1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 31 #ifndef CERES_PUBLIC_SOLVER_H_ 32 #define CERES_PUBLIC_SOLVER_H_ 33 34 #include <cmath> 35 #include <string> 36 #include <vector> 37 #include "ceres/crs_matrix.h" 38 #include "ceres/internal/macros.h" 39 #include "ceres/internal/port.h" 40 #include "ceres/iteration_callback.h" 41 #include "ceres/ordered_groups.h" 42 #include "ceres/types.h" 43 44 namespace ceres { 45 46 class Problem; 47 48 // Interface for non-linear least squares solvers. 49 class Solver { 50 public: 51 virtual ~Solver(); 52 53 // The options structure contains, not surprisingly, options that control how 54 // the solver operates. The defaults should be suitable for a wide range of 55 // problems; however, better performance is often obtainable with tweaking. 56 // 57 // The constants are defined inside types.h 58 struct Options { 59 // Default constructor that sets up a generic sparse problem. 60 Options() { 61 minimizer_type = TRUST_REGION; 62 line_search_direction_type = LBFGS; 63 line_search_type = WOLFE; 64 nonlinear_conjugate_gradient_type = FLETCHER_REEVES; 65 max_lbfgs_rank = 20; 66 use_approximate_eigenvalue_bfgs_scaling = false; 67 line_search_interpolation_type = CUBIC; 68 min_line_search_step_size = 1e-9; 69 line_search_sufficient_function_decrease = 1e-4; 70 max_line_search_step_contraction = 1e-3; 71 min_line_search_step_contraction = 0.6; 72 max_num_line_search_step_size_iterations = 20; 73 max_num_line_search_direction_restarts = 5; 74 line_search_sufficient_curvature_decrease = 0.9; 75 max_line_search_step_expansion = 10.0; 76 trust_region_strategy_type = LEVENBERG_MARQUARDT; 77 dogleg_type = TRADITIONAL_DOGLEG; 78 use_nonmonotonic_steps = false; 79 max_consecutive_nonmonotonic_steps = 5; 80 max_num_iterations = 50; 81 max_solver_time_in_seconds = 1e9; 82 num_threads = 1; 83 initial_trust_region_radius = 1e4; 84 max_trust_region_radius = 1e16; 85 min_trust_region_radius = 1e-32; 86 min_relative_decrease = 1e-3; 87 min_lm_diagonal = 1e-6; 88 max_lm_diagonal = 1e32; 89 max_num_consecutive_invalid_steps = 5; 90 function_tolerance = 1e-6; 91 gradient_tolerance = 1e-10; 92 parameter_tolerance = 1e-8; 93 94 #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) 95 linear_solver_type = DENSE_QR; 96 #else 97 linear_solver_type = SPARSE_NORMAL_CHOLESKY; 98 #endif 99 100 preconditioner_type = JACOBI; 101 102 dense_linear_algebra_library_type = EIGEN; 103 sparse_linear_algebra_library_type = SUITE_SPARSE; 104 #if defined(CERES_NO_SUITESPARSE) && !defined(CERES_NO_CXSPARSE) 105 sparse_linear_algebra_library_type = CX_SPARSE; 106 #endif 107 108 109 num_linear_solver_threads = 1; 110 linear_solver_ordering = NULL; 111 use_postordering = false; 112 min_linear_solver_iterations = 1; 113 max_linear_solver_iterations = 500; 114 eta = 1e-1; 115 jacobi_scaling = true; 116 use_inner_iterations = false; 117 inner_iteration_tolerance = 1e-3; 118 inner_iteration_ordering = NULL; 119 logging_type = PER_MINIMIZER_ITERATION; 120 minimizer_progress_to_stdout = false; 121 trust_region_problem_dump_directory = "/tmp"; 122 trust_region_problem_dump_format_type = TEXTFILE; 123 check_gradients = false; 124 gradient_check_relative_precision = 1e-8; 125 numeric_derivative_relative_step_size = 1e-6; 126 update_state_every_iteration = false; 127 } 128 129 ~Options(); 130 // Minimizer options ---------------------------------------- 131 132 // Ceres supports the two major families of optimization strategies - 133 // Trust Region and Line Search. 134 // 135 // 1. The line search approach first finds a descent direction 136 // along which the objective function will be reduced and then 137 // computes a step size that decides how far should move along 138 // that direction. The descent direction can be computed by 139 // various methods, such as gradient descent, Newton's method and 140 // Quasi-Newton method. The step size can be determined either 141 // exactly or inexactly. 142 // 143 // 2. The trust region approach approximates the objective 144 // function using using a model function (often a quadratic) over 145 // a subset of the search space known as the trust region. If the 146 // model function succeeds in minimizing the true objective 147 // function the trust region is expanded; conversely, otherwise it 148 // is contracted and the model optimization problem is solved 149 // again. 150 // 151 // Trust region methods are in some sense dual to line search methods: 152 // trust region methods first choose a step size (the size of the 153 // trust region) and then a step direction while line search methods 154 // first choose a step direction and then a step size. 155 MinimizerType minimizer_type; 156 157 LineSearchDirectionType line_search_direction_type; 158 LineSearchType line_search_type; 159 NonlinearConjugateGradientType nonlinear_conjugate_gradient_type; 160 161 // The LBFGS hessian approximation is a low rank approximation to 162 // the inverse of the Hessian matrix. The rank of the 163 // approximation determines (linearly) the space and time 164 // complexity of using the approximation. Higher the rank, the 165 // better is the quality of the approximation. The increase in 166 // quality is however is bounded for a number of reasons. 167 // 168 // 1. The method only uses secant information and not actual 169 // derivatives. 170 // 171 // 2. The Hessian approximation is constrained to be positive 172 // definite. 173 // 174 // So increasing this rank to a large number will cost time and 175 // space complexity without the corresponding increase in solution 176 // quality. There are no hard and fast rules for choosing the 177 // maximum rank. The best choice usually requires some problem 178 // specific experimentation. 179 // 180 // For more theoretical and implementation details of the LBFGS 181 // method, please see: 182 // 183 // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with 184 // Limited Storage". Mathematics of Computation 35 (151): 773782. 185 int max_lbfgs_rank; 186 187 // As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS), 188 // the initial inverse Hessian approximation is taken to be the Identity. 189 // However, Oren showed that using instead I * \gamma, where \gamma is 190 // chosen to approximate an eigenvalue of the true inverse Hessian can 191 // result in improved convergence in a wide variety of cases. Setting 192 // use_approximate_eigenvalue_bfgs_scaling to true enables this scaling. 193 // 194 // It is important to note that approximate eigenvalue scaling does not 195 // always improve convergence, and that it can in fact significantly degrade 196 // performance for certain classes of problem, which is why it is disabled 197 // by default. In particular it can degrade performance when the 198 // sensitivity of the problem to different parameters varies significantly, 199 // as in this case a single scalar factor fails to capture this variation 200 // and detrimentally downscales parts of the jacobian approximation which 201 // correspond to low-sensitivity parameters. It can also reduce the 202 // robustness of the solution to errors in the jacobians. 203 // 204 // Oren S.S., Self-scaling variable metric (SSVM) algorithms 205 // Part II: Implementation and experiments, Management Science, 206 // 20(5), 863-874, 1974. 207 bool use_approximate_eigenvalue_bfgs_scaling; 208 209 // Degree of the polynomial used to approximate the objective 210 // function. Valid values are BISECTION, QUADRATIC and CUBIC. 211 // 212 // BISECTION corresponds to pure backtracking search with no 213 // interpolation. 214 LineSearchInterpolationType line_search_interpolation_type; 215 216 // If during the line search, the step_size falls below this 217 // value, it is truncated to zero. 218 double min_line_search_step_size; 219 220 // Line search parameters. 221 222 // Solving the line search problem exactly is computationally 223 // prohibitive. Fortunately, line search based optimization 224 // algorithms can still guarantee convergence if instead of an 225 // exact solution, the line search algorithm returns a solution 226 // which decreases the value of the objective function 227 // sufficiently. More precisely, we are looking for a step_size 228 // s.t. 229 // 230 // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size 231 // 232 double line_search_sufficient_function_decrease; 233 234 // In each iteration of the line search, 235 // 236 // new_step_size >= max_line_search_step_contraction * step_size 237 // 238 // Note that by definition, for contraction: 239 // 240 // 0 < max_step_contraction < min_step_contraction < 1 241 // 242 double max_line_search_step_contraction; 243 244 // In each iteration of the line search, 245 // 246 // new_step_size <= min_line_search_step_contraction * step_size 247 // 248 // Note that by definition, for contraction: 249 // 250 // 0 < max_step_contraction < min_step_contraction < 1 251 // 252 double min_line_search_step_contraction; 253 254 // Maximum number of trial step size iterations during each line search, 255 // if a step size satisfying the search conditions cannot be found within 256 // this number of trials, the line search will terminate. 257 int max_num_line_search_step_size_iterations; 258 259 // Maximum number of restarts of the line search direction algorithm before 260 // terminating the optimization. Restarts of the line search direction 261 // algorithm occur when the current algorithm fails to produce a new descent 262 // direction. This typically indicates a numerical failure, or a breakdown 263 // in the validity of the approximations used. 264 int max_num_line_search_direction_restarts; 265 266 // The strong Wolfe conditions consist of the Armijo sufficient 267 // decrease condition, and an additional requirement that the 268 // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe 269 // conditions) of the gradient along the search direction 270 // decreases sufficiently. Precisely, this second condition 271 // is that we seek a step_size s.t. 272 // 273 // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| 274 // 275 // Where f() is the line search objective and f'() is the derivative 276 // of f w.r.t step_size (d f / d step_size). 277 double line_search_sufficient_curvature_decrease; 278 279 // During the bracketing phase of the Wolfe search, the step size is 280 // increased until either a point satisfying the Wolfe conditions is 281 // found, or an upper bound for a bracket containing a point satisfying 282 // the conditions is found. Precisely, at each iteration of the 283 // expansion: 284 // 285 // new_step_size <= max_step_expansion * step_size. 286 // 287 // By definition for expansion, max_step_expansion > 1.0. 288 double max_line_search_step_expansion; 289 290 TrustRegionStrategyType trust_region_strategy_type; 291 292 // Type of dogleg strategy to use. 293 DoglegType dogleg_type; 294 295 // The classical trust region methods are descent methods, in that 296 // they only accept a point if it strictly reduces the value of 297 // the objective function. 298 // 299 // Relaxing this requirement allows the algorithm to be more 300 // efficient in the long term at the cost of some local increase 301 // in the value of the objective function. 302 // 303 // This is because allowing for non-decreasing objective function 304 // values in a princpled manner allows the algorithm to "jump over 305 // boulders" as the method is not restricted to move into narrow 306 // valleys while preserving its convergence properties. 307 // 308 // Setting use_nonmonotonic_steps to true enables the 309 // non-monotonic trust region algorithm as described by Conn, 310 // Gould & Toint in "Trust Region Methods", Section 10.1. 311 // 312 // The parameter max_consecutive_nonmonotonic_steps controls the 313 // window size used by the step selection algorithm to accept 314 // non-monotonic steps. 315 // 316 // Even though the value of the objective function may be larger 317 // than the minimum value encountered over the course of the 318 // optimization, the final parameters returned to the user are the 319 // ones corresponding to the minimum cost over all iterations. 320 bool use_nonmonotonic_steps; 321 int max_consecutive_nonmonotonic_steps; 322 323 // Maximum number of iterations for the minimizer to run for. 324 int max_num_iterations; 325 326 // Maximum time for which the minimizer should run for. 327 double max_solver_time_in_seconds; 328 329 // Number of threads used by Ceres for evaluating the cost and 330 // jacobians. 331 int num_threads; 332 333 // Trust region minimizer settings. 334 double initial_trust_region_radius; 335 double max_trust_region_radius; 336 337 // Minimizer terminates when the trust region radius becomes 338 // smaller than this value. 339 double min_trust_region_radius; 340 341 // Lower bound for the relative decrease before a step is 342 // accepted. 343 double min_relative_decrease; 344 345 // For the Levenberg-Marquadt algorithm, the scaled diagonal of 346 // the normal equations J'J is used to control the size of the 347 // trust region. Extremely small and large values along the 348 // diagonal can make this regularization scheme 349 // fail. max_lm_diagonal and min_lm_diagonal, clamp the values of 350 // diag(J'J) from above and below. In the normal course of 351 // operation, the user should not have to modify these parameters. 352 double min_lm_diagonal; 353 double max_lm_diagonal; 354 355 // Sometimes due to numerical conditioning problems or linear 356 // solver flakiness, the trust region strategy may return a 357 // numerically invalid step that can be fixed by reducing the 358 // trust region size. So the TrustRegionMinimizer allows for a few 359 // successive invalid steps before it declares NUMERICAL_FAILURE. 360 int max_num_consecutive_invalid_steps; 361 362 // Minimizer terminates when 363 // 364 // (new_cost - old_cost) < function_tolerance * old_cost; 365 // 366 double function_tolerance; 367 368 // Minimizer terminates when 369 // 370 // max_i |gradient_i| < gradient_tolerance * max_i|initial_gradient_i| 371 // 372 // This value should typically be 1e-4 * function_tolerance. 373 double gradient_tolerance; 374 375 // Minimizer terminates when 376 // 377 // |step|_2 <= parameter_tolerance * ( |x|_2 + parameter_tolerance) 378 // 379 double parameter_tolerance; 380 381 // Linear least squares solver options ------------------------------------- 382 383 LinearSolverType linear_solver_type; 384 385 // Type of preconditioner to use with the iterative linear solvers. 386 PreconditionerType preconditioner_type; 387 388 // Ceres supports using multiple dense linear algebra libraries 389 // for dense matrix factorizations. Currently EIGEN and LAPACK are 390 // the valid choices. EIGEN is always available, LAPACK refers to 391 // the system BLAS + LAPACK library which may or may not be 392 // available. 393 // 394 // This setting affects the DENSE_QR, DENSE_NORMAL_CHOLESKY and 395 // DENSE_SCHUR solvers. For small to moderate sized probem EIGEN 396 // is a fine choice but for large problems, an optimized LAPACK + 397 // BLAS implementation can make a substantial difference in 398 // performance. 399 DenseLinearAlgebraLibraryType dense_linear_algebra_library_type; 400 401 // Ceres supports using multiple sparse linear algebra libraries 402 // for sparse matrix ordering and factorizations. Currently, 403 // SUITE_SPARSE and CX_SPARSE are the valid choices, depending on 404 // whether they are linked into Ceres at build time. 405 SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type; 406 407 // Number of threads used by Ceres to solve the Newton 408 // step. Currently only the SPARSE_SCHUR solver is capable of 409 // using this setting. 410 int num_linear_solver_threads; 411 412 // The order in which variables are eliminated in a linear solver 413 // can have a significant of impact on the efficiency and accuracy 414 // of the method. e.g., when doing sparse Cholesky factorization, 415 // there are matrices for which a good ordering will give a 416 // Cholesky factor with O(n) storage, where as a bad ordering will 417 // result in an completely dense factor. 418 // 419 // Ceres allows the user to provide varying amounts of hints to 420 // the solver about the variable elimination ordering to use. This 421 // can range from no hints, where the solver is free to decide the 422 // best possible ordering based on the user's choices like the 423 // linear solver being used, to an exact order in which the 424 // variables should be eliminated, and a variety of possibilities 425 // in between. 426 // 427 // Instances of the ParameterBlockOrdering class are used to 428 // communicate this information to Ceres. 429 // 430 // Formally an ordering is an ordered partitioning of the 431 // parameter blocks, i.e, each parameter block belongs to exactly 432 // one group, and each group has a unique non-negative integer 433 // associated with it, that determines its order in the set of 434 // groups. 435 // 436 // Given such an ordering, Ceres ensures that the parameter blocks in 437 // the lowest numbered group are eliminated first, and then the 438 // parmeter blocks in the next lowest numbered group and so on. Within 439 // each group, Ceres is free to order the parameter blocks as it 440 // chooses. 441 // 442 // If NULL, then all parameter blocks are assumed to be in the 443 // same group and the solver is free to decide the best 444 // ordering. 445 // 446 // e.g. Consider the linear system 447 // 448 // x + y = 3 449 // 2x + 3y = 7 450 // 451 // There are two ways in which it can be solved. First eliminating x 452 // from the two equations, solving for y and then back substituting 453 // for x, or first eliminating y, solving for x and back substituting 454 // for y. The user can construct three orderings here. 455 // 456 // {0: x}, {1: y} - eliminate x first. 457 // {0: y}, {1: x} - eliminate y first. 458 // {0: x, y} - Solver gets to decide the elimination order. 459 // 460 // Thus, to have Ceres determine the ordering automatically using 461 // heuristics, put all the variables in group 0 and to control the 462 // ordering for every variable, create groups 0..N-1, one per 463 // variable, in the desired order. 464 // 465 // Bundle Adjustment 466 // ----------------- 467 // 468 // A particular case of interest is bundle adjustment, where the user 469 // has two options. The default is to not specify an ordering at all, 470 // the solver will see that the user wants to use a Schur type solver 471 // and figure out the right elimination ordering. 472 // 473 // But if the user already knows what parameter blocks are points and 474 // what are cameras, they can save preprocessing time by partitioning 475 // the parameter blocks into two groups, one for the points and one 476 // for the cameras, where the group containing the points has an id 477 // smaller than the group containing cameras. 478 // 479 // Once assigned, Solver::Options owns this pointer and will 480 // deallocate the memory when destroyed. 481 ParameterBlockOrdering* linear_solver_ordering; 482 483 // Sparse Cholesky factorization algorithms use a fill-reducing 484 // ordering to permute the columns of the Jacobian matrix. There 485 // are two ways of doing this. 486 487 // 1. Compute the Jacobian matrix in some order and then have the 488 // factorization algorithm permute the columns of the Jacobian. 489 490 // 2. Compute the Jacobian with its columns already permuted. 491 492 // The first option incurs a significant memory penalty. The 493 // factorization algorithm has to make a copy of the permuted 494 // Jacobian matrix, thus Ceres pre-permutes the columns of the 495 // Jacobian matrix and generally speaking, there is no performance 496 // penalty for doing so. 497 498 // In some rare cases, it is worth using a more complicated 499 // reordering algorithm which has slightly better runtime 500 // performance at the expense of an extra copy of the Jacobian 501 // matrix. Setting use_postordering to true enables this tradeoff. 502 bool use_postordering; 503 504 // Some non-linear least squares problems have additional 505 // structure in the way the parameter blocks interact that it is 506 // beneficial to modify the way the trust region step is computed. 507 // 508 // e.g., consider the following regression problem 509 // 510 // y = a_1 exp(b_1 x) + a_2 exp(b_3 x^2 + c_1) 511 // 512 // Given a set of pairs{(x_i, y_i)}, the user wishes to estimate 513 // a_1, a_2, b_1, b_2, and c_1. 514 // 515 // Notice here that the expression on the left is linear in a_1 516 // and a_2, and given any value for b_1, b_2 and c_1, it is 517 // possible to use linear regression to estimate the optimal 518 // values of a_1 and a_2. Indeed, its possible to analytically 519 // eliminate the variables a_1 and a_2 from the problem all 520 // together. Problems like these are known as separable least 521 // squares problem and the most famous algorithm for solving them 522 // is the Variable Projection algorithm invented by Golub & 523 // Pereyra. 524 // 525 // Similar structure can be found in the matrix factorization with 526 // missing data problem. There the corresponding algorithm is 527 // known as Wiberg's algorithm. 528 // 529 // Ruhe & Wedin (Algorithms for Separable Nonlinear Least Squares 530 // Problems, SIAM Reviews, 22(3), 1980) present an analyis of 531 // various algorithms for solving separable non-linear least 532 // squares problems and refer to "Variable Projection" as 533 // Algorithm I in their paper. 534 // 535 // Implementing Variable Projection is tedious and expensive, and 536 // they present a simpler algorithm, which they refer to as 537 // Algorithm II, where once the Newton/Trust Region step has been 538 // computed for the whole problem (a_1, a_2, b_1, b_2, c_1) and 539 // additional optimization step is performed to estimate a_1 and 540 // a_2 exactly. 541 // 542 // This idea can be generalized to cases where the residual is not 543 // linear in a_1 and a_2, i.e., Solve for the trust region step 544 // for the full problem, and then use it as the starting point to 545 // further optimize just a_1 and a_2. For the linear case, this 546 // amounts to doing a single linear least squares solve. For 547 // non-linear problems, any method for solving the a_1 and a_2 548 // optimization problems will do. The only constraint on a_1 and 549 // a_2 is that they do not co-occur in any residual block. 550 // 551 // This idea can be further generalized, by not just optimizing 552 // (a_1, a_2), but decomposing the graph corresponding to the 553 // Hessian matrix's sparsity structure in a collection of 554 // non-overlapping independent sets and optimizing each of them. 555 // 556 // Setting "use_inner_iterations" to true enables the use of this 557 // non-linear generalization of Ruhe & Wedin's Algorithm II. This 558 // version of Ceres has a higher iteration complexity, but also 559 // displays better convergence behaviour per iteration. Setting 560 // Solver::Options::num_threads to the maximum number possible is 561 // highly recommended. 562 bool use_inner_iterations; 563 564 // If inner_iterations is true, then the user has two choices. 565 // 566 // 1. Let the solver heuristically decide which parameter blocks 567 // to optimize in each inner iteration. To do this leave 568 // Solver::Options::inner_iteration_ordering untouched. 569 // 570 // 2. Specify a collection of of ordered independent sets. Where 571 // the lower numbered groups are optimized before the higher 572 // number groups. Each group must be an independent set. Not 573 // all parameter blocks need to be present in the ordering. 574 ParameterBlockOrdering* inner_iteration_ordering; 575 576 // Generally speaking, inner iterations make significant progress 577 // in the early stages of the solve and then their contribution 578 // drops down sharply, at which point the time spent doing inner 579 // iterations is not worth it. 580 // 581 // Once the relative decrease in the objective function due to 582 // inner iterations drops below inner_iteration_tolerance, the use 583 // of inner iterations in subsequent trust region minimizer 584 // iterations is disabled. 585 double inner_iteration_tolerance; 586 587 // Minimum number of iterations for which the linear solver should 588 // run, even if the convergence criterion is satisfied. 589 int min_linear_solver_iterations; 590 591 // Maximum number of iterations for which the linear solver should 592 // run. If the solver does not converge in less than 593 // max_linear_solver_iterations, then it returns MAX_ITERATIONS, 594 // as its termination type. 595 int max_linear_solver_iterations; 596 597 // Forcing sequence parameter. The truncated Newton solver uses 598 // this number to control the relative accuracy with which the 599 // Newton step is computed. 600 // 601 // This constant is passed to ConjugateGradientsSolver which uses 602 // it to terminate the iterations when 603 // 604 // (Q_i - Q_{i-1})/Q_i < eta/i 605 double eta; 606 607 // Normalize the jacobian using Jacobi scaling before calling 608 // the linear least squares solver. 609 bool jacobi_scaling; 610 611 // Logging options --------------------------------------------------------- 612 613 LoggingType logging_type; 614 615 // By default the Minimizer progress is logged to VLOG(1), which 616 // is sent to STDERR depending on the vlog level. If this flag is 617 // set to true, and logging_type is not SILENT, the logging output 618 // is sent to STDOUT. 619 bool minimizer_progress_to_stdout; 620 621 // List of iterations at which the minimizer should dump the trust 622 // region problem. Useful for testing and benchmarking. If empty 623 // (default), no problems are dumped. 624 vector<int> trust_region_minimizer_iterations_to_dump; 625 626 // Directory to which the problems should be written to. Should be 627 // non-empty if trust_region_minimizer_iterations_to_dump is 628 // non-empty and trust_region_problem_dump_format_type is not 629 // CONSOLE. 630 string trust_region_problem_dump_directory; 631 DumpFormatType trust_region_problem_dump_format_type; 632 633 // Finite differences options ---------------------------------------------- 634 635 // Check all jacobians computed by each residual block with finite 636 // differences. This is expensive since it involves computing the 637 // derivative by normal means (e.g. user specified, autodiff, 638 // etc), then also computing it using finite differences. The 639 // results are compared, and if they differ substantially, details 640 // are printed to the log. 641 bool check_gradients; 642 643 // Relative precision to check for in the gradient checker. If the 644 // relative difference between an element in a jacobian exceeds 645 // this number, then the jacobian for that cost term is dumped. 646 double gradient_check_relative_precision; 647 648 // Relative shift used for taking numeric derivatives. For finite 649 // differencing, each dimension is evaluated at slightly shifted 650 // values; for the case of central difference, this is what gets 651 // evaluated: 652 // 653 // delta = numeric_derivative_relative_step_size; 654 // f_initial = f(x) 655 // f_forward = f((1 + delta) * x) 656 // f_backward = f((1 - delta) * x) 657 // 658 // The finite differencing is done along each dimension. The 659 // reason to use a relative (rather than absolute) step size is 660 // that this way, numeric differentation works for functions where 661 // the arguments are typically large (e.g. 1e9) and when the 662 // values are small (e.g. 1e-5). It is possible to construct 663 // "torture cases" which break this finite difference heuristic, 664 // but they do not come up often in practice. 665 // 666 // TODO(keir): Pick a smarter number than the default above! In 667 // theory a good choice is sqrt(eps) * x, which for doubles means 668 // about 1e-8 * x. However, I have found this number too 669 // optimistic. This number should be exposed for users to change. 670 double numeric_derivative_relative_step_size; 671 672 // If true, the user's parameter blocks are updated at the end of 673 // every Minimizer iteration, otherwise they are updated when the 674 // Minimizer terminates. This is useful if, for example, the user 675 // wishes to visualize the state of the optimization every 676 // iteration. 677 bool update_state_every_iteration; 678 679 // Callbacks that are executed at the end of each iteration of the 680 // Minimizer. An iteration may terminate midway, either due to 681 // numerical failures or because one of the convergence tests has 682 // been satisfied. In this case none of the callbacks are 683 // executed. 684 685 // Callbacks are executed in the order that they are specified in 686 // this vector. By default, parameter blocks are updated only at 687 // the end of the optimization, i.e when the Minimizer 688 // terminates. This behaviour is controlled by 689 // update_state_every_variable. If the user wishes to have access 690 // to the update parameter blocks when his/her callbacks are 691 // executed, then set update_state_every_iteration to true. 692 // 693 // The solver does NOT take ownership of these pointers. 694 vector<IterationCallback*> callbacks; 695 696 // If non-empty, a summary of the execution of the solver is 697 // recorded to this file. 698 string solver_log; 699 }; 700 701 struct Summary { 702 Summary(); 703 704 // A brief one line description of the state of the solver after 705 // termination. 706 string BriefReport() const; 707 708 // A full multiline description of the state of the solver after 709 // termination. 710 string FullReport() const; 711 712 // Minimizer summary ------------------------------------------------- 713 MinimizerType minimizer_type; 714 715 SolverTerminationType termination_type; 716 717 // If the solver did not run, or there was a failure, a 718 // description of the error. 719 string error; 720 721 // Cost of the problem before and after the optimization. See 722 // problem.h for definition of the cost of a problem. 723 double initial_cost; 724 double final_cost; 725 726 // The part of the total cost that comes from residual blocks that 727 // were held fixed by the preprocessor because all the parameter 728 // blocks that they depend on were fixed. 729 double fixed_cost; 730 731 vector<IterationSummary> iterations; 732 733 int num_successful_steps; 734 int num_unsuccessful_steps; 735 int num_inner_iteration_steps; 736 737 // All times reported below are wall times. 738 739 // When the user calls Solve, before the actual optimization 740 // occurs, Ceres performs a number of preprocessing steps. These 741 // include error checks, memory allocations, and reorderings. This 742 // time is accounted for as preprocessing time. 743 double preprocessor_time_in_seconds; 744 745 // Time spent in the TrustRegionMinimizer. 746 double minimizer_time_in_seconds; 747 748 // After the Minimizer is finished, some time is spent in 749 // re-evaluating residuals etc. This time is accounted for in the 750 // postprocessor time. 751 double postprocessor_time_in_seconds; 752 753 // Some total of all time spent inside Ceres when Solve is called. 754 double total_time_in_seconds; 755 756 double linear_solver_time_in_seconds; 757 double residual_evaluation_time_in_seconds; 758 double jacobian_evaluation_time_in_seconds; 759 double inner_iteration_time_in_seconds; 760 761 // Preprocessor summary. 762 int num_parameter_blocks; 763 int num_parameters; 764 int num_effective_parameters; 765 int num_residual_blocks; 766 int num_residuals; 767 768 int num_parameter_blocks_reduced; 769 int num_parameters_reduced; 770 int num_effective_parameters_reduced; 771 int num_residual_blocks_reduced; 772 int num_residuals_reduced; 773 774 int num_eliminate_blocks_given; 775 int num_eliminate_blocks_used; 776 777 int num_threads_given; 778 int num_threads_used; 779 780 int num_linear_solver_threads_given; 781 int num_linear_solver_threads_used; 782 783 LinearSolverType linear_solver_type_given; 784 LinearSolverType linear_solver_type_used; 785 786 vector<int> linear_solver_ordering_given; 787 vector<int> linear_solver_ordering_used; 788 789 bool inner_iterations_given; 790 bool inner_iterations_used; 791 792 vector<int> inner_iteration_ordering_given; 793 vector<int> inner_iteration_ordering_used; 794 795 PreconditionerType preconditioner_type; 796 797 TrustRegionStrategyType trust_region_strategy_type; 798 DoglegType dogleg_type; 799 800 DenseLinearAlgebraLibraryType dense_linear_algebra_library_type; 801 SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type; 802 803 LineSearchDirectionType line_search_direction_type; 804 LineSearchType line_search_type; 805 LineSearchInterpolationType line_search_interpolation_type; 806 NonlinearConjugateGradientType nonlinear_conjugate_gradient_type; 807 808 int max_lbfgs_rank; 809 }; 810 811 // Once a least squares problem has been built, this function takes 812 // the problem and optimizes it based on the values of the options 813 // parameters. Upon return, a detailed summary of the work performed 814 // by the preprocessor, the non-linear minmizer and the linear 815 // solver are reported in the summary object. 816 virtual void Solve(const Options& options, 817 Problem* problem, 818 Solver::Summary* summary); 819 }; 820 821 // Helper function which avoids going through the interface. 822 void Solve(const Solver::Options& options, 823 Problem* problem, 824 Solver::Summary* summary); 825 826 } // namespace ceres 827 828 #endif // CERES_PUBLIC_SOLVER_H_ 829