1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // Some headers on Android are missing cdefs: crbug.com/172337. 6 // (We can't use OS_ANDROID here since build_config.h is not included). 7 #if defined(ANDROID) 8 #include <sys/cdefs.h> 9 #endif 10 11 #include <errno.h> 12 #include <fcntl.h> 13 #include <string.h> 14 #include <sys/prctl.h> 15 #include <sys/stat.h> 16 #include <sys/syscall.h> 17 #include <sys/types.h> 18 #include <time.h> 19 #include <unistd.h> 20 21 #ifndef SECCOMP_BPF_STANDALONE 22 #include "base/logging.h" 23 #include "base/posix/eintr_wrapper.h" 24 #endif 25 26 #include "sandbox/linux/seccomp-bpf/codegen.h" 27 #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" 28 #include "sandbox/linux/seccomp-bpf/syscall.h" 29 #include "sandbox/linux/seccomp-bpf/syscall_iterator.h" 30 #include "sandbox/linux/seccomp-bpf/verifier.h" 31 32 namespace { 33 34 using playground2::ErrorCode; 35 using playground2::Instruction; 36 using playground2::Sandbox; 37 using playground2::Trap; 38 using playground2::arch_seccomp_data; 39 40 const int kExpectedExitCode = 100; 41 42 template<class T> int popcount(T x); 43 template<> int popcount<unsigned int>(unsigned int x) { 44 return __builtin_popcount(x); 45 } 46 template<> int popcount<unsigned long>(unsigned long x) { 47 return __builtin_popcountl(x); 48 } 49 template<> int popcount<unsigned long long>(unsigned long long x) { 50 return __builtin_popcountll(x); 51 } 52 53 void WriteFailedStderrSetupMessage(int out_fd) { 54 const char* error_string = strerror(errno); 55 static const char msg[] = "You have reproduced a puzzling issue.\n" 56 "Please, report to crbug.com/152530!\n" 57 "Failed to set up stderr: "; 58 if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg)-1)) > 0 && error_string && 59 HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 && 60 HANDLE_EINTR(write(out_fd, "\n", 1))) { 61 } 62 } 63 64 // We define a really simple sandbox policy. It is just good enough for us 65 // to tell that the sandbox has actually been activated. 66 ErrorCode ProbeEvaluator(Sandbox *, int sysnum, void *) __attribute__((const)); 67 ErrorCode ProbeEvaluator(Sandbox *, int sysnum, void *) { 68 switch (sysnum) { 69 case __NR_getpid: 70 // Return EPERM so that we can check that the filter actually ran. 71 return ErrorCode(EPERM); 72 case __NR_exit_group: 73 // Allow exit() with a non-default return code. 74 return ErrorCode(ErrorCode::ERR_ALLOWED); 75 default: 76 // Make everything else fail in an easily recognizable way. 77 return ErrorCode(EINVAL); 78 } 79 } 80 81 void ProbeProcess(void) { 82 if (syscall(__NR_getpid) < 0 && errno == EPERM) { 83 syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); 84 } 85 } 86 87 ErrorCode AllowAllEvaluator(Sandbox *, int sysnum, void *) { 88 if (!Sandbox::IsValidSyscallNumber(sysnum)) { 89 return ErrorCode(ENOSYS); 90 } 91 return ErrorCode(ErrorCode::ERR_ALLOWED); 92 } 93 94 void TryVsyscallProcess(void) { 95 time_t current_time; 96 // time() is implemented as a vsyscall. With an older glibc, with 97 // vsyscall=emulate and some versions of the seccomp BPF patch 98 // we may get SIGKILL-ed. Detect this! 99 if (time(¤t_time) != static_cast<time_t>(-1)) { 100 syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); 101 } 102 } 103 104 bool IsSingleThreaded(int proc_fd) { 105 if (proc_fd < 0) { 106 // Cannot determine whether program is single-threaded. Hope for 107 // the best... 108 return true; 109 } 110 111 struct stat sb; 112 int task = -1; 113 if ((task = openat(proc_fd, "self/task", O_RDONLY|O_DIRECTORY)) < 0 || 114 fstat(task, &sb) != 0 || 115 sb.st_nlink != 3 || 116 HANDLE_EINTR(close(task))) { 117 if (task >= 0) { 118 if (HANDLE_EINTR(close(task))) { } 119 } 120 return false; 121 } 122 return true; 123 } 124 125 bool IsDenied(const ErrorCode& code) { 126 return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP || 127 (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) && 128 code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO)); 129 } 130 131 // Function that can be passed as a callback function to CodeGen::Traverse(). 132 // Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it 133 // sets the "bool" variable pointed to by "aux". 134 void CheckForUnsafeErrorCodes(Instruction *insn, void *aux) { 135 bool *is_unsafe = static_cast<bool *>(aux); 136 if (!*is_unsafe) { 137 if (BPF_CLASS(insn->code) == BPF_RET && 138 insn->k > SECCOMP_RET_TRAP && 139 insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) { 140 const ErrorCode& err = 141 Trap::ErrorCodeFromTrapId(insn->k & SECCOMP_RET_DATA); 142 if (err.error_type() != ErrorCode::ET_INVALID && !err.safe()) { 143 *is_unsafe = true; 144 } 145 } 146 } 147 } 148 149 // A Trap() handler that returns an "errno" value. The value is encoded 150 // in the "aux" parameter. 151 intptr_t ReturnErrno(const struct arch_seccomp_data&, void *aux) { 152 // TrapFnc functions report error by following the native kernel convention 153 // of returning an exit code in the range of -1..-4096. They do not try to 154 // set errno themselves. The glibc wrapper that triggered the SIGSYS will 155 // ultimately do so for us. 156 int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA; 157 return -err; 158 } 159 160 // Function that can be passed as a callback function to CodeGen::Traverse(). 161 // Checks whether the "insn" returns an errno value from a BPF filter. If so, 162 // it rewrites the instruction to instead call a Trap() handler that does 163 // the same thing. "aux" is ignored. 164 void RedirectToUserspace(Instruction *insn, void *aux) { 165 // When inside an UnsafeTrap() callback, we want to allow all system calls. 166 // This means, we must conditionally disable the sandbox -- and that's not 167 // something that kernel-side BPF filters can do, as they cannot inspect 168 // any state other than the syscall arguments. 169 // But if we redirect all error handlers to user-space, then we can easily 170 // make this decision. 171 // The performance penalty for this extra round-trip to user-space is not 172 // actually that bad, as we only ever pay it for denied system calls; and a 173 // typical program has very few of these. 174 Sandbox *sandbox = static_cast<Sandbox *>(aux); 175 if (BPF_CLASS(insn->code) == BPF_RET && 176 (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { 177 insn->k = sandbox->Trap(ReturnErrno, 178 reinterpret_cast<void *>(insn->k & SECCOMP_RET_DATA)).err(); 179 } 180 } 181 182 // Stackable wrapper around an Evaluators handler. Changes ErrorCodes 183 // returned by a system call evaluator to match the changes made by 184 // RedirectToUserspace(). "aux" should be pointer to wrapped system call 185 // evaluator. 186 ErrorCode RedirectToUserspaceEvalWrapper(Sandbox *sandbox, int sysnum, 187 void *aux) { 188 // We need to replicate the behavior of RedirectToUserspace(), so that our 189 // Verifier can still work correctly. 190 Sandbox::Evaluators *evaluators = 191 reinterpret_cast<Sandbox::Evaluators *>(aux); 192 const std::pair<Sandbox::EvaluateSyscall, void *>& evaluator = 193 *evaluators->begin(); 194 195 ErrorCode err = evaluator.first(sandbox, sysnum, evaluator.second); 196 if ((err.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { 197 return sandbox->Trap(ReturnErrno, 198 reinterpret_cast<void *>(err.err() & SECCOMP_RET_DATA)); 199 } 200 return err; 201 } 202 203 intptr_t BpfFailure(const struct arch_seccomp_data&, void *aux) { 204 SANDBOX_DIE(static_cast<char *>(aux)); 205 } 206 207 } // namespace 208 209 // The kernel gives us a sandbox, we turn it into a playground :-) 210 // This is version 2 of the playground; version 1 was built on top of 211 // pre-BPF seccomp mode. 212 namespace playground2 { 213 214 Sandbox::Sandbox() 215 : quiet_(false), 216 proc_fd_(-1), 217 evaluators_(new Evaluators), 218 conds_(new Conds) { 219 } 220 221 Sandbox::~Sandbox() { 222 // It is generally unsafe to call any memory allocator operations or to even 223 // call arbitrary destructors after having installed a new policy. We just 224 // have no way to tell whether this policy would allow the system calls that 225 // the constructors can trigger. 226 // So, we normally destroy all of our complex state prior to starting the 227 // sandbox. But this won't happen, if the Sandbox object was created and 228 // never actually used to set up a sandbox. So, just in case, we are 229 // destroying any remaining state. 230 // The "if ()" statements are technically superfluous. But let's be explicit 231 // that we really don't want to run any code, when we already destroyed 232 // objects before setting up the sandbox. 233 if (evaluators_) { 234 delete evaluators_; 235 } 236 if (conds_) { 237 delete conds_; 238 } 239 } 240 241 bool Sandbox::IsValidSyscallNumber(int sysnum) { 242 return SyscallIterator::IsValid(sysnum); 243 } 244 245 246 bool Sandbox::RunFunctionInPolicy(void (*code_in_sandbox)(), 247 Sandbox::EvaluateSyscall syscall_evaluator, 248 void *aux) { 249 // Block all signals before forking a child process. This prevents an 250 // attacker from manipulating our test by sending us an unexpected signal. 251 sigset_t old_mask, new_mask; 252 if (sigfillset(&new_mask) || 253 sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) { 254 SANDBOX_DIE("sigprocmask() failed"); 255 } 256 int fds[2]; 257 if (pipe2(fds, O_NONBLOCK|O_CLOEXEC)) { 258 SANDBOX_DIE("pipe() failed"); 259 } 260 261 if (fds[0] <= 2 || fds[1] <= 2) { 262 SANDBOX_DIE("Process started without standard file descriptors"); 263 } 264 265 pid_t pid = fork(); 266 if (pid < 0) { 267 // Die if we cannot fork(). We would probably fail a little later 268 // anyway, as the machine is likely very close to running out of 269 // memory. 270 // But what we don't want to do is return "false", as a crafty 271 // attacker might cause fork() to fail at will and could trick us 272 // into running without a sandbox. 273 sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails 274 SANDBOX_DIE("fork() failed unexpectedly"); 275 } 276 277 // In the child process 278 if (!pid) { 279 // Test a very simple sandbox policy to verify that we can 280 // successfully turn on sandboxing. 281 Die::EnableSimpleExit(); 282 283 errno = 0; 284 if (HANDLE_EINTR(close(fds[0]))) { 285 // This call to close() has been failing in strange ways. See 286 // crbug.com/152530. So we only fail in debug mode now. 287 #if !defined(NDEBUG) 288 WriteFailedStderrSetupMessage(fds[1]); 289 SANDBOX_DIE(NULL); 290 #endif 291 } 292 if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) { 293 // Stderr could very well be a file descriptor to .xsession-errors, or 294 // another file, which could be backed by a file system that could cause 295 // dup2 to fail while trying to close stderr. It's important that we do 296 // not fail on trying to close stderr. 297 // If dup2 fails here, we will continue normally, this means that our 298 // parent won't cause a fatal failure if something writes to stderr in 299 // this child. 300 #if !defined(NDEBUG) 301 // In DEBUG builds, we still want to get a report. 302 WriteFailedStderrSetupMessage(fds[1]); 303 SANDBOX_DIE(NULL); 304 #endif 305 } 306 if (HANDLE_EINTR(close(fds[1]))) { 307 // This call to close() has been failing in strange ways. See 308 // crbug.com/152530. So we only fail in debug mode now. 309 #if !defined(NDEBUG) 310 WriteFailedStderrSetupMessage(fds[1]); 311 SANDBOX_DIE(NULL); 312 #endif 313 } 314 315 SetSandboxPolicy(syscall_evaluator, aux); 316 StartSandbox(); 317 318 // Run our code in the sandbox. 319 code_in_sandbox(); 320 321 // code_in_sandbox() is not supposed to return here. 322 SANDBOX_DIE(NULL); 323 } 324 325 // In the parent process. 326 if (HANDLE_EINTR(close(fds[1]))) { 327 SANDBOX_DIE("close() failed"); 328 } 329 if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) { 330 SANDBOX_DIE("sigprocmask() failed"); 331 } 332 int status; 333 if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) { 334 SANDBOX_DIE("waitpid() failed unexpectedly"); 335 } 336 bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode; 337 338 // If we fail to support sandboxing, there might be an additional 339 // error message. If so, this was an entirely unexpected and fatal 340 // failure. We should report the failure and somebody must fix 341 // things. This is probably a security-critical bug in the sandboxing 342 // code. 343 if (!rc) { 344 char buf[4096]; 345 ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1)); 346 if (len > 0) { 347 while (len > 1 && buf[len-1] == '\n') { 348 --len; 349 } 350 buf[len] = '\000'; 351 SANDBOX_DIE(buf); 352 } 353 } 354 if (HANDLE_EINTR(close(fds[0]))) { 355 SANDBOX_DIE("close() failed"); 356 } 357 358 return rc; 359 } 360 361 bool Sandbox::KernelSupportSeccompBPF() { 362 return 363 RunFunctionInPolicy(ProbeProcess, ProbeEvaluator, 0) && 364 RunFunctionInPolicy(TryVsyscallProcess, AllowAllEvaluator, 0); 365 } 366 367 Sandbox::SandboxStatus Sandbox::SupportsSeccompSandbox(int proc_fd) { 368 // It the sandbox is currently active, we clearly must have support for 369 // sandboxing. 370 if (status_ == STATUS_ENABLED) { 371 return status_; 372 } 373 374 // Even if the sandbox was previously available, something might have 375 // changed in our run-time environment. Check one more time. 376 if (status_ == STATUS_AVAILABLE) { 377 if (!IsSingleThreaded(proc_fd)) { 378 status_ = STATUS_UNAVAILABLE; 379 } 380 return status_; 381 } 382 383 if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) { 384 // All state transitions resulting in STATUS_UNAVAILABLE are immediately 385 // preceded by STATUS_AVAILABLE. Furthermore, these transitions all 386 // happen, if and only if they are triggered by the process being multi- 387 // threaded. 388 // In other words, if a single-threaded process is currently in the 389 // STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is 390 // actually available. 391 status_ = STATUS_AVAILABLE; 392 return status_; 393 } 394 395 // If we have not previously checked for availability of the sandbox or if 396 // we otherwise don't believe to have a good cached value, we have to 397 // perform a thorough check now. 398 if (status_ == STATUS_UNKNOWN) { 399 // We create our own private copy of a "Sandbox" object. This ensures that 400 // the object does not have any policies configured, that might interfere 401 // with the tests done by "KernelSupportSeccompBPF()". 402 Sandbox sandbox; 403 404 // By setting "quiet_ = true" we suppress messages for expected and benign 405 // failures (e.g. if the current kernel lacks support for BPF filters). 406 sandbox.quiet_ = true; 407 sandbox.set_proc_fd(proc_fd); 408 status_ = sandbox.KernelSupportSeccompBPF() 409 ? STATUS_AVAILABLE : STATUS_UNSUPPORTED; 410 411 // As we are performing our tests from a child process, the run-time 412 // environment that is visible to the sandbox is always guaranteed to be 413 // single-threaded. Let's check here whether the caller is single- 414 // threaded. Otherwise, we mark the sandbox as temporarily unavailable. 415 if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) { 416 status_ = STATUS_UNAVAILABLE; 417 } 418 } 419 return status_; 420 } 421 422 void Sandbox::set_proc_fd(int proc_fd) { 423 proc_fd_ = proc_fd; 424 } 425 426 void Sandbox::StartSandbox() { 427 if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) { 428 SANDBOX_DIE("Trying to start sandbox, even though it is known to be " 429 "unavailable"); 430 } else if (!evaluators_ || !conds_) { 431 SANDBOX_DIE("Cannot repeatedly start sandbox. Create a separate Sandbox " 432 "object instead."); 433 } 434 if (proc_fd_ < 0) { 435 proc_fd_ = open("/proc", O_RDONLY|O_DIRECTORY); 436 } 437 if (proc_fd_ < 0) { 438 // For now, continue in degraded mode, if we can't access /proc. 439 // In the future, we might want to tighten this requirement. 440 } 441 if (!IsSingleThreaded(proc_fd_)) { 442 SANDBOX_DIE("Cannot start sandbox, if process is already multi-threaded"); 443 } 444 445 // We no longer need access to any files in /proc. We want to do this 446 // before installing the filters, just in case that our policy denies 447 // close(). 448 if (proc_fd_ >= 0) { 449 if (HANDLE_EINTR(close(proc_fd_))) { 450 SANDBOX_DIE("Failed to close file descriptor for /proc"); 451 } 452 proc_fd_ = -1; 453 } 454 455 // Install the filters. 456 InstallFilter(); 457 458 // We are now inside the sandbox. 459 status_ = STATUS_ENABLED; 460 } 461 462 void Sandbox::PolicySanityChecks(EvaluateSyscall syscall_evaluator, 463 void *aux) { 464 for (SyscallIterator iter(true); !iter.Done(); ) { 465 uint32_t sysnum = iter.Next(); 466 if (!IsDenied(syscall_evaluator(this, sysnum, aux))) { 467 SANDBOX_DIE("Policies should deny system calls that are outside the " 468 "expected range (typically MIN_SYSCALL..MAX_SYSCALL)"); 469 } 470 } 471 return; 472 } 473 474 void Sandbox::SetSandboxPolicy(EvaluateSyscall syscall_evaluator, void *aux) { 475 if (!evaluators_ || !conds_) { 476 SANDBOX_DIE("Cannot change policy after sandbox has started"); 477 } 478 PolicySanityChecks(syscall_evaluator, aux); 479 evaluators_->push_back(std::make_pair(syscall_evaluator, aux)); 480 } 481 482 void Sandbox::InstallFilter() { 483 // We want to be very careful in not imposing any requirements on the 484 // policies that are set with SetSandboxPolicy(). This means, as soon as 485 // the sandbox is active, we shouldn't be relying on libraries that could 486 // be making system calls. This, for example, means we should avoid 487 // using the heap and we should avoid using STL functions. 488 // Temporarily copy the contents of the "program" vector into a 489 // stack-allocated array; and then explicitly destroy that object. 490 // This makes sure we don't ex- or implicitly call new/delete after we 491 // installed the BPF filter program in the kernel. Depending on the 492 // system memory allocator that is in effect, these operators can result 493 // in system calls to things like munmap() or brk(). 494 Program *program = AssembleFilter(false /* force_verification */); 495 496 struct sock_filter bpf[program->size()]; 497 const struct sock_fprog prog = { 498 static_cast<unsigned short>(program->size()), bpf }; 499 memcpy(bpf, &(*program)[0], sizeof(bpf)); 500 delete program; 501 502 // Release memory that is no longer needed 503 delete evaluators_; 504 delete conds_; 505 evaluators_ = NULL; 506 conds_ = NULL; 507 508 // Install BPF filter program 509 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 510 SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs"); 511 } else { 512 if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) { 513 SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters"); 514 } 515 } 516 517 return; 518 } 519 520 Sandbox::Program *Sandbox::AssembleFilter(bool force_verification) { 521 #if !defined(NDEBUG) 522 force_verification = true; 523 #endif 524 525 // Verify that the user pushed a policy. 526 if (evaluators_->empty()) { 527 SANDBOX_DIE("Failed to configure system call filters"); 528 } 529 530 // We can't handle stacked evaluators, yet. We'll get there eventually 531 // though. Hang tight. 532 if (evaluators_->size() != 1) { 533 SANDBOX_DIE("Not implemented"); 534 } 535 536 // Assemble the BPF filter program. 537 CodeGen *gen = new CodeGen(); 538 if (!gen) { 539 SANDBOX_DIE("Out of memory"); 540 } 541 542 // If the architecture doesn't match SECCOMP_ARCH, disallow the 543 // system call. 544 Instruction *tail; 545 Instruction *head = 546 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_ARCH_IDX, 547 tail = 548 gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, SECCOMP_ARCH, 549 NULL, 550 gen->MakeInstruction(BPF_RET+BPF_K, 551 Kill("Invalid audit architecture in BPF filter")))); 552 553 bool has_unsafe_traps = false; 554 { 555 // Evaluate all possible system calls and group their ErrorCodes into 556 // ranges of identical codes. 557 Ranges ranges; 558 FindRanges(&ranges); 559 560 // Compile the system call ranges to an optimized BPF jumptable 561 Instruction *jumptable = 562 AssembleJumpTable(gen, ranges.begin(), ranges.end()); 563 564 // If there is at least one UnsafeTrap() in our program, the entire sandbox 565 // is unsafe. We need to modify the program so that all non- 566 // SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then 567 // allow us to temporarily disable sandboxing rules inside of callbacks to 568 // UnsafeTrap(). 569 gen->Traverse(jumptable, CheckForUnsafeErrorCodes, &has_unsafe_traps); 570 571 // Grab the system call number, so that we can implement jump tables. 572 Instruction *load_nr = 573 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_NR_IDX); 574 575 // If our BPF program has unsafe jumps, enable support for them. This 576 // test happens very early in the BPF filter program. Even before we 577 // consider looking at system call numbers. 578 // As support for unsafe jumps essentially defeats all the security 579 // measures that the sandbox provides, we print a big warning message -- 580 // and of course, we make sure to only ever enable this feature if it 581 // is actually requested by the sandbox policy. 582 if (has_unsafe_traps) { 583 if (SandboxSyscall(-1) == -1 && errno == ENOSYS) { 584 SANDBOX_DIE("Support for UnsafeTrap() has not yet been ported to this " 585 "architecture"); 586 } 587 588 EvaluateSyscall evaluateSyscall = evaluators_->begin()->first; 589 void *aux = evaluators_->begin()->second; 590 if (!evaluateSyscall(this, __NR_rt_sigprocmask, aux). 591 Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) || 592 !evaluateSyscall(this, __NR_rt_sigreturn, aux). 593 Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) 594 #if defined(__NR_sigprocmask) 595 || !evaluateSyscall(this, __NR_sigprocmask, aux). 596 Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) 597 #endif 598 #if defined(__NR_sigreturn) 599 || !evaluateSyscall(this, __NR_sigreturn, aux). 600 Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) 601 #endif 602 ) { 603 SANDBOX_DIE("Invalid seccomp policy; if using UnsafeTrap(), you must " 604 "unconditionally allow sigreturn() and sigprocmask()"); 605 } 606 607 if (!Trap::EnableUnsafeTrapsInSigSysHandler()) { 608 // We should never be able to get here, as UnsafeTrap() should never 609 // actually return a valid ErrorCode object unless the user set the 610 // CHROME_SANDBOX_DEBUGGING environment variable; and therefore, 611 // "has_unsafe_traps" would always be false. But better double-check 612 // than enabling dangerous code. 613 SANDBOX_DIE("We'd rather die than enable unsafe traps"); 614 } 615 gen->Traverse(jumptable, RedirectToUserspace, this); 616 617 // Allow system calls, if they originate from our magic return address 618 // (which we can query by calling SandboxSyscall(-1)). 619 uintptr_t syscall_entry_point = 620 static_cast<uintptr_t>(SandboxSyscall(-1)); 621 uint32_t low = static_cast<uint32_t>(syscall_entry_point); 622 #if __SIZEOF_POINTER__ > 4 623 uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32); 624 #endif 625 626 // BPF cannot do native 64bit comparisons. On 64bit architectures, we 627 // have to compare both 32bit halves of the instruction pointer. If they 628 // match what we expect, we return ERR_ALLOWED. If either or both don't 629 // match, we continue evalutating the rest of the sandbox policy. 630 Instruction *escape_hatch = 631 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_IP_LSB_IDX, 632 gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, low, 633 #if __SIZEOF_POINTER__ > 4 634 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, SECCOMP_IP_MSB_IDX, 635 gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, hi, 636 #endif 637 gen->MakeInstruction(BPF_RET+BPF_K, ErrorCode(ErrorCode::ERR_ALLOWED)), 638 #if __SIZEOF_POINTER__ > 4 639 load_nr)), 640 #endif 641 load_nr)); 642 gen->JoinInstructions(tail, escape_hatch); 643 } else { 644 gen->JoinInstructions(tail, load_nr); 645 } 646 tail = load_nr; 647 648 // On Intel architectures, verify that system call numbers are in the 649 // expected number range. The older i386 and x86-64 APIs clear bit 30 650 // on all system calls. The newer x32 API always sets bit 30. 651 #if defined(__i386__) || defined(__x86_64__) 652 Instruction *invalidX32 = 653 gen->MakeInstruction(BPF_RET+BPF_K, 654 Kill("Illegal mixing of system call ABIs").err_); 655 Instruction *checkX32 = 656 #if defined(__x86_64__) && defined(__ILP32__) 657 gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 0x40000000, 0, invalidX32); 658 #else 659 gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 0x40000000, invalidX32, 0); 660 #endif 661 gen->JoinInstructions(tail, checkX32); 662 tail = checkX32; 663 #endif 664 665 // Append jump table to our pre-amble 666 gen->JoinInstructions(tail, jumptable); 667 } 668 669 // Turn the DAG into a vector of instructions. 670 Program *program = new Program(); 671 gen->Compile(head, program); 672 delete gen; 673 674 // Make sure compilation resulted in BPF program that executes 675 // correctly. Otherwise, there is an internal error in our BPF compiler. 676 // There is really nothing the caller can do until the bug is fixed. 677 if (force_verification) { 678 // Verification is expensive. We only perform this step, if we are 679 // compiled in debug mode, or if the caller explicitly requested 680 // verification. 681 VerifyProgram(*program, has_unsafe_traps); 682 } 683 684 return program; 685 } 686 687 void Sandbox::VerifyProgram(const Program& program, bool has_unsafe_traps) { 688 // If we previously rewrote the BPF program so that it calls user-space 689 // whenever we return an "errno" value from the filter, then we have to 690 // wrap our system call evaluator to perform the same operation. Otherwise, 691 // the verifier would also report a mismatch in return codes. 692 Evaluators redirected_evaluators; 693 redirected_evaluators.push_back( 694 std::make_pair(RedirectToUserspaceEvalWrapper, evaluators_)); 695 696 const char *err = NULL; 697 if (!Verifier::VerifyBPF( 698 this, 699 program, 700 has_unsafe_traps ? redirected_evaluators : *evaluators_, 701 &err)) { 702 CodeGen::PrintProgram(program); 703 SANDBOX_DIE(err); 704 } 705 } 706 707 void Sandbox::FindRanges(Ranges *ranges) { 708 // Please note that "struct seccomp_data" defines system calls as a signed 709 // int32_t, but BPF instructions always operate on unsigned quantities. We 710 // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL, 711 // and then verifying that the rest of the number range (both positive and 712 // negative) all return the same ErrorCode. 713 EvaluateSyscall evaluate_syscall = evaluators_->begin()->first; 714 void *aux = evaluators_->begin()->second; 715 uint32_t old_sysnum = 0; 716 ErrorCode old_err = evaluate_syscall(this, old_sysnum, aux); 717 ErrorCode invalid_err = evaluate_syscall(this, MIN_SYSCALL - 1, 718 aux); 719 for (SyscallIterator iter(false); !iter.Done(); ) { 720 uint32_t sysnum = iter.Next(); 721 ErrorCode err = evaluate_syscall(this, static_cast<int>(sysnum), aux); 722 if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) { 723 // A proper sandbox policy should always treat system calls outside of 724 // the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns 725 // "false" for SyscallIterator::IsValid()) identically. Typically, all 726 // of these system calls would be denied with the same ErrorCode. 727 SANDBOX_DIE("Invalid seccomp policy"); 728 } 729 if (!err.Equals(old_err) || iter.Done()) { 730 ranges->push_back(Range(old_sysnum, sysnum - 1, old_err)); 731 old_sysnum = sysnum; 732 old_err = err; 733 } 734 } 735 } 736 737 Instruction *Sandbox::AssembleJumpTable(CodeGen *gen, 738 Ranges::const_iterator start, 739 Ranges::const_iterator stop) { 740 // We convert the list of system call ranges into jump table that performs 741 // a binary search over the ranges. 742 // As a sanity check, we need to have at least one distinct ranges for us 743 // to be able to build a jump table. 744 if (stop - start <= 0) { 745 SANDBOX_DIE("Invalid set of system call ranges"); 746 } else if (stop - start == 1) { 747 // If we have narrowed things down to a single range object, we can 748 // return from the BPF filter program. 749 return RetExpression(gen, start->err); 750 } 751 752 // Pick the range object that is located at the mid point of our list. 753 // We compare our system call number against the lowest valid system call 754 // number in this range object. If our number is lower, it is outside of 755 // this range object. If it is greater or equal, it might be inside. 756 Ranges::const_iterator mid = start + (stop - start)/2; 757 758 // Sub-divide the list of ranges and continue recursively. 759 Instruction *jf = AssembleJumpTable(gen, start, mid); 760 Instruction *jt = AssembleJumpTable(gen, mid, stop); 761 return gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, mid->from, jt, jf); 762 } 763 764 Instruction *Sandbox::RetExpression(CodeGen *gen, const ErrorCode& err) { 765 if (err.error_type_ == ErrorCode::ET_COND) { 766 return CondExpression(gen, err); 767 } else { 768 return gen->MakeInstruction(BPF_RET+BPF_K, err); 769 } 770 } 771 772 Instruction *Sandbox::CondExpression(CodeGen *gen, const ErrorCode& cond) { 773 // We can only inspect the six system call arguments that are passed in 774 // CPU registers. 775 if (cond.argno_ < 0 || cond.argno_ >= 6) { 776 SANDBOX_DIE("Internal compiler error; invalid argument number " 777 "encountered"); 778 } 779 780 // BPF programs operate on 32bit entities. Load both halfs of the 64bit 781 // system call argument and then generate suitable conditional statements. 782 Instruction *msb_head = 783 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, 784 SECCOMP_ARG_MSB_IDX(cond.argno_)); 785 Instruction *msb_tail = msb_head; 786 Instruction *lsb_head = 787 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, 788 SECCOMP_ARG_LSB_IDX(cond.argno_)); 789 Instruction *lsb_tail = lsb_head; 790 791 // Emit a suitable comparison statement. 792 switch (cond.op_) { 793 case ErrorCode::OP_EQUAL: 794 // Compare the least significant bits for equality 795 lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 796 static_cast<uint32_t>(cond.value_), 797 RetExpression(gen, *cond.passed_), 798 RetExpression(gen, *cond.failed_)); 799 gen->JoinInstructions(lsb_head, lsb_tail); 800 801 // If we are looking at a 64bit argument, we need to also compare the 802 // most significant bits. 803 if (cond.width_ == ErrorCode::TP_64BIT) { 804 msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 805 static_cast<uint32_t>(cond.value_ >> 32), 806 lsb_head, 807 RetExpression(gen, *cond.failed_)); 808 gen->JoinInstructions(msb_head, msb_tail); 809 } 810 break; 811 case ErrorCode::OP_HAS_ALL_BITS: 812 // Check the bits in the LSB half of the system call argument. Our 813 // OP_HAS_ALL_BITS operator passes, iff all of the bits are set. This is 814 // different from the kernel's BPF_JSET operation which passes, if any of 815 // the bits are set. 816 // Of course, if there is only a single set bit (or none at all), then 817 // things get easier. 818 { 819 uint32_t lsb_bits = static_cast<uint32_t>(cond.value_); 820 int lsb_bit_count = popcount(lsb_bits); 821 if (lsb_bit_count == 0) { 822 // No bits are set in the LSB half. The test will always pass. 823 lsb_head = RetExpression(gen, *cond.passed_); 824 lsb_tail = NULL; 825 } else if (lsb_bit_count == 1) { 826 // Exactly one bit is set in the LSB half. We can use the BPF_JSET 827 // operator. 828 lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 829 lsb_bits, 830 RetExpression(gen, *cond.passed_), 831 RetExpression(gen, *cond.failed_)); 832 gen->JoinInstructions(lsb_head, lsb_tail); 833 } else { 834 // More than one bit is set in the LSB half. We need to combine 835 // BPF_AND and BPF_JEQ to test whether all of these bits are in fact 836 // set in the system call argument. 837 gen->JoinInstructions(lsb_head, 838 gen->MakeInstruction(BPF_ALU+BPF_AND+BPF_K, 839 lsb_bits, 840 lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 841 lsb_bits, 842 RetExpression(gen, *cond.passed_), 843 RetExpression(gen, *cond.failed_)))); 844 } 845 } 846 847 // If we are looking at a 64bit argument, we need to also check the bits 848 // in the MSB half of the system call argument. 849 if (cond.width_ == ErrorCode::TP_64BIT) { 850 uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32); 851 int msb_bit_count = popcount(msb_bits); 852 if (msb_bit_count == 0) { 853 // No bits are set in the MSB half. The test will always pass. 854 msb_head = lsb_head; 855 } else if (msb_bit_count == 1) { 856 // Exactly one bit is set in the MSB half. We can use the BPF_JSET 857 // operator. 858 msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 859 msb_bits, 860 lsb_head, 861 RetExpression(gen, *cond.failed_)); 862 gen->JoinInstructions(msb_head, msb_tail); 863 } else { 864 // More than one bit is set in the MSB half. We need to combine 865 // BPF_AND and BPF_JEQ to test whether all of these bits are in fact 866 // set in the system call argument. 867 gen->JoinInstructions(msb_head, 868 gen->MakeInstruction(BPF_ALU+BPF_AND+BPF_K, 869 msb_bits, 870 gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 871 msb_bits, 872 lsb_head, 873 RetExpression(gen, *cond.failed_)))); 874 } 875 } 876 break; 877 case ErrorCode::OP_HAS_ANY_BITS: 878 // Check the bits in the LSB half of the system call argument. Our 879 // OP_HAS_ANY_BITS operator passes, iff any of the bits are set. This maps 880 // nicely to the kernel's BPF_JSET operation. 881 { 882 uint32_t lsb_bits = static_cast<uint32_t>(cond.value_); 883 if (!lsb_bits) { 884 // No bits are set in the LSB half. The test will always fail. 885 lsb_head = RetExpression(gen, *cond.failed_); 886 lsb_tail = NULL; 887 } else { 888 lsb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 889 lsb_bits, 890 RetExpression(gen, *cond.passed_), 891 RetExpression(gen, *cond.failed_)); 892 gen->JoinInstructions(lsb_head, lsb_tail); 893 } 894 } 895 896 // If we are looking at a 64bit argument, we need to also check the bits 897 // in the MSB half of the system call argument. 898 if (cond.width_ == ErrorCode::TP_64BIT) { 899 uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32); 900 if (!msb_bits) { 901 // No bits are set in the MSB half. The test will always fail. 902 msb_head = lsb_head; 903 } else { 904 msb_tail = gen->MakeInstruction(BPF_JMP+BPF_JSET+BPF_K, 905 msb_bits, 906 RetExpression(gen, *cond.passed_), 907 lsb_head); 908 gen->JoinInstructions(msb_head, msb_tail); 909 } 910 } 911 break; 912 default: 913 // TODO(markus): Need to add support for OP_GREATER 914 SANDBOX_DIE("Not implemented"); 915 break; 916 } 917 918 // Ensure that we never pass a 64bit value, when we only expect a 32bit 919 // value. This is somewhat complicated by the fact that on 64bit systems, 920 // callers could legitimately pass in a non-zero value in the MSB, iff the 921 // LSB has been sign-extended into the MSB. 922 if (cond.width_ == ErrorCode::TP_32BIT) { 923 if (cond.value_ >> 32) { 924 SANDBOX_DIE("Invalid comparison of a 32bit system call argument " 925 "against a 64bit constant; this test is always false."); 926 } 927 928 Instruction *invalid_64bit = RetExpression(gen, Unexpected64bitArgument()); 929 #if __SIZEOF_POINTER__ > 4 930 invalid_64bit = 931 gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0xFFFFFFFF, 932 gen->MakeInstruction(BPF_LD+BPF_W+BPF_ABS, 933 SECCOMP_ARG_LSB_IDX(cond.argno_), 934 gen->MakeInstruction(BPF_JMP+BPF_JGE+BPF_K, 0x80000000, 935 lsb_head, 936 invalid_64bit)), 937 invalid_64bit); 938 #endif 939 gen->JoinInstructions( 940 msb_tail, 941 gen->MakeInstruction(BPF_JMP+BPF_JEQ+BPF_K, 0, 942 lsb_head, 943 invalid_64bit)); 944 } 945 946 return msb_head; 947 } 948 949 ErrorCode Sandbox::Unexpected64bitArgument() { 950 return Kill("Unexpected 64bit argument detected"); 951 } 952 953 ErrorCode Sandbox::Trap(Trap::TrapFnc fnc, const void *aux) { 954 return Trap::MakeTrap(fnc, aux, true /* Safe Trap */); 955 } 956 957 ErrorCode Sandbox::UnsafeTrap(Trap::TrapFnc fnc, const void *aux) { 958 return Trap::MakeTrap(fnc, aux, false /* Unsafe Trap */); 959 } 960 961 intptr_t Sandbox::ForwardSyscall(const struct arch_seccomp_data& args) { 962 return SandboxSyscall(args.nr, 963 static_cast<intptr_t>(args.args[0]), 964 static_cast<intptr_t>(args.args[1]), 965 static_cast<intptr_t>(args.args[2]), 966 static_cast<intptr_t>(args.args[3]), 967 static_cast<intptr_t>(args.args[4]), 968 static_cast<intptr_t>(args.args[5])); 969 } 970 971 ErrorCode Sandbox::Cond(int argno, ErrorCode::ArgType width, 972 ErrorCode::Operation op, uint64_t value, 973 const ErrorCode& passed, const ErrorCode& failed) { 974 return ErrorCode(argno, width, op, value, 975 &*conds_->insert(passed).first, 976 &*conds_->insert(failed).first); 977 } 978 979 ErrorCode Sandbox::Kill(const char *msg) { 980 return Trap(BpfFailure, const_cast<char *>(msg)); 981 } 982 983 Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN; 984 985 } // namespace 986