Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ code generation of classes
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGBlocks.h"
     15 #include "CGDebugInfo.h"
     16 #include "CGRecordLayout.h"
     17 #include "CodeGenFunction.h"
     18 #include "CGCXXABI.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/RecordLayout.h"
     22 #include "clang/AST/StmtCXX.h"
     23 #include "clang/Basic/TargetBuiltins.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 static CharUnits
     30 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
     31                                  const CXXRecordDecl *DerivedClass,
     32                                  CastExpr::path_const_iterator Start,
     33                                  CastExpr::path_const_iterator End) {
     34   CharUnits Offset = CharUnits::Zero();
     35 
     36   const CXXRecordDecl *RD = DerivedClass;
     37 
     38   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
     39     const CXXBaseSpecifier *Base = *I;
     40     assert(!Base->isVirtual() && "Should not see virtual bases here!");
     41 
     42     // Get the layout.
     43     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
     44 
     45     const CXXRecordDecl *BaseDecl =
     46       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
     47 
     48     // Add the offset.
     49     Offset += Layout.getBaseClassOffset(BaseDecl);
     50 
     51     RD = BaseDecl;
     52   }
     53 
     54   return Offset;
     55 }
     56 
     57 llvm::Constant *
     58 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
     59                                    CastExpr::path_const_iterator PathBegin,
     60                                    CastExpr::path_const_iterator PathEnd) {
     61   assert(PathBegin != PathEnd && "Base path should not be empty!");
     62 
     63   CharUnits Offset =
     64     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
     65                                      PathBegin, PathEnd);
     66   if (Offset.isZero())
     67     return 0;
     68 
     69   llvm::Type *PtrDiffTy =
     70   Types.ConvertType(getContext().getPointerDiffType());
     71 
     72   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
     73 }
     74 
     75 /// Gets the address of a direct base class within a complete object.
     76 /// This should only be used for (1) non-virtual bases or (2) virtual bases
     77 /// when the type is known to be complete (e.g. in complete destructors).
     78 ///
     79 /// The object pointed to by 'This' is assumed to be non-null.
     80 llvm::Value *
     81 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
     82                                                    const CXXRecordDecl *Derived,
     83                                                    const CXXRecordDecl *Base,
     84                                                    bool BaseIsVirtual) {
     85   // 'this' must be a pointer (in some address space) to Derived.
     86   assert(This->getType()->isPointerTy() &&
     87          cast<llvm::PointerType>(This->getType())->getElementType()
     88            == ConvertType(Derived));
     89 
     90   // Compute the offset of the virtual base.
     91   CharUnits Offset;
     92   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
     93   if (BaseIsVirtual)
     94     Offset = Layout.getVBaseClassOffset(Base);
     95   else
     96     Offset = Layout.getBaseClassOffset(Base);
     97 
     98   // Shift and cast down to the base type.
     99   // TODO: for complete types, this should be possible with a GEP.
    100   llvm::Value *V = This;
    101   if (Offset.isPositive()) {
    102     V = Builder.CreateBitCast(V, Int8PtrTy);
    103     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
    104   }
    105   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
    106 
    107   return V;
    108 }
    109 
    110 static llvm::Value *
    111 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
    112                                 CharUnits nonVirtualOffset,
    113                                 llvm::Value *virtualOffset) {
    114   // Assert that we have something to do.
    115   assert(!nonVirtualOffset.isZero() || virtualOffset != 0);
    116 
    117   // Compute the offset from the static and dynamic components.
    118   llvm::Value *baseOffset;
    119   if (!nonVirtualOffset.isZero()) {
    120     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
    121                                         nonVirtualOffset.getQuantity());
    122     if (virtualOffset) {
    123       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
    124     }
    125   } else {
    126     baseOffset = virtualOffset;
    127   }
    128 
    129   // Apply the base offset.
    130   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    131   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
    132   return ptr;
    133 }
    134 
    135 llvm::Value *
    136 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
    137                                        const CXXRecordDecl *Derived,
    138                                        CastExpr::path_const_iterator PathBegin,
    139                                        CastExpr::path_const_iterator PathEnd,
    140                                        bool NullCheckValue) {
    141   assert(PathBegin != PathEnd && "Base path should not be empty!");
    142 
    143   CastExpr::path_const_iterator Start = PathBegin;
    144   const CXXRecordDecl *VBase = 0;
    145 
    146   // Sema has done some convenient canonicalization here: if the
    147   // access path involved any virtual steps, the conversion path will
    148   // *start* with a step down to the correct virtual base subobject,
    149   // and hence will not require any further steps.
    150   if ((*Start)->isVirtual()) {
    151     VBase =
    152       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
    153     ++Start;
    154   }
    155 
    156   // Compute the static offset of the ultimate destination within its
    157   // allocating subobject (the virtual base, if there is one, or else
    158   // the "complete" object that we see).
    159   CharUnits NonVirtualOffset =
    160     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
    161                                      Start, PathEnd);
    162 
    163   // If there's a virtual step, we can sometimes "devirtualize" it.
    164   // For now, that's limited to when the derived type is final.
    165   // TODO: "devirtualize" this for accesses to known-complete objects.
    166   if (VBase && Derived->hasAttr<FinalAttr>()) {
    167     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
    168     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
    169     NonVirtualOffset += vBaseOffset;
    170     VBase = 0; // we no longer have a virtual step
    171   }
    172 
    173   // Get the base pointer type.
    174   llvm::Type *BasePtrTy =
    175     ConvertType((PathEnd[-1])->getType())->getPointerTo();
    176 
    177   // If the static offset is zero and we don't have a virtual step,
    178   // just do a bitcast; null checks are unnecessary.
    179   if (NonVirtualOffset.isZero() && !VBase) {
    180     return Builder.CreateBitCast(Value, BasePtrTy);
    181   }
    182 
    183   llvm::BasicBlock *origBB = 0;
    184   llvm::BasicBlock *endBB = 0;
    185 
    186   // Skip over the offset (and the vtable load) if we're supposed to
    187   // null-check the pointer.
    188   if (NullCheckValue) {
    189     origBB = Builder.GetInsertBlock();
    190     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
    191     endBB = createBasicBlock("cast.end");
    192 
    193     llvm::Value *isNull = Builder.CreateIsNull(Value);
    194     Builder.CreateCondBr(isNull, endBB, notNullBB);
    195     EmitBlock(notNullBB);
    196   }
    197 
    198   // Compute the virtual offset.
    199   llvm::Value *VirtualOffset = 0;
    200   if (VBase) {
    201     VirtualOffset =
    202       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
    203   }
    204 
    205   // Apply both offsets.
    206   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
    207                                           NonVirtualOffset,
    208                                           VirtualOffset);
    209 
    210   // Cast to the destination type.
    211   Value = Builder.CreateBitCast(Value, BasePtrTy);
    212 
    213   // Build a phi if we needed a null check.
    214   if (NullCheckValue) {
    215     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    216     Builder.CreateBr(endBB);
    217     EmitBlock(endBB);
    218 
    219     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
    220     PHI->addIncoming(Value, notNullBB);
    221     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
    222     Value = PHI;
    223   }
    224 
    225   return Value;
    226 }
    227 
    228 llvm::Value *
    229 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
    230                                           const CXXRecordDecl *Derived,
    231                                         CastExpr::path_const_iterator PathBegin,
    232                                           CastExpr::path_const_iterator PathEnd,
    233                                           bool NullCheckValue) {
    234   assert(PathBegin != PathEnd && "Base path should not be empty!");
    235 
    236   QualType DerivedTy =
    237     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
    238   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
    239 
    240   llvm::Value *NonVirtualOffset =
    241     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
    242 
    243   if (!NonVirtualOffset) {
    244     // No offset, we can just cast back.
    245     return Builder.CreateBitCast(Value, DerivedPtrTy);
    246   }
    247 
    248   llvm::BasicBlock *CastNull = 0;
    249   llvm::BasicBlock *CastNotNull = 0;
    250   llvm::BasicBlock *CastEnd = 0;
    251 
    252   if (NullCheckValue) {
    253     CastNull = createBasicBlock("cast.null");
    254     CastNotNull = createBasicBlock("cast.notnull");
    255     CastEnd = createBasicBlock("cast.end");
    256 
    257     llvm::Value *IsNull = Builder.CreateIsNull(Value);
    258     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    259     EmitBlock(CastNotNull);
    260   }
    261 
    262   // Apply the offset.
    263   Value = Builder.CreateBitCast(Value, Int8PtrTy);
    264   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
    265                             "sub.ptr");
    266 
    267   // Just cast.
    268   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
    269 
    270   if (NullCheckValue) {
    271     Builder.CreateBr(CastEnd);
    272     EmitBlock(CastNull);
    273     Builder.CreateBr(CastEnd);
    274     EmitBlock(CastEnd);
    275 
    276     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    277     PHI->addIncoming(Value, CastNotNull);
    278     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
    279                      CastNull);
    280     Value = PHI;
    281   }
    282 
    283   return Value;
    284 }
    285 
    286 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
    287                                               bool ForVirtualBase,
    288                                               bool Delegating) {
    289   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
    290     // This constructor/destructor does not need a VTT parameter.
    291     return 0;
    292   }
    293 
    294   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
    295   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
    296 
    297   llvm::Value *VTT;
    298 
    299   uint64_t SubVTTIndex;
    300 
    301   if (Delegating) {
    302     // If this is a delegating constructor call, just load the VTT.
    303     return LoadCXXVTT();
    304   } else if (RD == Base) {
    305     // If the record matches the base, this is the complete ctor/dtor
    306     // variant calling the base variant in a class with virtual bases.
    307     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
    308            "doing no-op VTT offset in base dtor/ctor?");
    309     assert(!ForVirtualBase && "Can't have same class as virtual base!");
    310     SubVTTIndex = 0;
    311   } else {
    312     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    313     CharUnits BaseOffset = ForVirtualBase ?
    314       Layout.getVBaseClassOffset(Base) :
    315       Layout.getBaseClassOffset(Base);
    316 
    317     SubVTTIndex =
    318       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
    319     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
    320   }
    321 
    322   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
    323     // A VTT parameter was passed to the constructor, use it.
    324     VTT = LoadCXXVTT();
    325     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
    326   } else {
    327     // We're the complete constructor, so get the VTT by name.
    328     VTT = CGM.getVTables().GetAddrOfVTT(RD);
    329     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
    330   }
    331 
    332   return VTT;
    333 }
    334 
    335 namespace {
    336   /// Call the destructor for a direct base class.
    337   struct CallBaseDtor : EHScopeStack::Cleanup {
    338     const CXXRecordDecl *BaseClass;
    339     bool BaseIsVirtual;
    340     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
    341       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
    342 
    343     void Emit(CodeGenFunction &CGF, Flags flags) {
    344       const CXXRecordDecl *DerivedClass =
    345         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
    346 
    347       const CXXDestructorDecl *D = BaseClass->getDestructor();
    348       llvm::Value *Addr =
    349         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
    350                                                   DerivedClass, BaseClass,
    351                                                   BaseIsVirtual);
    352       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
    353                                 /*Delegating=*/false, Addr);
    354     }
    355   };
    356 
    357   /// A visitor which checks whether an initializer uses 'this' in a
    358   /// way which requires the vtable to be properly set.
    359   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
    360     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
    361 
    362     bool UsesThis;
    363 
    364     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
    365 
    366     // Black-list all explicit and implicit references to 'this'.
    367     //
    368     // Do we need to worry about external references to 'this' derived
    369     // from arbitrary code?  If so, then anything which runs arbitrary
    370     // external code might potentially access the vtable.
    371     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
    372   };
    373 }
    374 
    375 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
    376   DynamicThisUseChecker Checker(C);
    377   Checker.Visit(const_cast<Expr*>(Init));
    378   return Checker.UsesThis;
    379 }
    380 
    381 static void EmitBaseInitializer(CodeGenFunction &CGF,
    382                                 const CXXRecordDecl *ClassDecl,
    383                                 CXXCtorInitializer *BaseInit,
    384                                 CXXCtorType CtorType) {
    385   assert(BaseInit->isBaseInitializer() &&
    386          "Must have base initializer!");
    387 
    388   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    389 
    390   const Type *BaseType = BaseInit->getBaseClass();
    391   CXXRecordDecl *BaseClassDecl =
    392     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    393 
    394   bool isBaseVirtual = BaseInit->isBaseVirtual();
    395 
    396   // The base constructor doesn't construct virtual bases.
    397   if (CtorType == Ctor_Base && isBaseVirtual)
    398     return;
    399 
    400   // If the initializer for the base (other than the constructor
    401   // itself) accesses 'this' in any way, we need to initialize the
    402   // vtables.
    403   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
    404     CGF.InitializeVTablePointers(ClassDecl);
    405 
    406   // We can pretend to be a complete class because it only matters for
    407   // virtual bases, and we only do virtual bases for complete ctors.
    408   llvm::Value *V =
    409     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
    410                                               BaseClassDecl,
    411                                               isBaseVirtual);
    412   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
    413   AggValueSlot AggSlot =
    414     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
    415                           AggValueSlot::IsDestructed,
    416                           AggValueSlot::DoesNotNeedGCBarriers,
    417                           AggValueSlot::IsNotAliased);
    418 
    419   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
    420 
    421   if (CGF.CGM.getLangOpts().Exceptions &&
    422       !BaseClassDecl->hasTrivialDestructor())
    423     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
    424                                           isBaseVirtual);
    425 }
    426 
    427 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
    428                                      LValue LHS,
    429                                      Expr *Init,
    430                                      llvm::Value *ArrayIndexVar,
    431                                      QualType T,
    432                                      ArrayRef<VarDecl *> ArrayIndexes,
    433                                      unsigned Index) {
    434   if (Index == ArrayIndexes.size()) {
    435     LValue LV = LHS;
    436 
    437     if (ArrayIndexVar) {
    438       // If we have an array index variable, load it and use it as an offset.
    439       // Then, increment the value.
    440       llvm::Value *Dest = LHS.getAddress();
    441       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
    442       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
    443       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
    444       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
    445       CGF.Builder.CreateStore(Next, ArrayIndexVar);
    446 
    447       // Update the LValue.
    448       LV.setAddress(Dest);
    449       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
    450       LV.setAlignment(std::min(Align, LV.getAlignment()));
    451     }
    452 
    453     switch (CGF.getEvaluationKind(T)) {
    454     case TEK_Scalar:
    455       CGF.EmitScalarInit(Init, /*decl*/ 0, LV, false);
    456       break;
    457     case TEK_Complex:
    458       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
    459       break;
    460     case TEK_Aggregate: {
    461       AggValueSlot Slot =
    462         AggValueSlot::forLValue(LV,
    463                                 AggValueSlot::IsDestructed,
    464                                 AggValueSlot::DoesNotNeedGCBarriers,
    465                                 AggValueSlot::IsNotAliased);
    466 
    467       CGF.EmitAggExpr(Init, Slot);
    468       break;
    469     }
    470     }
    471 
    472     return;
    473   }
    474 
    475   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
    476   assert(Array && "Array initialization without the array type?");
    477   llvm::Value *IndexVar
    478     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
    479   assert(IndexVar && "Array index variable not loaded");
    480 
    481   // Initialize this index variable to zero.
    482   llvm::Value* Zero
    483     = llvm::Constant::getNullValue(
    484                               CGF.ConvertType(CGF.getContext().getSizeType()));
    485   CGF.Builder.CreateStore(Zero, IndexVar);
    486 
    487   // Start the loop with a block that tests the condition.
    488   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
    489   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
    490 
    491   CGF.EmitBlock(CondBlock);
    492 
    493   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
    494   // Generate: if (loop-index < number-of-elements) fall to the loop body,
    495   // otherwise, go to the block after the for-loop.
    496   uint64_t NumElements = Array->getSize().getZExtValue();
    497   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
    498   llvm::Value *NumElementsPtr =
    499     llvm::ConstantInt::get(Counter->getType(), NumElements);
    500   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
    501                                                   "isless");
    502 
    503   // If the condition is true, execute the body.
    504   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
    505 
    506   CGF.EmitBlock(ForBody);
    507   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
    508 
    509   // Inside the loop body recurse to emit the inner loop or, eventually, the
    510   // constructor call.
    511   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
    512                            Array->getElementType(), ArrayIndexes, Index + 1);
    513 
    514   CGF.EmitBlock(ContinueBlock);
    515 
    516   // Emit the increment of the loop counter.
    517   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
    518   Counter = CGF.Builder.CreateLoad(IndexVar);
    519   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
    520   CGF.Builder.CreateStore(NextVal, IndexVar);
    521 
    522   // Finally, branch back up to the condition for the next iteration.
    523   CGF.EmitBranch(CondBlock);
    524 
    525   // Emit the fall-through block.
    526   CGF.EmitBlock(AfterFor, true);
    527 }
    528 
    529 static void EmitMemberInitializer(CodeGenFunction &CGF,
    530                                   const CXXRecordDecl *ClassDecl,
    531                                   CXXCtorInitializer *MemberInit,
    532                                   const CXXConstructorDecl *Constructor,
    533                                   FunctionArgList &Args) {
    534   assert(MemberInit->isAnyMemberInitializer() &&
    535          "Must have member initializer!");
    536   assert(MemberInit->getInit() && "Must have initializer!");
    537 
    538   // non-static data member initializers.
    539   FieldDecl *Field = MemberInit->getAnyMember();
    540   QualType FieldType = Field->getType();
    541 
    542   llvm::Value *ThisPtr = CGF.LoadCXXThis();
    543   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    544   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    545 
    546   if (MemberInit->isIndirectMemberInitializer()) {
    547     // If we are initializing an anonymous union field, drill down to
    548     // the field.
    549     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
    550     IndirectFieldDecl::chain_iterator I = IndirectField->chain_begin(),
    551       IEnd = IndirectField->chain_end();
    552     for ( ; I != IEnd; ++I)
    553       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(*I));
    554     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
    555   } else {
    556     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
    557   }
    558 
    559   // Special case: if we are in a copy or move constructor, and we are copying
    560   // an array of PODs or classes with trivial copy constructors, ignore the
    561   // AST and perform the copy we know is equivalent.
    562   // FIXME: This is hacky at best... if we had a bit more explicit information
    563   // in the AST, we could generalize it more easily.
    564   const ConstantArrayType *Array
    565     = CGF.getContext().getAsConstantArrayType(FieldType);
    566   if (Array && Constructor->isDefaulted() &&
    567       Constructor->isCopyOrMoveConstructor()) {
    568     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
    569     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    570     if (BaseElementTy.isPODType(CGF.getContext()) ||
    571         (CE && CE->getConstructor()->isTrivial())) {
    572       // Find the source pointer. We know it's the last argument because
    573       // we know we're in an implicit copy constructor.
    574       unsigned SrcArgIndex = Args.size() - 1;
    575       llvm::Value *SrcPtr
    576         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
    577       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    578       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
    579 
    580       // Copy the aggregate.
    581       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
    582                             LHS.isVolatileQualified());
    583       return;
    584     }
    585   }
    586 
    587   ArrayRef<VarDecl *> ArrayIndexes;
    588   if (MemberInit->getNumArrayIndices())
    589     ArrayIndexes = MemberInit->getArrayIndexes();
    590   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
    591 }
    592 
    593 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
    594                                               LValue LHS, Expr *Init,
    595                                              ArrayRef<VarDecl *> ArrayIndexes) {
    596   QualType FieldType = Field->getType();
    597   switch (getEvaluationKind(FieldType)) {
    598   case TEK_Scalar:
    599     if (LHS.isSimple()) {
    600       EmitExprAsInit(Init, Field, LHS, false);
    601     } else {
    602       RValue RHS = RValue::get(EmitScalarExpr(Init));
    603       EmitStoreThroughLValue(RHS, LHS);
    604     }
    605     break;
    606   case TEK_Complex:
    607     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
    608     break;
    609   case TEK_Aggregate: {
    610     llvm::Value *ArrayIndexVar = 0;
    611     if (ArrayIndexes.size()) {
    612       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    613 
    614       // The LHS is a pointer to the first object we'll be constructing, as
    615       // a flat array.
    616       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
    617       llvm::Type *BasePtr = ConvertType(BaseElementTy);
    618       BasePtr = llvm::PointerType::getUnqual(BasePtr);
    619       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
    620                                                        BasePtr);
    621       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
    622 
    623       // Create an array index that will be used to walk over all of the
    624       // objects we're constructing.
    625       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
    626       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
    627       Builder.CreateStore(Zero, ArrayIndexVar);
    628 
    629 
    630       // Emit the block variables for the array indices, if any.
    631       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
    632         EmitAutoVarDecl(*ArrayIndexes[I]);
    633     }
    634 
    635     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
    636                              ArrayIndexes, 0);
    637   }
    638   }
    639 
    640   // Ensure that we destroy this object if an exception is thrown
    641   // later in the constructor.
    642   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    643   if (needsEHCleanup(dtorKind))
    644     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    645 }
    646 
    647 /// Checks whether the given constructor is a valid subject for the
    648 /// complete-to-base constructor delegation optimization, i.e.
    649 /// emitting the complete constructor as a simple call to the base
    650 /// constructor.
    651 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
    652 
    653   // Currently we disable the optimization for classes with virtual
    654   // bases because (1) the addresses of parameter variables need to be
    655   // consistent across all initializers but (2) the delegate function
    656   // call necessarily creates a second copy of the parameter variable.
    657   //
    658   // The limiting example (purely theoretical AFAIK):
    659   //   struct A { A(int &c) { c++; } };
    660   //   struct B : virtual A {
    661   //     B(int count) : A(count) { printf("%d\n", count); }
    662   //   };
    663   // ...although even this example could in principle be emitted as a
    664   // delegation since the address of the parameter doesn't escape.
    665   if (Ctor->getParent()->getNumVBases()) {
    666     // TODO: white-list trivial vbase initializers.  This case wouldn't
    667     // be subject to the restrictions below.
    668 
    669     // TODO: white-list cases where:
    670     //  - there are no non-reference parameters to the constructor
    671     //  - the initializers don't access any non-reference parameters
    672     //  - the initializers don't take the address of non-reference
    673     //    parameters
    674     //  - etc.
    675     // If we ever add any of the above cases, remember that:
    676     //  - function-try-blocks will always blacklist this optimization
    677     //  - we need to perform the constructor prologue and cleanup in
    678     //    EmitConstructorBody.
    679 
    680     return false;
    681   }
    682 
    683   // We also disable the optimization for variadic functions because
    684   // it's impossible to "re-pass" varargs.
    685   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
    686     return false;
    687 
    688   // FIXME: Decide if we can do a delegation of a delegating constructor.
    689   if (Ctor->isDelegatingConstructor())
    690     return false;
    691 
    692   return true;
    693 }
    694 
    695 /// EmitConstructorBody - Emits the body of the current constructor.
    696 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
    697   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
    698   CXXCtorType CtorType = CurGD.getCtorType();
    699 
    700   // Before we go any further, try the complete->base constructor
    701   // delegation optimization.
    702   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
    703       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
    704     if (CGDebugInfo *DI = getDebugInfo())
    705       DI->EmitLocation(Builder, Ctor->getLocEnd());
    706     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args);
    707     return;
    708   }
    709 
    710   Stmt *Body = Ctor->getBody();
    711 
    712   // Enter the function-try-block before the constructor prologue if
    713   // applicable.
    714   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
    715   if (IsTryBody)
    716     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    717 
    718   RunCleanupsScope RunCleanups(*this);
    719 
    720   // TODO: in restricted cases, we can emit the vbase initializers of
    721   // a complete ctor and then delegate to the base ctor.
    722 
    723   // Emit the constructor prologue, i.e. the base and member
    724   // initializers.
    725   EmitCtorPrologue(Ctor, CtorType, Args);
    726 
    727   // Emit the body of the statement.
    728   if (IsTryBody)
    729     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
    730   else if (Body)
    731     EmitStmt(Body);
    732 
    733   // Emit any cleanup blocks associated with the member or base
    734   // initializers, which includes (along the exceptional path) the
    735   // destructors for those members and bases that were fully
    736   // constructed.
    737   RunCleanups.ForceCleanup();
    738 
    739   if (IsTryBody)
    740     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
    741 }
    742 
    743 namespace {
    744   class FieldMemcpyizer {
    745   public:
    746     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
    747                     const VarDecl *SrcRec)
    748       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
    749         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
    750         FirstField(0), LastField(0), FirstFieldOffset(0), LastFieldOffset(0),
    751         LastAddedFieldIndex(0) { }
    752 
    753     static bool isMemcpyableField(FieldDecl *F) {
    754       Qualifiers Qual = F->getType().getQualifiers();
    755       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
    756         return false;
    757       return true;
    758     }
    759 
    760     void addMemcpyableField(FieldDecl *F) {
    761       if (FirstField == 0)
    762         addInitialField(F);
    763       else
    764         addNextField(F);
    765     }
    766 
    767     CharUnits getMemcpySize() const {
    768       unsigned LastFieldSize =
    769         LastField->isBitField() ?
    770           LastField->getBitWidthValue(CGF.getContext()) :
    771           CGF.getContext().getTypeSize(LastField->getType());
    772       uint64_t MemcpySizeBits =
    773         LastFieldOffset + LastFieldSize - FirstFieldOffset +
    774         CGF.getContext().getCharWidth() - 1;
    775       CharUnits MemcpySize =
    776         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
    777       return MemcpySize;
    778     }
    779 
    780     void emitMemcpy() {
    781       // Give the subclass a chance to bail out if it feels the memcpy isn't
    782       // worth it (e.g. Hasn't aggregated enough data).
    783       if (FirstField == 0) {
    784         return;
    785       }
    786 
    787       CharUnits Alignment;
    788 
    789       if (FirstField->isBitField()) {
    790         const CGRecordLayout &RL =
    791           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
    792         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
    793         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
    794       } else {
    795         Alignment = CGF.getContext().getDeclAlign(FirstField);
    796       }
    797 
    798       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
    799               Alignment) == 0 && "Bad field alignment.");
    800 
    801       CharUnits MemcpySize = getMemcpySize();
    802       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    803       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    804       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    805       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
    806       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
    807       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
    808       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
    809 
    810       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
    811                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
    812                    MemcpySize, Alignment);
    813       reset();
    814     }
    815 
    816     void reset() {
    817       FirstField = 0;
    818     }
    819 
    820   protected:
    821     CodeGenFunction &CGF;
    822     const CXXRecordDecl *ClassDecl;
    823 
    824   private:
    825 
    826     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
    827                       CharUnits Size, CharUnits Alignment) {
    828       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
    829       llvm::Type *DBP =
    830         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
    831       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
    832 
    833       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
    834       llvm::Type *SBP =
    835         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
    836       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
    837 
    838       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
    839                                Alignment.getQuantity());
    840     }
    841 
    842     void addInitialField(FieldDecl *F) {
    843         FirstField = F;
    844         LastField = F;
    845         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    846         LastFieldOffset = FirstFieldOffset;
    847         LastAddedFieldIndex = F->getFieldIndex();
    848         return;
    849       }
    850 
    851     void addNextField(FieldDecl *F) {
    852       // For the most part, the following invariant will hold:
    853       //   F->getFieldIndex() == LastAddedFieldIndex + 1
    854       // The one exception is that Sema won't add a copy-initializer for an
    855       // unnamed bitfield, which will show up here as a gap in the sequence.
    856       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
    857              "Cannot aggregate fields out of order.");
    858       LastAddedFieldIndex = F->getFieldIndex();
    859 
    860       // The 'first' and 'last' fields are chosen by offset, rather than field
    861       // index. This allows the code to support bitfields, as well as regular
    862       // fields.
    863       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
    864       if (FOffset < FirstFieldOffset) {
    865         FirstField = F;
    866         FirstFieldOffset = FOffset;
    867       } else if (FOffset > LastFieldOffset) {
    868         LastField = F;
    869         LastFieldOffset = FOffset;
    870       }
    871     }
    872 
    873     const VarDecl *SrcRec;
    874     const ASTRecordLayout &RecLayout;
    875     FieldDecl *FirstField;
    876     FieldDecl *LastField;
    877     uint64_t FirstFieldOffset, LastFieldOffset;
    878     unsigned LastAddedFieldIndex;
    879   };
    880 
    881   class ConstructorMemcpyizer : public FieldMemcpyizer {
    882   private:
    883 
    884     /// Get source argument for copy constructor. Returns null if not a copy
    885     /// constructor.
    886     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
    887                                                FunctionArgList &Args) {
    888       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
    889         return Args[Args.size() - 1];
    890       return 0;
    891     }
    892 
    893     // Returns true if a CXXCtorInitializer represents a member initialization
    894     // that can be rolled into a memcpy.
    895     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
    896       if (!MemcpyableCtor)
    897         return false;
    898       FieldDecl *Field = MemberInit->getMember();
    899       assert(Field != 0 && "No field for member init.");
    900       QualType FieldType = Field->getType();
    901       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
    902 
    903       // Bail out on non-POD, not-trivially-constructable members.
    904       if (!(CE && CE->getConstructor()->isTrivial()) &&
    905           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
    906             FieldType->isReferenceType()))
    907         return false;
    908 
    909       // Bail out on volatile fields.
    910       if (!isMemcpyableField(Field))
    911         return false;
    912 
    913       // Otherwise we're good.
    914       return true;
    915     }
    916 
    917   public:
    918     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
    919                           FunctionArgList &Args)
    920       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
    921         ConstructorDecl(CD),
    922         MemcpyableCtor(CD->isDefaulted() &&
    923                        CD->isCopyOrMoveConstructor() &&
    924                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
    925         Args(Args) { }
    926 
    927     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
    928       if (isMemberInitMemcpyable(MemberInit)) {
    929         AggregatedInits.push_back(MemberInit);
    930         addMemcpyableField(MemberInit->getMember());
    931       } else {
    932         emitAggregatedInits();
    933         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
    934                               ConstructorDecl, Args);
    935       }
    936     }
    937 
    938     void emitAggregatedInits() {
    939       if (AggregatedInits.size() <= 1) {
    940         // This memcpy is too small to be worthwhile. Fall back on default
    941         // codegen.
    942         for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
    943           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
    944                                 AggregatedInits[i], ConstructorDecl, Args);
    945         }
    946         reset();
    947         return;
    948       }
    949 
    950       pushEHDestructors();
    951       emitMemcpy();
    952       AggregatedInits.clear();
    953     }
    954 
    955     void pushEHDestructors() {
    956       llvm::Value *ThisPtr = CGF.LoadCXXThis();
    957       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
    958       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
    959 
    960       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
    961         QualType FieldType = AggregatedInits[i]->getMember()->getType();
    962         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
    963         if (CGF.needsEHCleanup(dtorKind))
    964           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
    965       }
    966     }
    967 
    968     void finish() {
    969       emitAggregatedInits();
    970     }
    971 
    972   private:
    973     const CXXConstructorDecl *ConstructorDecl;
    974     bool MemcpyableCtor;
    975     FunctionArgList &Args;
    976     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
    977   };
    978 
    979   class AssignmentMemcpyizer : public FieldMemcpyizer {
    980   private:
    981 
    982     // Returns the memcpyable field copied by the given statement, if one
    983     // exists. Otherwise r
    984     FieldDecl* getMemcpyableField(Stmt *S) {
    985       if (!AssignmentsMemcpyable)
    986         return 0;
    987       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
    988         // Recognise trivial assignments.
    989         if (BO->getOpcode() != BO_Assign)
    990           return 0;
    991         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
    992         if (!ME)
    993           return 0;
    994         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
    995         if (!Field || !isMemcpyableField(Field))
    996           return 0;
    997         Stmt *RHS = BO->getRHS();
    998         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
    999           RHS = EC->getSubExpr();
   1000         if (!RHS)
   1001           return 0;
   1002         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
   1003         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
   1004           return 0;
   1005         return Field;
   1006       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
   1007         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
   1008         if (!(MD && (MD->isCopyAssignmentOperator() ||
   1009                        MD->isMoveAssignmentOperator()) &&
   1010               MD->isTrivial()))
   1011           return 0;
   1012         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
   1013         if (!IOA)
   1014           return 0;
   1015         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
   1016         if (!Field || !isMemcpyableField(Field))
   1017           return 0;
   1018         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
   1019         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
   1020           return 0;
   1021         return Field;
   1022       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
   1023         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1024         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
   1025           return 0;
   1026         Expr *DstPtr = CE->getArg(0);
   1027         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
   1028           DstPtr = DC->getSubExpr();
   1029         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
   1030         if (!DUO || DUO->getOpcode() != UO_AddrOf)
   1031           return 0;
   1032         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
   1033         if (!ME)
   1034           return 0;
   1035         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
   1036         if (!Field || !isMemcpyableField(Field))
   1037           return 0;
   1038         Expr *SrcPtr = CE->getArg(1);
   1039         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
   1040           SrcPtr = SC->getSubExpr();
   1041         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
   1042         if (!SUO || SUO->getOpcode() != UO_AddrOf)
   1043           return 0;
   1044         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
   1045         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
   1046           return 0;
   1047         return Field;
   1048       }
   1049 
   1050       return 0;
   1051     }
   1052 
   1053     bool AssignmentsMemcpyable;
   1054     SmallVector<Stmt*, 16> AggregatedStmts;
   1055 
   1056   public:
   1057 
   1058     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
   1059                          FunctionArgList &Args)
   1060       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
   1061         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
   1062       assert(Args.size() == 2);
   1063     }
   1064 
   1065     void emitAssignment(Stmt *S) {
   1066       FieldDecl *F = getMemcpyableField(S);
   1067       if (F) {
   1068         addMemcpyableField(F);
   1069         AggregatedStmts.push_back(S);
   1070       } else {
   1071         emitAggregatedStmts();
   1072         CGF.EmitStmt(S);
   1073       }
   1074     }
   1075 
   1076     void emitAggregatedStmts() {
   1077       if (AggregatedStmts.size() <= 1) {
   1078         for (unsigned i = 0; i < AggregatedStmts.size(); ++i)
   1079           CGF.EmitStmt(AggregatedStmts[i]);
   1080         reset();
   1081       }
   1082 
   1083       emitMemcpy();
   1084       AggregatedStmts.clear();
   1085     }
   1086 
   1087     void finish() {
   1088       emitAggregatedStmts();
   1089     }
   1090   };
   1091 
   1092 }
   1093 
   1094 /// EmitCtorPrologue - This routine generates necessary code to initialize
   1095 /// base classes and non-static data members belonging to this constructor.
   1096 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
   1097                                        CXXCtorType CtorType,
   1098                                        FunctionArgList &Args) {
   1099   if (CD->isDelegatingConstructor())
   1100     return EmitDelegatingCXXConstructorCall(CD, Args);
   1101 
   1102   const CXXRecordDecl *ClassDecl = CD->getParent();
   1103 
   1104   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
   1105                                           E = CD->init_end();
   1106 
   1107   llvm::BasicBlock *BaseCtorContinueBB = 0;
   1108   if (ClassDecl->getNumVBases() &&
   1109       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
   1110     // The ABIs that don't have constructor variants need to put a branch
   1111     // before the virtual base initialization code.
   1112     BaseCtorContinueBB =
   1113       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
   1114     assert(BaseCtorContinueBB);
   1115   }
   1116 
   1117   // Virtual base initializers first.
   1118   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
   1119     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1120   }
   1121 
   1122   if (BaseCtorContinueBB) {
   1123     // Complete object handler should continue to the remaining initializers.
   1124     Builder.CreateBr(BaseCtorContinueBB);
   1125     EmitBlock(BaseCtorContinueBB);
   1126   }
   1127 
   1128   // Then, non-virtual base initializers.
   1129   for (; B != E && (*B)->isBaseInitializer(); B++) {
   1130     assert(!(*B)->isBaseVirtual());
   1131     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
   1132   }
   1133 
   1134   InitializeVTablePointers(ClassDecl);
   1135 
   1136   // And finally, initialize class members.
   1137   FieldConstructionScope FCS(*this, CXXThisValue);
   1138   ConstructorMemcpyizer CM(*this, CD, Args);
   1139   for (; B != E; B++) {
   1140     CXXCtorInitializer *Member = (*B);
   1141     assert(!Member->isBaseInitializer());
   1142     assert(Member->isAnyMemberInitializer() &&
   1143            "Delegating initializer on non-delegating constructor");
   1144     CM.addMemberInitializer(Member);
   1145   }
   1146   CM.finish();
   1147 }
   1148 
   1149 static bool
   1150 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
   1151 
   1152 static bool
   1153 HasTrivialDestructorBody(ASTContext &Context,
   1154                          const CXXRecordDecl *BaseClassDecl,
   1155                          const CXXRecordDecl *MostDerivedClassDecl)
   1156 {
   1157   // If the destructor is trivial we don't have to check anything else.
   1158   if (BaseClassDecl->hasTrivialDestructor())
   1159     return true;
   1160 
   1161   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
   1162     return false;
   1163 
   1164   // Check fields.
   1165   for (CXXRecordDecl::field_iterator I = BaseClassDecl->field_begin(),
   1166        E = BaseClassDecl->field_end(); I != E; ++I) {
   1167     const FieldDecl *Field = *I;
   1168 
   1169     if (!FieldHasTrivialDestructorBody(Context, Field))
   1170       return false;
   1171   }
   1172 
   1173   // Check non-virtual bases.
   1174   for (CXXRecordDecl::base_class_const_iterator I =
   1175        BaseClassDecl->bases_begin(), E = BaseClassDecl->bases_end();
   1176        I != E; ++I) {
   1177     if (I->isVirtual())
   1178       continue;
   1179 
   1180     const CXXRecordDecl *NonVirtualBase =
   1181       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1182     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
   1183                                   MostDerivedClassDecl))
   1184       return false;
   1185   }
   1186 
   1187   if (BaseClassDecl == MostDerivedClassDecl) {
   1188     // Check virtual bases.
   1189     for (CXXRecordDecl::base_class_const_iterator I =
   1190          BaseClassDecl->vbases_begin(), E = BaseClassDecl->vbases_end();
   1191          I != E; ++I) {
   1192       const CXXRecordDecl *VirtualBase =
   1193         cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
   1194       if (!HasTrivialDestructorBody(Context, VirtualBase,
   1195                                     MostDerivedClassDecl))
   1196         return false;
   1197     }
   1198   }
   1199 
   1200   return true;
   1201 }
   1202 
   1203 static bool
   1204 FieldHasTrivialDestructorBody(ASTContext &Context,
   1205                               const FieldDecl *Field)
   1206 {
   1207   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
   1208 
   1209   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
   1210   if (!RT)
   1211     return true;
   1212 
   1213   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   1214   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
   1215 }
   1216 
   1217 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
   1218 /// any vtable pointers before calling this destructor.
   1219 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
   1220                                                const CXXDestructorDecl *Dtor) {
   1221   if (!Dtor->hasTrivialBody())
   1222     return false;
   1223 
   1224   // Check the fields.
   1225   const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1226   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
   1227        E = ClassDecl->field_end(); I != E; ++I) {
   1228     const FieldDecl *Field = *I;
   1229 
   1230     if (!FieldHasTrivialDestructorBody(Context, Field))
   1231       return false;
   1232   }
   1233 
   1234   return true;
   1235 }
   1236 
   1237 /// EmitDestructorBody - Emits the body of the current destructor.
   1238 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
   1239   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
   1240   CXXDtorType DtorType = CurGD.getDtorType();
   1241 
   1242   // The call to operator delete in a deleting destructor happens
   1243   // outside of the function-try-block, which means it's always
   1244   // possible to delegate the destructor body to the complete
   1245   // destructor.  Do so.
   1246   if (DtorType == Dtor_Deleting) {
   1247     EnterDtorCleanups(Dtor, Dtor_Deleting);
   1248     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
   1249                           /*Delegating=*/false, LoadCXXThis());
   1250     PopCleanupBlock();
   1251     return;
   1252   }
   1253 
   1254   Stmt *Body = Dtor->getBody();
   1255 
   1256   // If the body is a function-try-block, enter the try before
   1257   // anything else.
   1258   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
   1259   if (isTryBody)
   1260     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1261 
   1262   // Enter the epilogue cleanups.
   1263   RunCleanupsScope DtorEpilogue(*this);
   1264 
   1265   // If this is the complete variant, just invoke the base variant;
   1266   // the epilogue will destruct the virtual bases.  But we can't do
   1267   // this optimization if the body is a function-try-block, because
   1268   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
   1269   // always delegate because we might not have a definition in this TU.
   1270   switch (DtorType) {
   1271   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
   1272 
   1273   case Dtor_Complete:
   1274     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
   1275            "can't emit a dtor without a body for non-Microsoft ABIs");
   1276 
   1277     // Enter the cleanup scopes for virtual bases.
   1278     EnterDtorCleanups(Dtor, Dtor_Complete);
   1279 
   1280     if (!isTryBody) {
   1281       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
   1282                             /*Delegating=*/false, LoadCXXThis());
   1283       break;
   1284     }
   1285     // Fallthrough: act like we're in the base variant.
   1286 
   1287   case Dtor_Base:
   1288     assert(Body);
   1289 
   1290     // Enter the cleanup scopes for fields and non-virtual bases.
   1291     EnterDtorCleanups(Dtor, Dtor_Base);
   1292 
   1293     // Initialize the vtable pointers before entering the body.
   1294     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
   1295         InitializeVTablePointers(Dtor->getParent());
   1296 
   1297     if (isTryBody)
   1298       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
   1299     else if (Body)
   1300       EmitStmt(Body);
   1301     else {
   1302       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
   1303       // nothing to do besides what's in the epilogue
   1304     }
   1305     // -fapple-kext must inline any call to this dtor into
   1306     // the caller's body.
   1307     if (getLangOpts().AppleKext)
   1308       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
   1309     break;
   1310   }
   1311 
   1312   // Jump out through the epilogue cleanups.
   1313   DtorEpilogue.ForceCleanup();
   1314 
   1315   // Exit the try if applicable.
   1316   if (isTryBody)
   1317     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
   1318 }
   1319 
   1320 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
   1321   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
   1322   const Stmt *RootS = AssignOp->getBody();
   1323   assert(isa<CompoundStmt>(RootS) &&
   1324          "Body of an implicit assignment operator should be compound stmt.");
   1325   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
   1326 
   1327   LexicalScope Scope(*this, RootCS->getSourceRange());
   1328 
   1329   AssignmentMemcpyizer AM(*this, AssignOp, Args);
   1330   for (CompoundStmt::const_body_iterator I = RootCS->body_begin(),
   1331                                          E = RootCS->body_end();
   1332        I != E; ++I) {
   1333     AM.emitAssignment(*I);
   1334   }
   1335   AM.finish();
   1336 }
   1337 
   1338 namespace {
   1339   /// Call the operator delete associated with the current destructor.
   1340   struct CallDtorDelete : EHScopeStack::Cleanup {
   1341     CallDtorDelete() {}
   1342 
   1343     void Emit(CodeGenFunction &CGF, Flags flags) {
   1344       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1345       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1346       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1347                          CGF.getContext().getTagDeclType(ClassDecl));
   1348     }
   1349   };
   1350 
   1351   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
   1352     llvm::Value *ShouldDeleteCondition;
   1353   public:
   1354     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
   1355       : ShouldDeleteCondition(ShouldDeleteCondition) {
   1356       assert(ShouldDeleteCondition != NULL);
   1357     }
   1358 
   1359     void Emit(CodeGenFunction &CGF, Flags flags) {
   1360       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
   1361       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
   1362       llvm::Value *ShouldCallDelete
   1363         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
   1364       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
   1365 
   1366       CGF.EmitBlock(callDeleteBB);
   1367       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
   1368       const CXXRecordDecl *ClassDecl = Dtor->getParent();
   1369       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
   1370                          CGF.getContext().getTagDeclType(ClassDecl));
   1371       CGF.Builder.CreateBr(continueBB);
   1372 
   1373       CGF.EmitBlock(continueBB);
   1374     }
   1375   };
   1376 
   1377   class DestroyField  : public EHScopeStack::Cleanup {
   1378     const FieldDecl *field;
   1379     CodeGenFunction::Destroyer *destroyer;
   1380     bool useEHCleanupForArray;
   1381 
   1382   public:
   1383     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
   1384                  bool useEHCleanupForArray)
   1385       : field(field), destroyer(destroyer),
   1386         useEHCleanupForArray(useEHCleanupForArray) {}
   1387 
   1388     void Emit(CodeGenFunction &CGF, Flags flags) {
   1389       // Find the address of the field.
   1390       llvm::Value *thisValue = CGF.LoadCXXThis();
   1391       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
   1392       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
   1393       LValue LV = CGF.EmitLValueForField(ThisLV, field);
   1394       assert(LV.isSimple());
   1395 
   1396       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
   1397                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1398     }
   1399   };
   1400 }
   1401 
   1402 /// EmitDtorEpilogue - Emit all code that comes at the end of class's
   1403 /// destructor. This is to call destructors on members and base classes
   1404 /// in reverse order of their construction.
   1405 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
   1406                                         CXXDtorType DtorType) {
   1407   assert(!DD->isTrivial() &&
   1408          "Should not emit dtor epilogue for trivial dtor!");
   1409 
   1410   // The deleting-destructor phase just needs to call the appropriate
   1411   // operator delete that Sema picked up.
   1412   if (DtorType == Dtor_Deleting) {
   1413     assert(DD->getOperatorDelete() &&
   1414            "operator delete missing - EmitDtorEpilogue");
   1415     if (CXXStructorImplicitParamValue) {
   1416       // If there is an implicit param to the deleting dtor, it's a boolean
   1417       // telling whether we should call delete at the end of the dtor.
   1418       EHStack.pushCleanup<CallDtorDeleteConditional>(
   1419           NormalAndEHCleanup, CXXStructorImplicitParamValue);
   1420     } else {
   1421       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
   1422     }
   1423     return;
   1424   }
   1425 
   1426   const CXXRecordDecl *ClassDecl = DD->getParent();
   1427 
   1428   // Unions have no bases and do not call field destructors.
   1429   if (ClassDecl->isUnion())
   1430     return;
   1431 
   1432   // The complete-destructor phase just destructs all the virtual bases.
   1433   if (DtorType == Dtor_Complete) {
   1434 
   1435     // We push them in the forward order so that they'll be popped in
   1436     // the reverse order.
   1437     for (CXXRecordDecl::base_class_const_iterator I =
   1438            ClassDecl->vbases_begin(), E = ClassDecl->vbases_end();
   1439               I != E; ++I) {
   1440       const CXXBaseSpecifier &Base = *I;
   1441       CXXRecordDecl *BaseClassDecl
   1442         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
   1443 
   1444       // Ignore trivial destructors.
   1445       if (BaseClassDecl->hasTrivialDestructor())
   1446         continue;
   1447 
   1448       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1449                                         BaseClassDecl,
   1450                                         /*BaseIsVirtual*/ true);
   1451     }
   1452 
   1453     return;
   1454   }
   1455 
   1456   assert(DtorType == Dtor_Base);
   1457 
   1458   // Destroy non-virtual bases.
   1459   for (CXXRecordDecl::base_class_const_iterator I =
   1460         ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) {
   1461     const CXXBaseSpecifier &Base = *I;
   1462 
   1463     // Ignore virtual bases.
   1464     if (Base.isVirtual())
   1465       continue;
   1466 
   1467     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
   1468 
   1469     // Ignore trivial destructors.
   1470     if (BaseClassDecl->hasTrivialDestructor())
   1471       continue;
   1472 
   1473     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
   1474                                       BaseClassDecl,
   1475                                       /*BaseIsVirtual*/ false);
   1476   }
   1477 
   1478   // Destroy direct fields.
   1479   SmallVector<const FieldDecl *, 16> FieldDecls;
   1480   for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
   1481        E = ClassDecl->field_end(); I != E; ++I) {
   1482     const FieldDecl *field = *I;
   1483     QualType type = field->getType();
   1484     QualType::DestructionKind dtorKind = type.isDestructedType();
   1485     if (!dtorKind) continue;
   1486 
   1487     // Anonymous union members do not have their destructors called.
   1488     const RecordType *RT = type->getAsUnionType();
   1489     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
   1490 
   1491     CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1492     EHStack.pushCleanup<DestroyField>(cleanupKind, field,
   1493                                       getDestroyer(dtorKind),
   1494                                       cleanupKind & EHCleanup);
   1495   }
   1496 }
   1497 
   1498 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1499 /// constructor for each of several members of an array.
   1500 ///
   1501 /// \param ctor the constructor to call for each element
   1502 /// \param arrayType the type of the array to initialize
   1503 /// \param arrayBegin an arrayType*
   1504 /// \param zeroInitialize true if each element should be
   1505 ///   zero-initialized before it is constructed
   1506 void
   1507 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1508                                             const ConstantArrayType *arrayType,
   1509                                             llvm::Value *arrayBegin,
   1510                                           CallExpr::const_arg_iterator argBegin,
   1511                                             CallExpr::const_arg_iterator argEnd,
   1512                                             bool zeroInitialize) {
   1513   QualType elementType;
   1514   llvm::Value *numElements =
   1515     emitArrayLength(arrayType, elementType, arrayBegin);
   1516 
   1517   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
   1518                              argBegin, argEnd, zeroInitialize);
   1519 }
   1520 
   1521 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
   1522 /// constructor for each of several members of an array.
   1523 ///
   1524 /// \param ctor the constructor to call for each element
   1525 /// \param numElements the number of elements in the array;
   1526 ///   may be zero
   1527 /// \param arrayBegin a T*, where T is the type constructed by ctor
   1528 /// \param zeroInitialize true if each element should be
   1529 ///   zero-initialized before it is constructed
   1530 void
   1531 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
   1532                                             llvm::Value *numElements,
   1533                                             llvm::Value *arrayBegin,
   1534                                          CallExpr::const_arg_iterator argBegin,
   1535                                            CallExpr::const_arg_iterator argEnd,
   1536                                             bool zeroInitialize) {
   1537 
   1538   // It's legal for numElements to be zero.  This can happen both
   1539   // dynamically, because x can be zero in 'new A[x]', and statically,
   1540   // because of GCC extensions that permit zero-length arrays.  There
   1541   // are probably legitimate places where we could assume that this
   1542   // doesn't happen, but it's not clear that it's worth it.
   1543   llvm::BranchInst *zeroCheckBranch = 0;
   1544 
   1545   // Optimize for a constant count.
   1546   llvm::ConstantInt *constantCount
   1547     = dyn_cast<llvm::ConstantInt>(numElements);
   1548   if (constantCount) {
   1549     // Just skip out if the constant count is zero.
   1550     if (constantCount->isZero()) return;
   1551 
   1552   // Otherwise, emit the check.
   1553   } else {
   1554     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
   1555     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
   1556     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
   1557     EmitBlock(loopBB);
   1558   }
   1559 
   1560   // Find the end of the array.
   1561   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
   1562                                                     "arrayctor.end");
   1563 
   1564   // Enter the loop, setting up a phi for the current location to initialize.
   1565   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1566   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
   1567   EmitBlock(loopBB);
   1568   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
   1569                                          "arrayctor.cur");
   1570   cur->addIncoming(arrayBegin, entryBB);
   1571 
   1572   // Inside the loop body, emit the constructor call on the array element.
   1573 
   1574   QualType type = getContext().getTypeDeclType(ctor->getParent());
   1575 
   1576   // Zero initialize the storage, if requested.
   1577   if (zeroInitialize)
   1578     EmitNullInitialization(cur, type);
   1579 
   1580   // C++ [class.temporary]p4:
   1581   // There are two contexts in which temporaries are destroyed at a different
   1582   // point than the end of the full-expression. The first context is when a
   1583   // default constructor is called to initialize an element of an array.
   1584   // If the constructor has one or more default arguments, the destruction of
   1585   // every temporary created in a default argument expression is sequenced
   1586   // before the construction of the next array element, if any.
   1587 
   1588   {
   1589     RunCleanupsScope Scope(*this);
   1590 
   1591     // Evaluate the constructor and its arguments in a regular
   1592     // partial-destroy cleanup.
   1593     if (getLangOpts().Exceptions &&
   1594         !ctor->getParent()->hasTrivialDestructor()) {
   1595       Destroyer *destroyer = destroyCXXObject;
   1596       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
   1597     }
   1598 
   1599     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
   1600                            /*Delegating=*/false, cur, argBegin, argEnd);
   1601   }
   1602 
   1603   // Go to the next element.
   1604   llvm::Value *next =
   1605     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
   1606                               "arrayctor.next");
   1607   cur->addIncoming(next, Builder.GetInsertBlock());
   1608 
   1609   // Check whether that's the end of the loop.
   1610   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
   1611   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
   1612   Builder.CreateCondBr(done, contBB, loopBB);
   1613 
   1614   // Patch the earlier check to skip over the loop.
   1615   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
   1616 
   1617   EmitBlock(contBB);
   1618 }
   1619 
   1620 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
   1621                                        llvm::Value *addr,
   1622                                        QualType type) {
   1623   const RecordType *rtype = type->castAs<RecordType>();
   1624   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
   1625   const CXXDestructorDecl *dtor = record->getDestructor();
   1626   assert(!dtor->isTrivial());
   1627   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
   1628                             /*Delegating=*/false, addr);
   1629 }
   1630 
   1631 void
   1632 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
   1633                                         CXXCtorType Type, bool ForVirtualBase,
   1634                                         bool Delegating,
   1635                                         llvm::Value *This,
   1636                                         CallExpr::const_arg_iterator ArgBeg,
   1637                                         CallExpr::const_arg_iterator ArgEnd) {
   1638   // If this is a trivial constructor, just emit what's needed.
   1639   if (D->isTrivial()) {
   1640     if (ArgBeg == ArgEnd) {
   1641       // Trivial default constructor, no codegen required.
   1642       assert(D->isDefaultConstructor() &&
   1643              "trivial 0-arg ctor not a default ctor");
   1644       return;
   1645     }
   1646 
   1647     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
   1648     assert(D->isCopyOrMoveConstructor() &&
   1649            "trivial 1-arg ctor not a copy/move ctor");
   1650 
   1651     const Expr *E = (*ArgBeg);
   1652     QualType Ty = E->getType();
   1653     llvm::Value *Src = EmitLValue(E).getAddress();
   1654     EmitAggregateCopy(This, Src, Ty);
   1655     return;
   1656   }
   1657 
   1658   // Non-trivial constructors are handled in an ABI-specific manner.
   1659   CGM.getCXXABI().EmitConstructorCall(*this, D, Type, ForVirtualBase,
   1660                                       Delegating, This, ArgBeg, ArgEnd);
   1661 }
   1662 
   1663 void
   1664 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1665                                         llvm::Value *This, llvm::Value *Src,
   1666                                         CallExpr::const_arg_iterator ArgBeg,
   1667                                         CallExpr::const_arg_iterator ArgEnd) {
   1668   if (D->isTrivial()) {
   1669     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
   1670     assert(D->isCopyOrMoveConstructor() &&
   1671            "trivial 1-arg ctor not a copy/move ctor");
   1672     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
   1673     return;
   1674   }
   1675   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D,
   1676                                                     clang::Ctor_Complete);
   1677   assert(D->isInstance() &&
   1678          "Trying to emit a member call expr on a static method!");
   1679 
   1680   const FunctionProtoType *FPT = D->getType()->getAs<FunctionProtoType>();
   1681 
   1682   CallArgList Args;
   1683 
   1684   // Push the this ptr.
   1685   Args.add(RValue::get(This), D->getThisType(getContext()));
   1686 
   1687 
   1688   // Push the src ptr.
   1689   QualType QT = *(FPT->arg_type_begin());
   1690   llvm::Type *t = CGM.getTypes().ConvertType(QT);
   1691   Src = Builder.CreateBitCast(Src, t);
   1692   Args.add(RValue::get(Src), QT);
   1693 
   1694   // Skip over first argument (Src).
   1695   ++ArgBeg;
   1696   CallExpr::const_arg_iterator Arg = ArgBeg;
   1697   for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin()+1,
   1698        E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
   1699     assert(Arg != ArgEnd && "Running over edge of argument list!");
   1700     EmitCallArg(Args, *Arg, *I);
   1701   }
   1702   // Either we've emitted all the call args, or we have a call to a
   1703   // variadic function.
   1704   assert((Arg == ArgEnd || FPT->isVariadic()) &&
   1705          "Extra arguments in non-variadic function!");
   1706   // If we still have any arguments, emit them using the type of the argument.
   1707   for (; Arg != ArgEnd; ++Arg) {
   1708     QualType ArgType = Arg->getType();
   1709     EmitCallArg(Args, *Arg, ArgType);
   1710   }
   1711 
   1712   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
   1713            Callee, ReturnValueSlot(), Args, D);
   1714 }
   1715 
   1716 void
   1717 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1718                                                 CXXCtorType CtorType,
   1719                                                 const FunctionArgList &Args) {
   1720   CallArgList DelegateArgs;
   1721 
   1722   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
   1723   assert(I != E && "no parameters to constructor");
   1724 
   1725   // this
   1726   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
   1727   ++I;
   1728 
   1729   // vtt
   1730   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
   1731                                          /*ForVirtualBase=*/false,
   1732                                          /*Delegating=*/true)) {
   1733     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
   1734     DelegateArgs.add(RValue::get(VTT), VoidPP);
   1735 
   1736     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
   1737       assert(I != E && "cannot skip vtt parameter, already done with args");
   1738       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
   1739       ++I;
   1740     }
   1741   }
   1742 
   1743   // Explicit arguments.
   1744   for (; I != E; ++I) {
   1745     const VarDecl *param = *I;
   1746     EmitDelegateCallArg(DelegateArgs, param);
   1747   }
   1748 
   1749   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
   1750   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
   1751            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
   1752 }
   1753 
   1754 namespace {
   1755   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
   1756     const CXXDestructorDecl *Dtor;
   1757     llvm::Value *Addr;
   1758     CXXDtorType Type;
   1759 
   1760     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
   1761                            CXXDtorType Type)
   1762       : Dtor(D), Addr(Addr), Type(Type) {}
   1763 
   1764     void Emit(CodeGenFunction &CGF, Flags flags) {
   1765       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
   1766                                 /*Delegating=*/true, Addr);
   1767     }
   1768   };
   1769 }
   1770 
   1771 void
   1772 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1773                                                   const FunctionArgList &Args) {
   1774   assert(Ctor->isDelegatingConstructor());
   1775 
   1776   llvm::Value *ThisPtr = LoadCXXThis();
   1777 
   1778   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
   1779   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1780   AggValueSlot AggSlot =
   1781     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
   1782                           AggValueSlot::IsDestructed,
   1783                           AggValueSlot::DoesNotNeedGCBarriers,
   1784                           AggValueSlot::IsNotAliased);
   1785 
   1786   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
   1787 
   1788   const CXXRecordDecl *ClassDecl = Ctor->getParent();
   1789   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
   1790     CXXDtorType Type =
   1791       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
   1792 
   1793     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
   1794                                                 ClassDecl->getDestructor(),
   1795                                                 ThisPtr, Type);
   1796   }
   1797 }
   1798 
   1799 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
   1800                                             CXXDtorType Type,
   1801                                             bool ForVirtualBase,
   1802                                             bool Delegating,
   1803                                             llvm::Value *This) {
   1804   llvm::Value *VTT = GetVTTParameter(GlobalDecl(DD, Type),
   1805                                      ForVirtualBase, Delegating);
   1806   llvm::Value *Callee = 0;
   1807   if (getLangOpts().AppleKext)
   1808     Callee = BuildAppleKextVirtualDestructorCall(DD, Type,
   1809                                                  DD->getParent());
   1810 
   1811   if (!Callee)
   1812     Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
   1813 
   1814   // FIXME: Provide a source location here.
   1815   EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
   1816                     VTT, getContext().getPointerType(getContext().VoidPtrTy),
   1817                     0, 0);
   1818 }
   1819 
   1820 namespace {
   1821   struct CallLocalDtor : EHScopeStack::Cleanup {
   1822     const CXXDestructorDecl *Dtor;
   1823     llvm::Value *Addr;
   1824 
   1825     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
   1826       : Dtor(D), Addr(Addr) {}
   1827 
   1828     void Emit(CodeGenFunction &CGF, Flags flags) {
   1829       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1830                                 /*ForVirtualBase=*/false,
   1831                                 /*Delegating=*/false, Addr);
   1832     }
   1833   };
   1834 }
   1835 
   1836 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
   1837                                             llvm::Value *Addr) {
   1838   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
   1839 }
   1840 
   1841 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
   1842   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
   1843   if (!ClassDecl) return;
   1844   if (ClassDecl->hasTrivialDestructor()) return;
   1845 
   1846   const CXXDestructorDecl *D = ClassDecl->getDestructor();
   1847   assert(D && D->isUsed() && "destructor not marked as used!");
   1848   PushDestructorCleanup(D, Addr);
   1849 }
   1850 
   1851 void
   1852 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
   1853                                          const CXXRecordDecl *NearestVBase,
   1854                                          CharUnits OffsetFromNearestVBase,
   1855                                          llvm::Constant *VTable,
   1856                                          const CXXRecordDecl *VTableClass) {
   1857   const CXXRecordDecl *RD = Base.getBase();
   1858 
   1859   // Compute the address point.
   1860   llvm::Value *VTableAddressPoint;
   1861 
   1862   bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CurGD);
   1863 
   1864   // Check if we need to use a vtable from the VTT.
   1865   if (NeedsVTTParam && (RD->getNumVBases() || NearestVBase)) {
   1866     // Get the secondary vpointer index.
   1867     uint64_t VirtualPointerIndex =
   1868      CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
   1869 
   1870     /// Load the VTT.
   1871     llvm::Value *VTT = LoadCXXVTT();
   1872     if (VirtualPointerIndex)
   1873       VTT = Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
   1874 
   1875     // And load the address point from the VTT.
   1876     VTableAddressPoint = Builder.CreateLoad(VTT);
   1877   } else {
   1878     uint64_t AddressPoint =
   1879       CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
   1880     VTableAddressPoint =
   1881       Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
   1882   }
   1883 
   1884   // Compute where to store the address point.
   1885   llvm::Value *VirtualOffset = 0;
   1886   CharUnits NonVirtualOffset = CharUnits::Zero();
   1887 
   1888   if (NeedsVTTParam && NearestVBase) {
   1889     // We need to use the virtual base offset offset because the virtual base
   1890     // might have a different offset in the most derived class.
   1891     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
   1892                                                               LoadCXXThis(),
   1893                                                               VTableClass,
   1894                                                               NearestVBase);
   1895     NonVirtualOffset = OffsetFromNearestVBase;
   1896   } else {
   1897     // We can just use the base offset in the complete class.
   1898     NonVirtualOffset = Base.getBaseOffset();
   1899   }
   1900 
   1901   // Apply the offsets.
   1902   llvm::Value *VTableField = LoadCXXThis();
   1903 
   1904   if (!NonVirtualOffset.isZero() || VirtualOffset)
   1905     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
   1906                                                   NonVirtualOffset,
   1907                                                   VirtualOffset);
   1908 
   1909   // Finally, store the address point.
   1910   llvm::Type *AddressPointPtrTy =
   1911     VTableAddressPoint->getType()->getPointerTo();
   1912   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
   1913   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
   1914   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
   1915 }
   1916 
   1917 void
   1918 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
   1919                                           const CXXRecordDecl *NearestVBase,
   1920                                           CharUnits OffsetFromNearestVBase,
   1921                                           bool BaseIsNonVirtualPrimaryBase,
   1922                                           llvm::Constant *VTable,
   1923                                           const CXXRecordDecl *VTableClass,
   1924                                           VisitedVirtualBasesSetTy& VBases) {
   1925   // If this base is a non-virtual primary base the address point has already
   1926   // been set.
   1927   if (!BaseIsNonVirtualPrimaryBase) {
   1928     // Initialize the vtable pointer for this base.
   1929     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
   1930                             VTable, VTableClass);
   1931   }
   1932 
   1933   const CXXRecordDecl *RD = Base.getBase();
   1934 
   1935   // Traverse bases.
   1936   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1937        E = RD->bases_end(); I != E; ++I) {
   1938     CXXRecordDecl *BaseDecl
   1939       = cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
   1940 
   1941     // Ignore classes without a vtable.
   1942     if (!BaseDecl->isDynamicClass())
   1943       continue;
   1944 
   1945     CharUnits BaseOffset;
   1946     CharUnits BaseOffsetFromNearestVBase;
   1947     bool BaseDeclIsNonVirtualPrimaryBase;
   1948 
   1949     if (I->isVirtual()) {
   1950       // Check if we've visited this virtual base before.
   1951       if (!VBases.insert(BaseDecl))
   1952         continue;
   1953 
   1954       const ASTRecordLayout &Layout =
   1955         getContext().getASTRecordLayout(VTableClass);
   1956 
   1957       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
   1958       BaseOffsetFromNearestVBase = CharUnits::Zero();
   1959       BaseDeclIsNonVirtualPrimaryBase = false;
   1960     } else {
   1961       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   1962 
   1963       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
   1964       BaseOffsetFromNearestVBase =
   1965         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
   1966       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
   1967     }
   1968 
   1969     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
   1970                              I->isVirtual() ? BaseDecl : NearestVBase,
   1971                              BaseOffsetFromNearestVBase,
   1972                              BaseDeclIsNonVirtualPrimaryBase,
   1973                              VTable, VTableClass, VBases);
   1974   }
   1975 }
   1976 
   1977 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
   1978   // Ignore classes without a vtable.
   1979   if (!RD->isDynamicClass())
   1980     return;
   1981 
   1982   // Get the VTable.
   1983   llvm::Constant *VTable = CGM.getVTables().GetAddrOfVTable(RD);
   1984 
   1985   // Initialize the vtable pointers for this class and all of its bases.
   1986   VisitedVirtualBasesSetTy VBases;
   1987   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
   1988                            /*NearestVBase=*/0,
   1989                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
   1990                            /*BaseIsNonVirtualPrimaryBase=*/false,
   1991                            VTable, RD, VBases);
   1992 }
   1993 
   1994 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
   1995                                            llvm::Type *Ty) {
   1996   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
   1997   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
   1998   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
   1999   return VTable;
   2000 }
   2001 
   2002 static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
   2003   const Expr *E = Base;
   2004 
   2005   while (true) {
   2006     E = E->IgnoreParens();
   2007     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2008       if (CE->getCastKind() == CK_DerivedToBase ||
   2009           CE->getCastKind() == CK_UncheckedDerivedToBase ||
   2010           CE->getCastKind() == CK_NoOp) {
   2011         E = CE->getSubExpr();
   2012         continue;
   2013       }
   2014     }
   2015 
   2016     break;
   2017   }
   2018 
   2019   QualType DerivedType = E->getType();
   2020   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
   2021     DerivedType = PTy->getPointeeType();
   2022 
   2023   return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
   2024 }
   2025 
   2026 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
   2027 // quite what we want.
   2028 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
   2029   while (true) {
   2030     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   2031       E = PE->getSubExpr();
   2032       continue;
   2033     }
   2034 
   2035     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2036       if (CE->getCastKind() == CK_NoOp) {
   2037         E = CE->getSubExpr();
   2038         continue;
   2039       }
   2040     }
   2041     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   2042       if (UO->getOpcode() == UO_Extension) {
   2043         E = UO->getSubExpr();
   2044         continue;
   2045       }
   2046     }
   2047     return E;
   2048   }
   2049 }
   2050 
   2051 /// canDevirtualizeMemberFunctionCall - Checks whether the given virtual member
   2052 /// function call on the given expr can be devirtualized.
   2053 static bool canDevirtualizeMemberFunctionCall(const Expr *Base,
   2054                                               const CXXMethodDecl *MD) {
   2055   // If the most derived class is marked final, we know that no subclass can
   2056   // override this member function and so we can devirtualize it. For example:
   2057   //
   2058   // struct A { virtual void f(); }
   2059   // struct B final : A { };
   2060   //
   2061   // void f(B *b) {
   2062   //   b->f();
   2063   // }
   2064   //
   2065   const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
   2066   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
   2067     return true;
   2068 
   2069   // If the member function is marked 'final', we know that it can't be
   2070   // overridden and can therefore devirtualize it.
   2071   if (MD->hasAttr<FinalAttr>())
   2072     return true;
   2073 
   2074   // Similarly, if the class itself is marked 'final' it can't be overridden
   2075   // and we can therefore devirtualize the member function call.
   2076   if (MD->getParent()->hasAttr<FinalAttr>())
   2077     return true;
   2078 
   2079   Base = skipNoOpCastsAndParens(Base);
   2080   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   2081     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
   2082       // This is a record decl. We know the type and can devirtualize it.
   2083       return VD->getType()->isRecordType();
   2084     }
   2085 
   2086     return false;
   2087   }
   2088 
   2089   // We can always devirtualize calls on temporary object expressions.
   2090   if (isa<CXXConstructExpr>(Base))
   2091     return true;
   2092 
   2093   // And calls on bound temporaries.
   2094   if (isa<CXXBindTemporaryExpr>(Base))
   2095     return true;
   2096 
   2097   // Check if this is a call expr that returns a record type.
   2098   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
   2099     return CE->getCallReturnType()->isRecordType();
   2100 
   2101   // We can't devirtualize the call.
   2102   return false;
   2103 }
   2104 
   2105 static bool UseVirtualCall(ASTContext &Context,
   2106                            const CXXOperatorCallExpr *CE,
   2107                            const CXXMethodDecl *MD) {
   2108   if (!MD->isVirtual())
   2109     return false;
   2110 
   2111   // When building with -fapple-kext, all calls must go through the vtable since
   2112   // the kernel linker can do runtime patching of vtables.
   2113   if (Context.getLangOpts().AppleKext)
   2114     return true;
   2115 
   2116   return !canDevirtualizeMemberFunctionCall(CE->getArg(0), MD);
   2117 }
   2118 
   2119 llvm::Value *
   2120 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2121                                              const CXXMethodDecl *MD,
   2122                                              llvm::Value *This) {
   2123   llvm::FunctionType *fnType =
   2124     CGM.getTypes().GetFunctionType(
   2125                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
   2126 
   2127   if (UseVirtualCall(getContext(), E, MD))
   2128     return BuildVirtualCall(MD, This, fnType);
   2129 
   2130   return CGM.GetAddrOfFunction(MD, fnType);
   2131 }
   2132 
   2133 void CodeGenFunction::EmitForwardingCallToLambda(const CXXRecordDecl *lambda,
   2134                                                  CallArgList &callArgs) {
   2135   // Lookup the call operator
   2136   DeclarationName operatorName
   2137     = getContext().DeclarationNames.getCXXOperatorName(OO_Call);
   2138   CXXMethodDecl *callOperator =
   2139     cast<CXXMethodDecl>(lambda->lookup(operatorName).front());
   2140 
   2141   // Get the address of the call operator.
   2142   const CGFunctionInfo &calleeFnInfo =
   2143     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
   2144   llvm::Value *callee =
   2145     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
   2146                           CGM.getTypes().GetFunctionType(calleeFnInfo));
   2147 
   2148   // Prepare the return slot.
   2149   const FunctionProtoType *FPT =
   2150     callOperator->getType()->castAs<FunctionProtoType>();
   2151   QualType resultType = FPT->getResultType();
   2152   ReturnValueSlot returnSlot;
   2153   if (!resultType->isVoidType() &&
   2154       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
   2155       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
   2156     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
   2157 
   2158   // We don't need to separately arrange the call arguments because
   2159   // the call can't be variadic anyway --- it's impossible to forward
   2160   // variadic arguments.
   2161 
   2162   // Now emit our call.
   2163   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
   2164                        callArgs, callOperator);
   2165 
   2166   // If necessary, copy the returned value into the slot.
   2167   if (!resultType->isVoidType() && returnSlot.isNull())
   2168     EmitReturnOfRValue(RV, resultType);
   2169   else
   2170     EmitBranchThroughCleanup(ReturnBlock);
   2171 }
   2172 
   2173 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
   2174   const BlockDecl *BD = BlockInfo->getBlockDecl();
   2175   const VarDecl *variable = BD->capture_begin()->getVariable();
   2176   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
   2177 
   2178   // Start building arguments for forwarding call
   2179   CallArgList CallArgs;
   2180 
   2181   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2182   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
   2183   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2184 
   2185   // Add the rest of the parameters.
   2186   for (BlockDecl::param_const_iterator I = BD->param_begin(),
   2187        E = BD->param_end(); I != E; ++I) {
   2188     ParmVarDecl *param = *I;
   2189     EmitDelegateCallArg(CallArgs, param);
   2190   }
   2191 
   2192   EmitForwardingCallToLambda(Lambda, CallArgs);
   2193 }
   2194 
   2195 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
   2196   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
   2197     // FIXME: Making this work correctly is nasty because it requires either
   2198     // cloning the body of the call operator or making the call operator forward.
   2199     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
   2200     return;
   2201   }
   2202 
   2203   EmitFunctionBody(Args);
   2204 }
   2205 
   2206 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
   2207   const CXXRecordDecl *Lambda = MD->getParent();
   2208 
   2209   // Start building arguments for forwarding call
   2210   CallArgList CallArgs;
   2211 
   2212   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
   2213   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
   2214   CallArgs.add(RValue::get(ThisPtr), ThisType);
   2215 
   2216   // Add the rest of the parameters.
   2217   for (FunctionDecl::param_const_iterator I = MD->param_begin(),
   2218        E = MD->param_end(); I != E; ++I) {
   2219     ParmVarDecl *param = *I;
   2220     EmitDelegateCallArg(CallArgs, param);
   2221   }
   2222 
   2223   EmitForwardingCallToLambda(Lambda, CallArgs);
   2224 }
   2225 
   2226 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
   2227   if (MD->isVariadic()) {
   2228     // FIXME: Making this work correctly is nasty because it requires either
   2229     // cloning the body of the call operator or making the call operator forward.
   2230     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
   2231     return;
   2232   }
   2233 
   2234   EmitLambdaDelegatingInvokeBody(MD);
   2235 }
   2236