1 //=-- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -*- C++ -*-------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the template classes ExplodedNode and ExplodedGraph, 11 // which represent a path-sensitive, intra-procedural "exploded graph." 12 // See "Precise interprocedural dataflow analysis via graph reachability" 13 // by Reps, Horwitz, and Sagiv 14 // (http://portal.acm.org/citation.cfm?id=199462) for the definition of an 15 // exploded graph. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #ifndef LLVM_CLANG_GR_EXPLODEDGRAPH 20 #define LLVM_CLANG_GR_EXPLODEDGRAPH 21 22 #include "clang/AST/Decl.h" 23 #include "clang/Analysis/AnalysisContext.h" 24 #include "clang/Analysis/ProgramPoint.h" 25 #include "clang/Analysis/Support/BumpVector.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/FoldingSet.h" 29 #include "llvm/ADT/GraphTraits.h" 30 #include "llvm/ADT/OwningPtr.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/Casting.h" 35 #include <vector> 36 37 namespace clang { 38 39 class CFG; 40 41 namespace ento { 42 43 class ExplodedGraph; 44 45 //===----------------------------------------------------------------------===// 46 // ExplodedGraph "implementation" classes. These classes are not typed to 47 // contain a specific kind of state. Typed-specialized versions are defined 48 // on top of these classes. 49 //===----------------------------------------------------------------------===// 50 51 // ExplodedNode is not constified all over the engine because we need to add 52 // successors to it at any time after creating it. 53 54 class ExplodedNode : public llvm::FoldingSetNode { 55 friend class ExplodedGraph; 56 friend class CoreEngine; 57 friend class NodeBuilder; 58 friend class BranchNodeBuilder; 59 friend class IndirectGotoNodeBuilder; 60 friend class SwitchNodeBuilder; 61 friend class EndOfFunctionNodeBuilder; 62 63 /// Efficiently stores a list of ExplodedNodes, or an optional flag. 64 /// 65 /// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing 66 /// for the case when there is only one node in the group. This is a fairly 67 /// common case in an ExplodedGraph, where most nodes have only one 68 /// predecessor and many have only one successor. It can also be used to 69 /// store a flag rather than a node list, which ExplodedNode uses to mark 70 /// whether a node is a sink. If the flag is set, the group is implicitly 71 /// empty and no nodes may be added. 72 class NodeGroup { 73 // Conceptually a discriminated union. If the low bit is set, the node is 74 // a sink. If the low bit is not set, the pointer refers to the storage 75 // for the nodes in the group. 76 // This is not a PointerIntPair in order to keep the storage type opaque. 77 uintptr_t P; 78 79 public: 80 NodeGroup(bool Flag = false) : P(Flag) { 81 assert(getFlag() == Flag); 82 } 83 84 ExplodedNode * const *begin() const; 85 86 ExplodedNode * const *end() const; 87 88 unsigned size() const; 89 90 bool empty() const { return P == 0 || getFlag() != 0; } 91 92 /// Adds a node to the list. 93 /// 94 /// The group must not have been created with its flag set. 95 void addNode(ExplodedNode *N, ExplodedGraph &G); 96 97 /// Replaces the single node in this group with a new node. 98 /// 99 /// Note that this should only be used when you know the group was not 100 /// created with its flag set, and that the group is empty or contains 101 /// only a single node. 102 void replaceNode(ExplodedNode *node); 103 104 /// Returns whether this group was created with its flag set. 105 bool getFlag() const { 106 return (P & 1); 107 } 108 }; 109 110 /// Location - The program location (within a function body) associated 111 /// with this node. 112 const ProgramPoint Location; 113 114 /// State - The state associated with this node. 115 ProgramStateRef State; 116 117 /// Preds - The predecessors of this node. 118 NodeGroup Preds; 119 120 /// Succs - The successors of this node. 121 NodeGroup Succs; 122 123 public: 124 125 explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state, 126 bool IsSink) 127 : Location(loc), State(state), Succs(IsSink) { 128 assert(isSink() == IsSink); 129 } 130 131 ~ExplodedNode() {} 132 133 /// getLocation - Returns the edge associated with the given node. 134 ProgramPoint getLocation() const { return Location; } 135 136 const LocationContext *getLocationContext() const { 137 return getLocation().getLocationContext(); 138 } 139 140 const StackFrameContext *getStackFrame() const { 141 return getLocationContext()->getCurrentStackFrame(); 142 } 143 144 const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); } 145 146 CFG &getCFG() const { return *getLocationContext()->getCFG(); } 147 148 ParentMap &getParentMap() const {return getLocationContext()->getParentMap();} 149 150 template <typename T> 151 T &getAnalysis() const { 152 return *getLocationContext()->getAnalysis<T>(); 153 } 154 155 const ProgramStateRef &getState() const { return State; } 156 157 template <typename T> 158 Optional<T> getLocationAs() const LLVM_LVALUE_FUNCTION { 159 return Location.getAs<T>(); 160 } 161 162 static void Profile(llvm::FoldingSetNodeID &ID, 163 const ProgramPoint &Loc, 164 const ProgramStateRef &state, 165 bool IsSink) { 166 ID.Add(Loc); 167 ID.AddPointer(state.getPtr()); 168 ID.AddBoolean(IsSink); 169 } 170 171 void Profile(llvm::FoldingSetNodeID& ID) const { 172 // We avoid copy constructors by not using accessors. 173 Profile(ID, Location, State, isSink()); 174 } 175 176 /// addPredeccessor - Adds a predecessor to the current node, and 177 /// in tandem add this node as a successor of the other node. 178 void addPredecessor(ExplodedNode *V, ExplodedGraph &G); 179 180 unsigned succ_size() const { return Succs.size(); } 181 unsigned pred_size() const { return Preds.size(); } 182 bool succ_empty() const { return Succs.empty(); } 183 bool pred_empty() const { return Preds.empty(); } 184 185 bool isSink() const { return Succs.getFlag(); } 186 187 bool hasSinglePred() const { 188 return (pred_size() == 1); 189 } 190 191 ExplodedNode *getFirstPred() { 192 return pred_empty() ? NULL : *(pred_begin()); 193 } 194 195 const ExplodedNode *getFirstPred() const { 196 return const_cast<ExplodedNode*>(this)->getFirstPred(); 197 } 198 199 const ExplodedNode *getFirstSucc() const { 200 return succ_empty() ? NULL : *(succ_begin()); 201 } 202 203 // Iterators over successor and predecessor vertices. 204 typedef ExplodedNode* const * succ_iterator; 205 typedef const ExplodedNode* const * const_succ_iterator; 206 typedef ExplodedNode* const * pred_iterator; 207 typedef const ExplodedNode* const * const_pred_iterator; 208 209 pred_iterator pred_begin() { return Preds.begin(); } 210 pred_iterator pred_end() { return Preds.end(); } 211 212 const_pred_iterator pred_begin() const { 213 return const_cast<ExplodedNode*>(this)->pred_begin(); 214 } 215 const_pred_iterator pred_end() const { 216 return const_cast<ExplodedNode*>(this)->pred_end(); 217 } 218 219 succ_iterator succ_begin() { return Succs.begin(); } 220 succ_iterator succ_end() { return Succs.end(); } 221 222 const_succ_iterator succ_begin() const { 223 return const_cast<ExplodedNode*>(this)->succ_begin(); 224 } 225 const_succ_iterator succ_end() const { 226 return const_cast<ExplodedNode*>(this)->succ_end(); 227 } 228 229 // For debugging. 230 231 public: 232 233 class Auditor { 234 public: 235 virtual ~Auditor(); 236 virtual void AddEdge(ExplodedNode *Src, ExplodedNode *Dst) = 0; 237 }; 238 239 static void SetAuditor(Auditor* A); 240 241 private: 242 void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); } 243 void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); } 244 }; 245 246 typedef llvm::DenseMap<const ExplodedNode *, const ExplodedNode *> 247 InterExplodedGraphMap; 248 249 class ExplodedGraph { 250 protected: 251 friend class CoreEngine; 252 253 // Type definitions. 254 typedef std::vector<ExplodedNode *> NodeVector; 255 256 /// The roots of the simulation graph. Usually there will be only 257 /// one, but clients are free to establish multiple subgraphs within a single 258 /// SimulGraph. Moreover, these subgraphs can often merge when paths from 259 /// different roots reach the same state at the same program location. 260 NodeVector Roots; 261 262 /// The nodes in the simulation graph which have been 263 /// specially marked as the endpoint of an abstract simulation path. 264 NodeVector EndNodes; 265 266 /// Nodes - The nodes in the graph. 267 llvm::FoldingSet<ExplodedNode> Nodes; 268 269 /// BVC - Allocator and context for allocating nodes and their predecessor 270 /// and successor groups. 271 BumpVectorContext BVC; 272 273 /// NumNodes - The number of nodes in the graph. 274 unsigned NumNodes; 275 276 /// A list of recently allocated nodes that can potentially be recycled. 277 NodeVector ChangedNodes; 278 279 /// A list of nodes that can be reused. 280 NodeVector FreeNodes; 281 282 /// Determines how often nodes are reclaimed. 283 /// 284 /// If this is 0, nodes will never be reclaimed. 285 unsigned ReclaimNodeInterval; 286 287 /// Counter to determine when to reclaim nodes. 288 unsigned ReclaimCounter; 289 290 public: 291 292 /// \brief Retrieve the node associated with a (Location,State) pair, 293 /// where the 'Location' is a ProgramPoint in the CFG. If no node for 294 /// this pair exists, it is created. IsNew is set to true if 295 /// the node was freshly created. 296 ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State, 297 bool IsSink = false, 298 bool* IsNew = 0); 299 300 ExplodedGraph* MakeEmptyGraph() const { 301 return new ExplodedGraph(); 302 } 303 304 /// addRoot - Add an untyped node to the set of roots. 305 ExplodedNode *addRoot(ExplodedNode *V) { 306 Roots.push_back(V); 307 return V; 308 } 309 310 /// addEndOfPath - Add an untyped node to the set of EOP nodes. 311 ExplodedNode *addEndOfPath(ExplodedNode *V) { 312 EndNodes.push_back(V); 313 return V; 314 } 315 316 ExplodedGraph(); 317 318 ~ExplodedGraph(); 319 320 unsigned num_roots() const { return Roots.size(); } 321 unsigned num_eops() const { return EndNodes.size(); } 322 323 bool empty() const { return NumNodes == 0; } 324 unsigned size() const { return NumNodes; } 325 326 // Iterators. 327 typedef ExplodedNode NodeTy; 328 typedef llvm::FoldingSet<ExplodedNode> AllNodesTy; 329 typedef NodeVector::iterator roots_iterator; 330 typedef NodeVector::const_iterator const_roots_iterator; 331 typedef NodeVector::iterator eop_iterator; 332 typedef NodeVector::const_iterator const_eop_iterator; 333 typedef AllNodesTy::iterator node_iterator; 334 typedef AllNodesTy::const_iterator const_node_iterator; 335 336 node_iterator nodes_begin() { return Nodes.begin(); } 337 338 node_iterator nodes_end() { return Nodes.end(); } 339 340 const_node_iterator nodes_begin() const { return Nodes.begin(); } 341 342 const_node_iterator nodes_end() const { return Nodes.end(); } 343 344 roots_iterator roots_begin() { return Roots.begin(); } 345 346 roots_iterator roots_end() { return Roots.end(); } 347 348 const_roots_iterator roots_begin() const { return Roots.begin(); } 349 350 const_roots_iterator roots_end() const { return Roots.end(); } 351 352 eop_iterator eop_begin() { return EndNodes.begin(); } 353 354 eop_iterator eop_end() { return EndNodes.end(); } 355 356 const_eop_iterator eop_begin() const { return EndNodes.begin(); } 357 358 const_eop_iterator eop_end() const { return EndNodes.end(); } 359 360 llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); } 361 BumpVectorContext &getNodeAllocator() { return BVC; } 362 363 typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> NodeMap; 364 365 /// Creates a trimmed version of the graph that only contains paths leading 366 /// to the given nodes. 367 /// 368 /// \param Nodes The nodes which must appear in the final graph. Presumably 369 /// these are end-of-path nodes (i.e. they have no successors). 370 /// \param[out] ForwardMap A optional map from nodes in this graph to nodes in 371 /// the returned graph. 372 /// \param[out] InverseMap An optional map from nodes in the returned graph to 373 /// nodes in this graph. 374 /// \returns The trimmed graph 375 ExplodedGraph *trim(ArrayRef<const NodeTy *> Nodes, 376 InterExplodedGraphMap *ForwardMap = 0, 377 InterExplodedGraphMap *InverseMap = 0) const; 378 379 /// Enable tracking of recently allocated nodes for potential reclamation 380 /// when calling reclaimRecentlyAllocatedNodes(). 381 void enableNodeReclamation(unsigned Interval) { 382 ReclaimCounter = ReclaimNodeInterval = Interval; 383 } 384 385 /// Reclaim "uninteresting" nodes created since the last time this method 386 /// was called. 387 void reclaimRecentlyAllocatedNodes(); 388 389 /// \brief Returns true if nodes for the given expression kind are always 390 /// kept around. 391 static bool isInterestingLValueExpr(const Expr *Ex); 392 393 private: 394 bool shouldCollect(const ExplodedNode *node); 395 void collectNode(ExplodedNode *node); 396 }; 397 398 class ExplodedNodeSet { 399 typedef llvm::SmallPtrSet<ExplodedNode*,5> ImplTy; 400 ImplTy Impl; 401 402 public: 403 ExplodedNodeSet(ExplodedNode *N) { 404 assert (N && !static_cast<ExplodedNode*>(N)->isSink()); 405 Impl.insert(N); 406 } 407 408 ExplodedNodeSet() {} 409 410 inline void Add(ExplodedNode *N) { 411 if (N && !static_cast<ExplodedNode*>(N)->isSink()) Impl.insert(N); 412 } 413 414 typedef ImplTy::iterator iterator; 415 typedef ImplTy::const_iterator const_iterator; 416 417 unsigned size() const { return Impl.size(); } 418 bool empty() const { return Impl.empty(); } 419 bool erase(ExplodedNode *N) { return Impl.erase(N); } 420 421 void clear() { Impl.clear(); } 422 void insert(const ExplodedNodeSet &S) { 423 assert(&S != this); 424 if (empty()) 425 Impl = S.Impl; 426 else 427 Impl.insert(S.begin(), S.end()); 428 } 429 430 inline iterator begin() { return Impl.begin(); } 431 inline iterator end() { return Impl.end(); } 432 433 inline const_iterator begin() const { return Impl.begin(); } 434 inline const_iterator end() const { return Impl.end(); } 435 }; 436 437 } // end GR namespace 438 439 } // end clang namespace 440 441 // GraphTraits 442 443 namespace llvm { 444 template<> struct GraphTraits<clang::ento::ExplodedNode*> { 445 typedef clang::ento::ExplodedNode NodeType; 446 typedef NodeType::succ_iterator ChildIteratorType; 447 typedef llvm::df_iterator<NodeType*> nodes_iterator; 448 449 static inline NodeType* getEntryNode(NodeType* N) { 450 return N; 451 } 452 453 static inline ChildIteratorType child_begin(NodeType* N) { 454 return N->succ_begin(); 455 } 456 457 static inline ChildIteratorType child_end(NodeType* N) { 458 return N->succ_end(); 459 } 460 461 static inline nodes_iterator nodes_begin(NodeType* N) { 462 return df_begin(N); 463 } 464 465 static inline nodes_iterator nodes_end(NodeType* N) { 466 return df_end(N); 467 } 468 }; 469 470 template<> struct GraphTraits<const clang::ento::ExplodedNode*> { 471 typedef const clang::ento::ExplodedNode NodeType; 472 typedef NodeType::const_succ_iterator ChildIteratorType; 473 typedef llvm::df_iterator<NodeType*> nodes_iterator; 474 475 static inline NodeType* getEntryNode(NodeType* N) { 476 return N; 477 } 478 479 static inline ChildIteratorType child_begin(NodeType* N) { 480 return N->succ_begin(); 481 } 482 483 static inline ChildIteratorType child_end(NodeType* N) { 484 return N->succ_end(); 485 } 486 487 static inline nodes_iterator nodes_begin(NodeType* N) { 488 return df_begin(N); 489 } 490 491 static inline nodes_iterator nodes_end(NodeType* N) { 492 return df_end(N); 493 } 494 }; 495 496 } // end llvm namespace 497 498 #endif 499