // If a node is processed, then each value with an illegal type must be mapped
     34   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     35   // Values with a legal type may be mapped by ReplacedValues, but not by any of
     36   // the other maps.
     37 
     38   // Note that these invariants may not hold momentarily when processing a node:
     39   // the node being processed may be put in a map before being marked Processed.
     40 
     41   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
     42   // occur in two ways.  Firstly, a node may be created during legalization but
     43   // never passed to the legalization core.  This is usually due to the implicit
     44   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
     45   // node may be passed to the legalization core, but when analyzed may morph
     46   // into a different node, leaving the original node as a NewNode in the DAG.
     47   // A node may morph if one of its operands changes during analysis.  Whether
     48   // it actually morphs or not depends on whether, after updating its operands,
     49   // it is equivalent to an existing node: if so, it morphs into that existing
     50   // node (CSE).  An operand can change during analysis if the operand is a new
     51   // node that morphs, or it is a processed value that was mapped to some other
     52   // value (as recorded in ReplacedValues) in which case the operand is turned
     53   // into that other value.  If a node morphs then the node it morphed into will
     54   // be used instead of it for legalization, however the original node continues
     55   // to live on in the DAG.
     56   // The conclusion is that though there may be nodes marked NewNode in the DAG,
     57   // all uses of such nodes are also marked NewNode: the result is a fungus of
     58   // NewNodes growing on top of the useful nodes, and perhaps using them, but
     59   // not used by them.
     60 
     61   // If a value is mapped by ReplacedValues, then it must have no uses, except
     62   // by nodes marked NewNode (see above).
     63 
     64   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
     65   // Note that ReplacedValues should be applied iteratively.
     66 
     67   // Note that the ReplacedValues map may also map deleted nodes (by iterating
     68   // over the DAG we never dereference deleted nodes).  This means that it may
     69   // also map nodes marked NewNode if the deallocated memory was reallocated as
     70   // another node, and that new node was not seen by the LegalizeTypes machinery
     71   // (for example because it was created but not used).  In general, we cannot
     72   // distinguish between new nodes and deleted nodes.
     73   SmallVector<SDNode*, 16> NewNodes;
     74   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
     75        E = DAG.allnodes_end(); I != E; ++I) {
     76     // Remember nodes marked NewNode - they are subject to extra checking below.
     77     if (I->getNodeId() == NewNode)
     78       NewNodes.push_back(I);
     79 
     80     for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
     81       SDValue Res(I, i);
     82       bool Failed = false;
     83 
     84       unsigned Mapped = 0;
     85       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
     86         Mapped |= 1;
     87         // Check that remapped values are only used by nodes marked NewNode.
     88         for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
     89              UI != UE; ++UI)
     90           if (UI.getUse().getResNo() == i)
     91             assert(UI->getNodeId() == NewNode &&
     92                    "Remapped value has non-trivial use!");
     93 
     94         // Check that the final result of applying ReplacedValues is not
     95         // marked NewNode.
     96         SDValue NewVal = ReplacedValues[Res];
     97         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
     98         while (I != ReplacedValues.end()) {
     99           NewVal = I->second;
    100           I = ReplacedValues.find(NewVal);
    101         }
    102         assert(NewVal.getNode()->getNodeId() != NewNode &&
    103                "ReplacedValues maps to a new node!");
    104       }
    105       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
    106         Mapped |= 2;
    107       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
    108         Mapped |= 4;
    109       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
    110         Mapped |= 8;
    111       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
    112         Mapped |= 16;
    113       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
    114         Mapped |= 32;
    115       if (SplitVectors.find(Res) != SplitVectors.end())
    116         Mapped |= 64;
    117       if (WidenedVectors.find(Res) != WidenedVectors.end())
    118         Mapped |= 128;
    119 
    120       if (I->getNodeId() != Processed) {
    121         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
    122         // marked NewNode too, since a deleted node may have been reallocated as
    123         // another node that has not been seen by the LegalizeTypes machinery.
    124         if ((I->getNodeId() == NewNode && Mapped > 1) ||
    125             (I->getNodeId() != NewNode && Mapped != 0)) {
    126           dbgs() << "Unprocessed value in a map!";
    127           Failed = true;
    128         }
    129       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
    130         if (Mapped > 1) {
    131           dbgs() << "Value with legal type was transformed!";
    132           Failed = true;
    133         }
    134       } else {
    135         if (Mapped == 0) {
    136           dbgs() << "Processed value not in any map!";
    137           Failed = true;
    138         } else if (Mapped & (Mapped - 1)) {
    139           dbgs() << "Value in multiple maps!";
    140           Failed = true;
    141         }
    142       }
    143 
    144       if (Failed) {
    145         if (Mapped & 1)
    146           dbgs() << " ReplacedValues";
    147         if (Mapped & 2)
    148           dbgs() << " PromotedIntegers";
    149         if (Mapped & 4)
    150           dbgs() << " SoftenedFloats";
    151         if (Mapped & 8)
    152           dbgs() << " ScalarizedVectors";
    153         if (Mapped & 16)
    154           dbgs() << " ExpandedIntegers";
    155         if (Mapped & 32)
    156           dbgs() << " ExpandedFloats";
    157         if (Mapped & 64)
    158           dbgs() << " SplitVectors";
    159         if (Mapped & 128)
    160           dbgs() << " WidenedVectors";
    161         dbgs() << "\n";
    162         llvm_unreachable(0);
    163       }
    164     }
    165   }
    166 
    167   // Checked that NewNodes are only used by other NewNodes.
    168   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
    169     SDNode *N = NewNodes[i];
    170     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
    171          UI != UE; ++UI)
    172       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
    173   }
    174 }
    175 
    176 /// run - This is the main entry point for the type legalizer.  This does a
    177 /// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
    178 /// if it made any changes.
    179 bool DAGTypeLegalizer::run() {
    180   bool Changed = false;
    181 
    182   // Create a dummy node (which is not added to allnodes), that adds a reference
    183   // to the root node, preventing it from being deleted, and tracking any
    184   // changes of the root.
    185   HandleSDNode Dummy(DAG.getRoot());
    186   Dummy.setNodeId(Unanalyzed);
    187 
    188   // The root of the dag may dangle to deleted nodes until the type legalizer is
    189   // done.  Set it to null to avoid confusion.
    190   DAG.setRoot(SDValue());
    191 
    192   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
    193   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
    194   // non-leaves.
    195   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    196        E = DAG.allnodes_end(); I != E; ++I) {
    197     if (I->getNumOperands() == 0) {
    198       I->setNodeId(ReadyToProcess);
    199       Worklist.push_back(I);
    200     } else {
    201       I->setNodeId(Unanalyzed);
    202     }
    203   }
    204 
    205   // Now that we have a set of nodes to process, handle them all.
    206   while (!Worklist.empty()) {
    207 #ifndef XDEBUG
    208     if (EnableExpensiveChecks)
    209 #endif
    210       PerformExpensiveChecks();
    211 
    212     SDNode *N = Worklist.back();
    213     Worklist.pop_back();
    214     assert(N->getNodeId() == ReadyToProcess &&
    215            "Node should be ready if on worklist!");
    216 
    217     if (IgnoreNodeResults(N))
    218       goto ScanOperands;
    219 
    220     // Scan the values produced by the node, checking to see if any result
    221     // types are illegal.
    222     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
    223       EVT ResultVT = N->getValueType(i);
    224       switch (getTypeAction(ResultVT)) {
    225       case TargetLowering::TypeLegal:
    226         break;
    227       // The following calls must take care of *all* of the node's results,
    228       // not just the illegal result they were passed (this includes results
    229       // with a legal type).  Results can be remapped using ReplaceValueWith,
    230       // or their promoted/expanded/etc values registered in PromotedIntegers,
    231       // ExpandedIntegers etc.
    232       case TargetLowering::TypePromoteInteger:
    233         PromoteIntegerResult(N, i);
    234         Changed = true;
    235         goto NodeDone;
    236       case TargetLowering::TypeExpandInteger:
    237         ExpandIntegerResult(N, i);
    238         Changed = true;
    239         goto NodeDone;
    240       case TargetLowering::TypeSoftenFloat:
    241         SoftenFloatResult(N, i);
    242         Changed = true;
    243         goto NodeDone;
    244       case TargetLowering::TypeExpandFloat:
    245         ExpandFloatResult(N, i);
    246         Changed = true;
    247         goto NodeDone;
    248       case TargetLowering::TypeScalarizeVector:
    249         ScalarizeVectorResult(N, i);
    250         Changed = true;
    251         goto NodeDone;
    252       case TargetLowering::TypeSplitVector:
    253         SplitVectorResult(N, i);
    254         Changed = true;
    255         goto NodeDone;
    256       case TargetLowering::TypeWidenVector:
    257         WidenVectorResult(N, i);
    258         Changed = true;
    259         goto NodeDone;
    260       }
    261     }
    262 
    263 ScanOperands:
    264     // Scan the operand list for the node, handling any nodes with operands that
    265     // are illegal.
    266     {
    267     unsigned NumOperands = N->getNumOperands();
    268     bool NeedsReanalyzing = false;
    269     unsigned i;
    270     for (i = 0; i != NumOperands; ++i) {
    271       if (IgnoreNodeResults(N->getOperand(i).getNode()))
    272         continue;
    273 
    274       EVT OpVT = N->getOperand(i).getValueType();
    275       switch (getTypeAction(OpVT)) {
    276       case TargetLowering::TypeLegal:
    277         continue;
    278       // The following calls must either replace all of the node's results
    279       // using ReplaceValueWith, and return "false"; or update the node's
    280       // operands in place, and return "true".
    281       case TargetLowering::TypePromoteInteger:
    282         NeedsReanalyzing = PromoteIntegerOperand(N, i);
    283         Changed = true;
    284         break;
    285       case TargetLowering::TypeExpandInteger:
    286         NeedsReanalyzing = ExpandIntegerOperand(N, i);
    287         Changed = true;
    288         break;
    289       case TargetLowering::TypeSoftenFloat:
    290         NeedsReanalyzing = SoftenFloatOperand(N, i);
    291         Changed = true;
    292         break;
    293       case TargetLowering::TypeExpandFloat:
    294         NeedsReanalyzing = ExpandFloatOperand(N, i);
    295         Changed = true;
    296         break;
    297       case TargetLowering::TypeScalarizeVector:
    298         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
    299         Changed = true;
    300         break;
    301       case TargetLowering::TypeSplitVector:
    302         NeedsReanalyzing = SplitVectorOperand(N, i);
    303         Changed = true;
    304         break;
    305       case TargetLowering::TypeWidenVector:
    306         NeedsReanalyzing = WidenVectorOperand(N, i);
    307         Changed = true;
    308         break;
    309       }
    310       break;
    311     }
    312 
    313     // The sub-method updated N in place.  Check to see if any operands are new,
    314     // and if so, mark them.  If the node needs revisiting, don't add all users
    315     // to the worklist etc.
    316     if (NeedsReanalyzing) {
    317       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    318       N->setNodeId(NewNode);
    319       // Recompute the NodeId and correct processed operands, adding the node to
    320       // the worklist if ready.
    321       SDNode *M = AnalyzeNewNode(N);
    322       if (M == N)
    323         // The node didn't morph - nothing special to do, it will be revisited.
    324         continue;
    325 
    326       // The node morphed - this is equivalent to legalizing by replacing every
    327       // value of N with the corresponding value of M.  So do that now.
    328       assert(N->getNumValues() == M->getNumValues() &&
    329              "Node morphing changed the number of results!");
    330       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    331         // Replacing the value takes care of remapping the new value.
    332         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
    333       assert(N->getNodeId() == NewNode && "Unexpected node state!");
    334       // The node continues to live on as part of the NewNode fungus that
    335       // grows on top of the useful nodes.  Nothing more needs to be done
    336       // with it - move on to the next node.
    337       continue;
    338     }
    339 
    340     if (i == NumOperands) {
    341       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
    342     }
    343     }
    344 NodeDone:
    345 
    346     // If we reach here, the node was processed, potentially creating new nodes.
    347     // Mark it as processed and add its users to the worklist as appropriate.
    348     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    349     N->setNodeId(Processed);
    350 
    351     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    352          UI != E; ++UI) {
    353       SDNode *User = *UI;
    354       int NodeId = User->getNodeId();
    355 
    356       // This node has two options: it can either be a new node or its Node ID
    357       // may be a count of the number of operands it has that are not ready.
    358       if (NodeId > 0) {
    359         User->setNodeId(NodeId-1);
    360 
    361         // If this was the last use it was waiting on, add it to the ready list.
    362         if (NodeId-1 == ReadyToProcess)
    363           Worklist.push_back(User);
    364         continue;
    365       }
    366 
    367       // If this is an unreachable new node, then ignore it.  If it ever becomes
    368       // reachable by being used by a newly created node then it will be handled
    369       // by AnalyzeNewNode.
    370       if (NodeId == NewNode)
    371         continue;
    372 
    373       // Otherwise, this node is new: this is the first operand of it that
    374       // became ready.  Its new NodeId is the number of operands it has minus 1
    375       // (as this node is now processed).
    376       assert(NodeId == Unanalyzed && "Unknown node ID!");
    377       User->setNodeId(User->getNumOperands() - 1);
    378 
    379       // If the node only has a single operand, it is now ready.
    380       if (User->getNumOperands() == 1)
    381         Worklist.push_back(User);
    382     }
    383   }
    384 
    385 #ifndef XDEBUG
    386   if (EnableExpensiveChecks)
    387 #endif
    388     PerformExpensiveChecks();
    389 
    390   // If the root changed (e.g. it was a dead load) update the root.
    391   DAG.setRoot(Dummy.getValue());
    392 
    393   // Remove dead nodes.  This is important to do for cleanliness but also before
    394   // the checking loop below.  Implicit folding by the DAG.getNode operators and
    395   // node morphing can cause unreachable nodes to be around with their flags set
    396   // to new.
    397   DAG.RemoveDeadNodes();
    398 
    399   // In a debug build, scan all the nodes to make sure we found them all.  This
    400   // ensures that there are no cycles and that everything got processed.
    401 #ifndef NDEBUG
    402   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    403        E = DAG.allnodes_end(); I != E; ++I) {
    404     bool Failed = false;
    405 
    406     // Check that all result types are legal.
    407     if (!IgnoreNodeResults(I))
    408       for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
    409         if (!isTypeLegal(I->getValueType(i))) {
    410           dbgs() << "Result type " << i << " illegal!\n";
    411           Failed = true;
    412         }
    413 
    414     // Check that all operand types are legal.
    415     for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
    416       if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
    417           !isTypeLegal(I->getOperand(i).getValueType())) {
    418         dbgs() << "Operand type " << i << " illegal!\n";
    419         Failed = true;
    420       }
    421 
    422     if (I->getNodeId() != Processed) {
    423        if (I->getNodeId() == NewNode)
    424          dbgs() << "New node not analyzed?\n";
    425        else if (I->getNodeId() == Unanalyzed)
    426          dbgs() << "Unanalyzed node not noticed?\n";
    427        else if (I->getNodeId() > 0)
    428          dbgs() << "Operand not processed?\n";
    429        else if (I->getNodeId() == ReadyToProcess)
    430          dbgs() << "Not added to worklist?\n";
    431        Failed = true;
    432     }
    433 
    434     if (Failed) {
    435       I->dump(&DAG); dbgs() << "\n";
    436       llvm_unreachable(0);
    437     }
    438   }
    439 #endif
    440 
    441   return Changed;
    442 }
    443 
    444 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
    445 /// new nodes.  Correct any processed operands (this may change the node) and
    446 /// calculate the NodeId.  If the node itself changes to a processed node, it
    447 /// is not remapped - the caller needs to take care of this.
    448 /// Returns the potentially changed node.
    449 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
    450   // If this was an existing node that is already done, we're done.
    451   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
    452     return N;
    453 
    454   // Remove any stale map entries.
    455   ExpungeNode(N);
    456 
    457   // Okay, we know that this node is new.  Recursively walk all of its operands
    458   // to see if they are new also.  The depth of this walk is bounded by the size
    459   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
    460   // about revisiting of nodes.
    461   //
    462   // As we walk the operands, keep track of the number of nodes that are
    463   // processed.  If non-zero, this will become the new nodeid of this node.
    464   // Operands may morph when they are analyzed.  If so, the node will be
    465   // updated after all operands have been analyzed.  Since this is rare,
    466   // the code tries to minimize overhead in the non-morphing case.
    467 
    468   SmallVector<SDValue, 8> NewOps;
    469   unsigned NumProcessed = 0;
    470   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    471     SDValue OrigOp = N->getOperand(i);
    472     SDValue Op = OrigOp;
    473 
    474     AnalyzeNewValue(Op); // Op may morph.
    475 
    476     if (Op.getNode()->getNodeId() == Processed)
    477       ++NumProcessed;
    478 
    479     if (!NewOps.empty()) {
    480       // Some previous operand changed.  Add this one to the list.
    481       NewOps.push_back(Op);
    482     } else if (Op != OrigOp) {
    483       // This is the first operand to change - add all operands so far.
    484       NewOps.append(N->op_begin(), N->op_begin() + i);
    485       NewOps.push_back(Op);
    486     }
    487   }
    488 
    489   // Some operands changed - update the node.
    490   if (!NewOps.empty()) {
    491     SDNode *M = DAG.UpdateNodeOperands(N, &NewOps[0], NewOps.size());
    492     if (M != N) {
    493       // The node morphed into a different node.  Normally for this to happen
    494       // the original node would have to be marked NewNode.  However this can
    495       // in theory momentarily not be the case while ReplaceValueWith is doing
    496       // its stuff.  Mark the original node NewNode to help sanity checking.
    497       N->setNodeId(NewNode);
    498       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
    499         // It morphed into a previously analyzed node - nothing more to do.
    500         return M;
    501 
    502       // It morphed into a different new node.  Do the equivalent of passing
    503       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
    504       // to remap the operands, since they are the same as the operands we
    505       // remapped above.
    506       N = M;
    507       ExpungeNode(N);
    508     }
    509   }
    510 
    511   // Calculate the NodeId.
    512   N->setNodeId(N->getNumOperands() - NumProcessed);
    513   if (N->getNodeId() == ReadyToProcess)
    514     Worklist.push_back(N);
    515 
    516   return N;
    517 }
    518 
    519 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
    520 /// If the node changes to a processed node, then remap it.
    521 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
    522   Val.setNode(AnalyzeNewNode(Val.getNode()));
    523   if (Val.getNode()->getNodeId() == Processed)
    524     // We were passed a processed node, or it morphed into one - remap it.
    525     RemapValue(Val);
    526 }
    527 
    528 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
    529 /// This can occur when a node is deleted then reallocated as a new node -
    530 /// the mapping in ReplacedValues applies to the deleted node, not the new
    531 /// one.
    532 /// The only map that can have a deleted node as a source is ReplacedValues.
    533 /// Other maps can have deleted nodes as targets, but since their looked-up
    534 /// values are always immediately remapped using RemapValue, resulting in a
    535 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
    536 /// always performs correct mappings.  In order to keep the mapping correct,
    537 /// ExpungeNode should be called on any new nodes *before* adding them as
    538 /// either source or target to ReplacedValues (which typically means calling
    539 /// Expunge when a new node is first seen, since it may no longer be marked
    540 /// NewNode by the time it is added to ReplacedValues).
    541 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
    542   if (N->getNodeId() != NewNode)
    543     return;
    544 
    545   // If N is not remapped by ReplacedValues then there is nothing to do.
    546   unsigned i, e;
    547   for (i = 0, e = N->getNumValues(); i != e; ++i)
    548     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
    549       break;
    550 
    551   if (i == e)
    552     return;
    553 
    554   // Remove N from all maps - this is expensive but rare.
    555 
    556   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
    557        E = PromotedIntegers.end(); I != E; ++I) {
    558     assert(I->first.getNode() != N);
    559     RemapValue(I->second);
    560   }
    561 
    562   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
    563        E = SoftenedFloats.end(); I != E; ++I) {
    564     assert(I->first.getNode() != N);
    565     RemapValue(I->second);
    566   }
    567 
    568   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
    569        E = ScalarizedVectors.end(); I != E; ++I) {
    570     assert(I->first.getNode() != N);
    571     RemapValue(I->second);
    572   }
    573 
    574   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
    575        E = WidenedVectors.end(); I != E; ++I) {
    576     assert(I->first.getNode() != N);
    577     RemapValue(I->second);
    578   }
    579 
    580   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    581        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    582     assert(I->first.getNode() != N);
    583     RemapValue(I->second.first);
    584     RemapValue(I->second.second);
    585   }
    586 
    587   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    588        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    589     assert(I->first.getNode() != N);
    590     RemapValue(I->second.first);
    591     RemapValue(I->second.second);
    592   }
    593 
    594   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    595        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    596     assert(I->first.getNode() != N);
    597     RemapValue(I->second.first);
    598     RemapValue(I->second.second);
    599   }
    600 
    601   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
    602        E = ReplacedValues.end(); I != E; ++I)
    603     RemapValue(I->second);
    604 
    605   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    606     ReplacedValues.erase(SDValue(N, i));
    607 }
    608 
    609 /// RemapValue - If the specified value was already legalized to another value,
    610 /// replace it by that value.
    611 void DAGTypeLegalizer::RemapValue(SDValue &N) {
    612   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
    613   if (I != ReplacedValues.end()) {
    614     // Use path compression to speed up future lookups if values get multiply
    615     // replaced with other values.
    616     RemapValue(I->second);
    617     N = I->second;
    618 
    619     // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
    620     // this point because it is possible for a node to be put in the map before
    621     // being processed.
    622   }
    623 }
    624 
    625 namespace {
    626   /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
    627   /// updates to nodes and recomputes their ready state.
    628   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
    629     DAGTypeLegalizer &DTL;
    630     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
    631   public:
    632     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
    633                                 SmallSetVector<SDNode*, 16> &nta)
    634       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
    635         DTL(dtl), NodesToAnalyze(nta) {}
    636 
    637     virtual void NodeDeleted(SDNode *N, SDNode *E) {
    638       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    639              N->getNodeId() != DAGTypeLegalizer::Processed &&
    640              "Invalid node ID for RAUW deletion!");
    641       // It is possible, though rare, for the deleted node N to occur as a
    642       // target in a map, so note the replacement N -> E in ReplacedValues.
    643       assert(E && "Node not replaced?");
    644       DTL.NoteDeletion(N, E);
    645 
    646       // In theory the deleted node could also have been scheduled for analysis.
    647       // So remove it from the set of nodes which will be analyzed.
    648       NodesToAnalyze.remove(N);
    649 
    650       // In general nothing needs to be done for E, since it didn't change but
    651       // only gained new uses.  However N -> E was just added to ReplacedValues,
    652       // and the result of a ReplacedValues mapping is not allowed to be marked
    653       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
    654       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
    655         NodesToAnalyze.insert(E);
    656     }
    657 
    658     virtual void NodeUpdated(SDNode *N) {
    659       // Node updates can mean pretty much anything.  It is possible that an
    660       // operand was set to something already processed (f.e.) in which case
    661       // this node could become ready.  Recompute its flags.
    662       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    663              N->getNodeId() != DAGTypeLegalizer::Processed &&
    664              "Invalid node ID for RAUW deletion!");
    665       N->setNodeId(DAGTypeLegalizer::NewNode);
    666       NodesToAnalyze.insert(N);
    667     }
    668   };
    669 }
    670 
    671 
    672 /// ReplaceValueWith - The specified value was legalized to the specified other
    673 /// value.  Update the DAG and NodeIds replacing any uses of From to use To
    674 /// instead.
    675 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
    676   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
    677 
    678   // If expansion produced new nodes, make sure they are properly marked.
    679   ExpungeNode(From.getNode());
    680   AnalyzeNewValue(To); // Expunges To.
    681 
    682   // Anything that used the old node should now use the new one.  Note that this
    683   // can potentially cause recursive merging.
    684   SmallSetVector<SDNode*, 16> NodesToAnalyze;
    685   NodeUpdateListener NUL(*this, NodesToAnalyze);
    686   do {
    687     DAG.ReplaceAllUsesOfValueWith(From, To);
    688 
    689     // The old node may still be present in a map like ExpandedIntegers or
    690     // PromotedIntegers.  Inform maps about the replacement.
    691     ReplacedValues[From] = To;
    692 
    693     // Process the list of nodes that need to be reanalyzed.
    694     while (!NodesToAnalyze.empty()) {
    695       SDNode *N = NodesToAnalyze.back();
    696       NodesToAnalyze.pop_back();
    697       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
    698         // The node was analyzed while reanalyzing an earlier node - it is safe
    699         // to skip.  Note that this is not a morphing node - otherwise it would
    700         // still be marked NewNode.
    701         continue;
    702 
    703       // Analyze the node's operands and recalculate the node ID.
    704       SDNode *M = AnalyzeNewNode(N);
    705       if (M != N) {
    706         // The node morphed into a different node.  Make everyone use the new
    707         // node instead.
    708         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
    709         assert(N->getNumValues() == M->getNumValues() &&
    710                "Node morphing changed the number of results!");
    711         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    712           SDValue OldVal(N, i);
    713           SDValue NewVal(M, i);
    714           if (M->getNodeId() == Processed)
    715             RemapValue(NewVal);
    716           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
    717           // OldVal may be a target of the ReplacedValues map which was marked
    718           // NewNode to force reanalysis because it was updated.  Ensure that
    719           // anything that ReplacedValues mapped to OldVal will now be mapped
    720           // all the way to NewVal.
    721           ReplacedValues[OldVal] = NewVal;
    722         }
    723         // The original node continues to exist in the DAG, marked NewNode.
    724       }
    725     }
    726     // When recursively update nodes with new nodes, it is possible to have
    727     // new uses of From due to CSE. If this happens, replace the new uses of
    728     // From with To.
    729   } while (!From.use_empty());
    730 }
    731 
    732 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
    733   assert(Result.getValueType() ==
    734          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    735          "Invalid type for promoted integer");
    736   AnalyzeNewValue(Result);
    737 
    738   SDValue &OpEntry = PromotedIntegers[Op];
    739   assert(OpEntry.getNode() == 0 && "Node is already promoted!");
    740   OpEntry = Result;
    741 }
    742 
    743 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
    744   assert(Result.getValueType() ==
    745          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    746          "Invalid type for softened float");
    747   AnalyzeNewValue(Result);
    748 
    749   SDValue &OpEntry = SoftenedFloats[Op];
    750   assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
    751   OpEntry = Result;
    752 }
    753 
    754 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
    755   // Note that in some cases vector operation operands may be greater than
    756   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
    757   // a constant i8 operand.
    758   assert(Result.getValueType().getSizeInBits() >=
    759          Op.getValueType().getVectorElementType().getSizeInBits() &&
    760          "Invalid type for scalarized vector");
    761   AnalyzeNewValue(Result);
    762 
    763   SDValue &OpEntry = ScalarizedVectors[Op];
    764   assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
    765   OpEntry = Result;
    766 }
    767 
    768 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
    769                                           SDValue &Hi) {
    770   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    771   RemapValue(Entry.first);
    772   RemapValue(Entry.second);
    773   assert(Entry.first.getNode() && "Operand isn't expanded");
    774   Lo = Entry.first;
    775   Hi = Entry.second;
    776 }
    777 
    778 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
    779                                           SDValue Hi) {
    780   assert(Lo.getValueType() ==
    781          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    782          Hi.getValueType() == Lo.getValueType() &&
    783          "Invalid type for expanded integer");
    784   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    785   AnalyzeNewValue(Lo);
    786   AnalyzeNewValue(Hi);
    787 
    788   // Remember that this is the result of the node.
    789   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    790   assert(Entry.first.getNode() == 0 && "Node already expanded");
    791   Entry.first = Lo;
    792   Entry.second = Hi;
    793 }
    794 
    795 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
    796                                         SDValue &Hi) {
    797   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    798   RemapValue(Entry.first);
    799   RemapValue(Entry.second);
    800   assert(Entry.first.getNode() && "Operand isn't expanded");
    801   Lo = Entry.first;
    802   Hi = Entry.second;
    803 }
    804 
    805 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
    806                                         SDValue Hi) {
    807   assert(Lo.getValueType() ==
    808          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    809          Hi.getValueType() == Lo.getValueType() &&
    810          "Invalid type for expanded float");
    811   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    812   AnalyzeNewValue(Lo);
    813   AnalyzeNewValue(Hi);
    814 
    815   // Remember that this is the result of the node.
    816   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    817   assert(Entry.first.getNode() == 0 && "Node already expanded");
    818   Entry.first = Lo;
    819   Entry.second = Hi;
    820 }
    821 
    822 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
    823                                       SDValue &Hi) {
    824   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    825   RemapValue(Entry.first);
    826   RemapValue(Entry.second);
    827   assert(Entry.first.getNode() && "Operand isn't split");
    828   Lo = Entry.first;
    829   Hi = Entry.second;
    830 }
    831 
    832 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
    833                                       SDValue Hi) {
    834   assert(Lo.getValueType().getVectorElementType() ==
    835          Op.getValueType().getVectorElementType() &&
    836          2*Lo.getValueType().getVectorNumElements() ==
    837          Op.getValueType().getVectorNumElements() &&
    838          Hi.getValueType() == Lo.getValueType() &&
    839          "Invalid type for split vector");
    840   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    841   AnalyzeNewValue(Lo);
    842   AnalyzeNewValue(Hi);
    843 
    844   // Remember that this is the result of the node.
    845   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    846   assert(Entry.first.getNode() == 0 && "Node already split");
    847   Entry.first = Lo;
    848   Entry.second = Hi;
    849 }
    850 
    851 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
    852   assert(Result.getValueType() ==
    853          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    854          "Invalid type for widened vector");
    855   AnalyzeNewValue(Result);
    856 
    857   SDValue &OpEntry = WidenedVectors[Op];
    858   assert(OpEntry.getNode() == 0 && "Node already widened!");
    859   OpEntry = Result;
    860 }
    861 
    862 
    863 //===----------------------------------------------------------------------===//
    864 // Utilities.
    865 //===----------------------------------------------------------------------===//
    866 
    867 /// BitConvertToInteger - Convert to an integer of the same size.
    868 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
    869   unsigned BitWidth = Op.getValueType().getSizeInBits();
    870   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    871                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
    872 }
    873 
    874 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
    875 /// same size.
    876 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
    877   assert(Op.getValueType().isVector() && "Only applies to vectors!");
    878   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
    879   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
    880   unsigned NumElts = Op.getValueType().getVectorNumElements();
    881   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    882                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
    883 }
    884 
    885 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
    886                                                EVT DestVT) {
    887   SDLoc dl(Op);
    888   // Create the stack frame object.  Make sure it is aligned for both
    889   // the source and destination types.
    890   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
    891   // Emit a store to the stack slot.
    892   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
    893                                MachinePointerInfo(), false, false, 0);
    894   // Result is a load from the stack slot.
    895   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
    896                      false, false, false, 0);
    897 }
    898 
    899 /// CustomLowerNode - Replace the node's results with custom code provided
    900 /// by the target and return "true", or do nothing and return "false".
    901 /// The last parameter is FALSE if we are dealing with a node with legal
    902 /// result types and illegal operand. The second parameter denotes the type of
    903 /// illegal OperandNo in that case.
    904 /// The last parameter being TRUE means we are dealing with a
    905 /// node with illegal result types. The second parameter denotes the type of
    906 /// illegal ResNo in that case.
    907 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
    908   // See if the target wants to custom lower this node.
    909   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    910     return false;
    911 
    912   SmallVector<SDValue, 8> Results;
    913   if (LegalizeResult)
    914     TLI.ReplaceNodeResults(N, Results, DAG);
    915   else
    916     TLI.LowerOperationWrapper(N, Results, DAG);
    917 
    918   if (Results.empty())
    919     // The target didn't want to custom lower it after all.
    920     return false;
    921 
    922   // Make everything that once used N's values now use those in Results instead.
    923   assert(Results.size() == N->getNumValues() &&
    924          "Custom lowering returned the wrong number of results!");
    925   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
    926     ReplaceValueWith(SDValue(N, i), Results[i]);
    927   }
    928   return true;
    929 }
    930 
    931 
    932 /// CustomWidenLowerNode - Widen the node's results with custom code provided
    933 /// by the target and return "true", or do nothing and return "false".
    934 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
    935   // See if the target wants to custom lower this node.
    936   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    937     return false;
    938 
    939   SmallVector<SDValue, 8> Results;
    940   TLI.ReplaceNodeResults(N, Results, DAG);
    941 
    942   if (Results.empty())
    943     // The target didn't want to custom widen lower its result  after all.
    944     return false;
    945 
    946   // Update the widening map.
    947   assert(Results.size() == N->getNumValues() &&
    948          "Custom lowering returned the wrong number of results!");
    949   for (unsigned i = 0, e = Results.size(); i != e; ++i)
    950     SetWidenedVector(SDValue(N, i), Results[i]);
    951   return true;
    952 }
    953 
    954 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
    955   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    956     if (i != ResNo)
    957       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
    958   return SDValue(N->getOperand(ResNo));
    959 }
    960 
    961 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
    962 /// which is split into two not necessarily identical pieces.
    963 void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
    964   // Currently all types are split in half.
    965   if (!InVT.isVector()) {
    966     LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
    967   } else {
    968     unsigned NumElements = InVT.getVectorNumElements();
    969     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
    970     LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
    971                                    InVT.getVectorElementType(), NumElements/2);
    972   }
    973 }
    974 
    975 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    976 /// high parts of the given value.
    977 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
    978                                        SDValue &Lo, SDValue &Hi) {
    979   SDLoc dl(Pair);
    980   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
    981   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
    982                    DAG.getIntPtrConstant(0));
    983   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
    984                    DAG.getIntPtrConstant(1));
    985 }
    986 
    987 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
    988                                                   SDValue Index) {
    989   SDLoc dl(Index);
    990   // Make sure the index type is big enough to compute in.
    991   if (Index.getValueType().bitsGT(TLI.getPointerTy()))
    992     Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
    993   else
    994     Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
    995 
    996   // Calculate the element offset and add it to the pointer.
    997   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
    998 
    999   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
   1000                       DAG.getConstant(EltSize, Index.getValueType()));
   1001   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
   1002 }
   1003 
   1004 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
   1005 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
   1006   // Arbitrarily use dlHi for result SDLoc
   1007   SDLoc dlHi(Hi);
   1008   SDLoc dlLo(Lo);
   1009   EVT LVT = Lo.getValueType();
   1010   EVT HVT = Hi.getValueType();
   1011   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
   1012                               LVT.getSizeInBits() + HVT.getSizeInBits());
   1013 
   1014   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
   1015   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
   1016   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
   1017                    DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
   1018   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
   1019 }
   1020 
   1021 /// LibCallify - Convert the node into a libcall with the same prototype.
   1022 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
   1023                                      bool isSigned) {
   1024   unsigned NumOps = N->getNumOperands();
   1025   SDLoc dl(N);
   1026   if (NumOps == 0) {
   1027     return TLI.makeLibCall(DAG, LC, N->getValueType(0), 0, 0, isSigned, dl);
   1028   } else if (NumOps == 1) {
   1029     SDValue Op = N->getOperand(0);
   1030     return TLI.makeLibCall(DAG, LC, N->getValueType(0), &Op, 1, isSigned, dl);
   1031   } else if (NumOps == 2) {
   1032     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
   1033     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, 2, isSigned, dl);
   1034   }
   1035   SmallVector<SDValue, 8> Ops(NumOps);
   1036   for (unsigned i = 0; i < NumOps; ++i)
   1037     Ops[i] = N->getOperand(i);
   1038 
   1039   return TLI.makeLibCall(DAG, LC, N->getValueType(0),
   1040                          &Ops[0], NumOps, isSigned, dl);
   1041 }
   1042 
   1043 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1044 // ExpandLibCall except that the first operand is the in-chain.
   1045 std::pair<SDValue, SDValue>
   1046 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
   1047                                          SDNode *Node,
   1048                                          bool isSigned) {
   1049   SDValue InChain = Node->getOperand(0);
   1050 
   1051   TargetLowering::ArgListTy Args;
   1052   TargetLowering::ArgListEntry Entry;
   1053   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1054     EVT ArgVT = Node->getOperand(i).getValueType();
   1055     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1056     Entry.Node = Node->getOperand(i);
   1057     Entry.Ty = ArgTy;
   1058     Entry.isSExt = isSigned;
   1059     Entry.isZExt = !isSigned;
   1060     Args.push_back(Entry);
   1061   }
   1062   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1063                                          TLI.getPointerTy());
   1064 
   1065   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1066   TargetLowering::
   1067   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
   1068                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   1069                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
   1070                     Callee, Args, DAG, SDLoc(Node));
   1071   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1072 
   1073   return CallInfo;
   1074 }
   1075 
   1076 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
   1077 /// of the given type.  A target boolean is an integer value, not necessarily of
   1078 /// type i1, the bits of which conform to getBooleanContents.
   1079 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
   1080   SDLoc dl(Bool);
   1081   ISD::NodeType ExtendCode =
   1082     TargetLowering::getExtendForContent(TLI.getBooleanContents(VT.isVector()));
   1083   return DAG.getNode(ExtendCode, dl, VT, Bool);
   1084 }
   1085 
   1086 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
   1087 /// bits in Hi.
   1088 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1089                                     EVT LoVT, EVT HiVT,
   1090                                     SDValue &Lo, SDValue &Hi) {
   1091   SDLoc dl(Op);
   1092   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
   1093          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
   1094   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
   1095   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
   1096                    DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
   1097   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
   1098 }
   1099 
   1100 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
   1101 /// type half the size of Op's.
   1102 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1103                                     SDValue &Lo, SDValue &Hi) {
   1104   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
   1105                                  Op.getValueType().getSizeInBits()/2);
   1106   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
   1107 }
   1108 
   1109 
   1110 //===----------------------------------------------------------------------===//
   1111 //  Entry Point
   1112 //===----------------------------------------------------------------------===//
   1113 
   1114 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
   1115 /// only uses types natively supported by the target.  Returns "true" if it made
   1116 /// any changes.
   1117 ///
   1118 /// Note that this is an involved process that may invalidate pointers into
   1119 /// the graph.
   1120 bool SelectionDAG::LegalizeTypes() {
   1121   return DAGTypeLegalizer(*this).run();
   1122 }
   1123