Home | History | Annotate | Download | only in Utils
      1 //===-- BypassSlowDivision.cpp - Bypass slow division ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains an optimization for div and rem on architectures that
     11 // execute short instructions significantly faster than longer instructions.
     12 // For example, on Intel Atom 32-bit divides are slow enough that during
     13 // runtime it is profitable to check the value of the operands, and if they are
     14 // positive and less than 256 use an unsigned 8-bit divide.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "bypass-slow-division"
     19 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/IR/Function.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/Instructions.h"
     24 
     25 using namespace llvm;
     26 
     27 namespace {
     28   struct DivOpInfo {
     29     bool SignedOp;
     30     Value *Dividend;
     31     Value *Divisor;
     32 
     33     DivOpInfo(bool InSignedOp, Value *InDividend, Value *InDivisor)
     34       : SignedOp(InSignedOp), Dividend(InDividend), Divisor(InDivisor) {}
     35   };
     36 
     37   struct DivPhiNodes {
     38     PHINode *Quotient;
     39     PHINode *Remainder;
     40 
     41     DivPhiNodes(PHINode *InQuotient, PHINode *InRemainder)
     42       : Quotient(InQuotient), Remainder(InRemainder) {}
     43   };
     44 }
     45 
     46 namespace llvm {
     47   template<>
     48   struct DenseMapInfo<DivOpInfo> {
     49     static bool isEqual(const DivOpInfo &Val1, const DivOpInfo &Val2) {
     50       return Val1.SignedOp == Val2.SignedOp &&
     51              Val1.Dividend == Val2.Dividend &&
     52              Val1.Divisor == Val2.Divisor;
     53     }
     54 
     55     static DivOpInfo getEmptyKey() {
     56       return DivOpInfo(false, 0, 0);
     57     }
     58 
     59     static DivOpInfo getTombstoneKey() {
     60       return DivOpInfo(true, 0, 0);
     61     }
     62 
     63     static unsigned getHashValue(const DivOpInfo &Val) {
     64       return (unsigned)(reinterpret_cast<uintptr_t>(Val.Dividend) ^
     65                         reinterpret_cast<uintptr_t>(Val.Divisor)) ^
     66                         (unsigned)Val.SignedOp;
     67     }
     68   };
     69 
     70   typedef DenseMap<DivOpInfo, DivPhiNodes> DivCacheTy;
     71 }
     72 
     73 // insertFastDiv - Substitutes the div/rem instruction with code that checks the
     74 // value of the operands and uses a shorter-faster div/rem instruction when
     75 // possible and the longer-slower div/rem instruction otherwise.
     76 static bool insertFastDiv(Function &F,
     77                           Function::iterator &I,
     78                           BasicBlock::iterator &J,
     79                           IntegerType *BypassType,
     80                           bool UseDivOp,
     81                           bool UseSignedOp,
     82                           DivCacheTy &PerBBDivCache) {
     83   // Get instruction operands
     84   Instruction *Instr = J;
     85   Value *Dividend = Instr->getOperand(0);
     86   Value *Divisor = Instr->getOperand(1);
     87 
     88   if (isa<ConstantInt>(Divisor) ||
     89       (isa<ConstantInt>(Dividend) && isa<ConstantInt>(Divisor))) {
     90     // Operations with immediate values should have
     91     // been solved and replaced during compile time.
     92     return false;
     93   }
     94 
     95   // Basic Block is split before divide
     96   BasicBlock *MainBB = I;
     97   BasicBlock *SuccessorBB = I->splitBasicBlock(J);
     98   ++I; //advance iterator I to successorBB
     99 
    100   // Add new basic block for slow divide operation
    101   BasicBlock *SlowBB = BasicBlock::Create(F.getContext(), "",
    102                                           MainBB->getParent(), SuccessorBB);
    103   SlowBB->moveBefore(SuccessorBB);
    104   IRBuilder<> SlowBuilder(SlowBB, SlowBB->begin());
    105   Value *SlowQuotientV;
    106   Value *SlowRemainderV;
    107   if (UseSignedOp) {
    108     SlowQuotientV = SlowBuilder.CreateSDiv(Dividend, Divisor);
    109     SlowRemainderV = SlowBuilder.CreateSRem(Dividend, Divisor);
    110   } else {
    111     SlowQuotientV = SlowBuilder.CreateUDiv(Dividend, Divisor);
    112     SlowRemainderV = SlowBuilder.CreateURem(Dividend, Divisor);
    113   }
    114   SlowBuilder.CreateBr(SuccessorBB);
    115 
    116   // Add new basic block for fast divide operation
    117   BasicBlock *FastBB = BasicBlock::Create(F.getContext(), "",
    118                                           MainBB->getParent(), SuccessorBB);
    119   FastBB->moveBefore(SlowBB);
    120   IRBuilder<> FastBuilder(FastBB, FastBB->begin());
    121   Value *ShortDivisorV = FastBuilder.CreateCast(Instruction::Trunc, Divisor,
    122                                                 BypassType);
    123   Value *ShortDividendV = FastBuilder.CreateCast(Instruction::Trunc, Dividend,
    124                                                  BypassType);
    125 
    126   // udiv/urem because optimization only handles positive numbers
    127   Value *ShortQuotientV = FastBuilder.CreateExactUDiv(ShortDividendV,
    128                                                       ShortDivisorV);
    129   Value *ShortRemainderV = FastBuilder.CreateURem(ShortDividendV,
    130                                                   ShortDivisorV);
    131   Value *FastQuotientV = FastBuilder.CreateCast(Instruction::ZExt,
    132                                                 ShortQuotientV,
    133                                                 Dividend->getType());
    134   Value *FastRemainderV = FastBuilder.CreateCast(Instruction::ZExt,
    135                                                  ShortRemainderV,
    136                                                  Dividend->getType());
    137   FastBuilder.CreateBr(SuccessorBB);
    138 
    139   // Phi nodes for result of div and rem
    140   IRBuilder<> SuccessorBuilder(SuccessorBB, SuccessorBB->begin());
    141   PHINode *QuoPhi = SuccessorBuilder.CreatePHI(Instr->getType(), 2);
    142   QuoPhi->addIncoming(SlowQuotientV, SlowBB);
    143   QuoPhi->addIncoming(FastQuotientV, FastBB);
    144   PHINode *RemPhi = SuccessorBuilder.CreatePHI(Instr->getType(), 2);
    145   RemPhi->addIncoming(SlowRemainderV, SlowBB);
    146   RemPhi->addIncoming(FastRemainderV, FastBB);
    147 
    148   // Replace Instr with appropriate phi node
    149   if (UseDivOp)
    150     Instr->replaceAllUsesWith(QuoPhi);
    151   else
    152     Instr->replaceAllUsesWith(RemPhi);
    153   Instr->eraseFromParent();
    154 
    155   // Combine operands into a single value with OR for value testing below
    156   MainBB->getInstList().back().eraseFromParent();
    157   IRBuilder<> MainBuilder(MainBB, MainBB->end());
    158   Value *OrV = MainBuilder.CreateOr(Dividend, Divisor);
    159 
    160   // BitMask is inverted to check if the operands are
    161   // larger than the bypass type
    162   uint64_t BitMask = ~BypassType->getBitMask();
    163   Value *AndV = MainBuilder.CreateAnd(OrV, BitMask);
    164 
    165   // Compare operand values and branch
    166   Value *ZeroV = ConstantInt::getSigned(Dividend->getType(), 0);
    167   Value *CmpV = MainBuilder.CreateICmpEQ(AndV, ZeroV);
    168   MainBuilder.CreateCondBr(CmpV, FastBB, SlowBB);
    169 
    170   // point iterator J at first instruction of successorBB
    171   J = I->begin();
    172 
    173   // Cache phi nodes to be used later in place of other instances
    174   // of div or rem with the same sign, dividend, and divisor
    175   DivOpInfo Key(UseSignedOp, Dividend, Divisor);
    176   DivPhiNodes Value(QuoPhi, RemPhi);
    177   PerBBDivCache.insert(std::pair<DivOpInfo, DivPhiNodes>(Key, Value));
    178   return true;
    179 }
    180 
    181 // reuseOrInsertFastDiv - Reuses previously computed dividend or remainder if
    182 // operands and operation are identical. Otherwise call insertFastDiv to perform
    183 // the optimization and cache the resulting dividend and remainder.
    184 static bool reuseOrInsertFastDiv(Function &F,
    185                                  Function::iterator &I,
    186                                  BasicBlock::iterator &J,
    187                                  IntegerType *BypassType,
    188                                  bool UseDivOp,
    189                                  bool UseSignedOp,
    190                                  DivCacheTy &PerBBDivCache) {
    191   // Get instruction operands
    192   Instruction *Instr = J;
    193   DivOpInfo Key(UseSignedOp, Instr->getOperand(0), Instr->getOperand(1));
    194   DivCacheTy::iterator CacheI = PerBBDivCache.find(Key);
    195 
    196   if (CacheI == PerBBDivCache.end()) {
    197     // If previous instance does not exist, insert fast div
    198     return insertFastDiv(F, I, J, BypassType, UseDivOp, UseSignedOp,
    199                          PerBBDivCache);
    200   }
    201 
    202   // Replace operation value with previously generated phi node
    203   DivPhiNodes &Value = CacheI->second;
    204   if (UseDivOp) {
    205     // Replace all uses of div instruction with quotient phi node
    206     J->replaceAllUsesWith(Value.Quotient);
    207   } else {
    208     // Replace all uses of rem instruction with remainder phi node
    209     J->replaceAllUsesWith(Value.Remainder);
    210   }
    211 
    212   // Advance to next operation
    213   ++J;
    214 
    215   // Remove redundant operation
    216   Instr->eraseFromParent();
    217   return true;
    218 }
    219 
    220 // bypassSlowDivision - This optimization identifies DIV instructions that can
    221 // be profitably bypassed and carried out with a shorter, faster divide.
    222 bool llvm::bypassSlowDivision(Function &F,
    223                               Function::iterator &I,
    224                               const DenseMap<unsigned int, unsigned int> &BypassWidths) {
    225   DivCacheTy DivCache;
    226 
    227   bool MadeChange = false;
    228   for (BasicBlock::iterator J = I->begin(); J != I->end(); J++) {
    229 
    230     // Get instruction details
    231     unsigned Opcode = J->getOpcode();
    232     bool UseDivOp = Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
    233     bool UseRemOp = Opcode == Instruction::SRem || Opcode == Instruction::URem;
    234     bool UseSignedOp = Opcode == Instruction::SDiv ||
    235                        Opcode == Instruction::SRem;
    236 
    237     // Only optimize div or rem ops
    238     if (!UseDivOp && !UseRemOp)
    239       continue;
    240 
    241     // Skip division on vector types, only optimize integer instructions
    242     if (!J->getType()->isIntegerTy())
    243       continue;
    244 
    245     // Get bitwidth of div/rem instruction
    246     IntegerType *T = cast<IntegerType>(J->getType());
    247     unsigned int bitwidth = T->getBitWidth();
    248 
    249     // Continue if bitwidth is not bypassed
    250     DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth);
    251     if (BI == BypassWidths.end())
    252       continue;
    253 
    254     // Get type for div/rem instruction with bypass bitwidth
    255     IntegerType *BT = IntegerType::get(J->getContext(), BI->second);
    256 
    257     MadeChange |= reuseOrInsertFastDiv(F, I, J, BT, UseDivOp,
    258                                        UseSignedOp, DivCache);
    259   }
    260 
    261   return MadeChange;
    262 }
    263