Home | History | Annotate | Download | only in asm-arm
      1 /*
      2  *  linux/include/asm-arm/pgtable.h
      3  *
      4  *  Copyright (C) 1995-2002 Russell King
      5  *
      6  * This program is free software; you can redistribute it and/or modify
      7  * it under the terms of the GNU General Public License version 2 as
      8  * published by the Free Software Foundation.
      9  */
     10 #ifndef _ASMARM_PGTABLE_H
     11 #define _ASMARM_PGTABLE_H
     12 
     13 #include <asm-generic/4level-fixup.h>
     14 #include <asm/proc-fns.h>
     15 
     16 #ifndef CONFIG_MMU
     17 
     18 #include "pgtable-nommu.h"
     19 
     20 #else
     21 
     22 #include <asm/memory.h>
     23 #include <asm/arch/vmalloc.h>
     24 
     25 /*
     26  * Just any arbitrary offset to the start of the vmalloc VM area: the
     27  * current 8MB value just means that there will be a 8MB "hole" after the
     28  * physical memory until the kernel virtual memory starts.  That means that
     29  * any out-of-bounds memory accesses will hopefully be caught.
     30  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
     31  * area for the same reason. ;)
     32  *
     33  * Note that platforms may override VMALLOC_START, but they must provide
     34  * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
     35  * which may not overlap IO space.
     36  */
     37 #ifndef VMALLOC_START
     38 #define VMALLOC_OFFSET		(8*1024*1024)
     39 #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
     40 #endif
     41 
     42 /*
     43  * Hardware-wise, we have a two level page table structure, where the first
     44  * level has 4096 entries, and the second level has 256 entries.  Each entry
     45  * is one 32-bit word.  Most of the bits in the second level entry are used
     46  * by hardware, and there aren't any "accessed" and "dirty" bits.
     47  *
     48  * Linux on the other hand has a three level page table structure, which can
     49  * be wrapped to fit a two level page table structure easily - using the PGD
     50  * and PTE only.  However, Linux also expects one "PTE" table per page, and
     51  * at least a "dirty" bit.
     52  *
     53  * Therefore, we tweak the implementation slightly - we tell Linux that we
     54  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
     55  * hardware pointers to the second level.)  The second level contains two
     56  * hardware PTE tables arranged contiguously, followed by Linux versions
     57  * which contain the state information Linux needs.  We, therefore, end up
     58  * with 512 entries in the "PTE" level.
     59  *
     60  * This leads to the page tables having the following layout:
     61  *
     62  *    pgd             pte
     63  * |        |
     64  * +--------+ +0
     65  * |        |-----> +------------+ +0
     66  * +- - - - + +4    |  h/w pt 0  |
     67  * |        |-----> +------------+ +1024
     68  * +--------+ +8    |  h/w pt 1  |
     69  * |        |       +------------+ +2048
     70  * +- - - - +       | Linux pt 0 |
     71  * |        |       +------------+ +3072
     72  * +--------+       | Linux pt 1 |
     73  * |        |       +------------+ +4096
     74  *
     75  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
     76  * PTE_xxx for definitions of bits appearing in the "h/w pt".
     77  *
     78  * PMD_xxx definitions refer to bits in the first level page table.
     79  *
     80  * The "dirty" bit is emulated by only granting hardware write permission
     81  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
     82  * means that a write to a clean page will cause a permission fault, and
     83  * the Linux MM layer will mark the page dirty via handle_pte_fault().
     84  * For the hardware to notice the permission change, the TLB entry must
     85  * be flushed, and ptep_establish() does that for us.
     86  *
     87  * The "accessed" or "young" bit is emulated by a similar method; we only
     88  * allow accesses to the page if the "young" bit is set.  Accesses to the
     89  * page will cause a fault, and handle_pte_fault() will set the young bit
     90  * for us as long as the page is marked present in the corresponding Linux
     91  * PTE entry.  Again, ptep_establish() will ensure that the TLB is up to
     92  * date.
     93  *
     94  * However, when the "young" bit is cleared, we deny access to the page
     95  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
     96  * for us in this case, which means the TLB will retain the transation
     97  * until either the TLB entry is evicted under pressure, or a context
     98  * switch which changes the user space mapping occurs.
     99  */
    100 #define PTRS_PER_PTE		512
    101 #define PTRS_PER_PMD		1
    102 #define PTRS_PER_PGD		2048
    103 
    104 /*
    105  * PMD_SHIFT determines the size of the area a second-level page table can map
    106  * PGDIR_SHIFT determines what a third-level page table entry can map
    107  */
    108 #define PMD_SHIFT		21
    109 #define PGDIR_SHIFT		21
    110 
    111 #define LIBRARY_TEXT_START	0x0c000000
    112 
    113 #ifndef __ASSEMBLY__
    114 extern void __pte_error(const char *file, int line, unsigned long val);
    115 extern void __pmd_error(const char *file, int line, unsigned long val);
    116 extern void __pgd_error(const char *file, int line, unsigned long val);
    117 
    118 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
    119 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd_val(pmd))
    120 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
    121 #endif /* !__ASSEMBLY__ */
    122 
    123 #define PMD_SIZE		(1UL << PMD_SHIFT)
    124 #define PMD_MASK		(~(PMD_SIZE-1))
    125 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
    126 #define PGDIR_MASK		(~(PGDIR_SIZE-1))
    127 
    128 /*
    129  * This is the lowest virtual address we can permit any user space
    130  * mapping to be mapped at.  This is particularly important for
    131  * non-high vector CPUs.
    132  */
    133 #define FIRST_USER_ADDRESS	PAGE_SIZE
    134 
    135 #define FIRST_USER_PGD_NR	1
    136 #define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
    137 
    138 /*
    139  * ARMv6 supersection address mask and size definitions.
    140  */
    141 #define SUPERSECTION_SHIFT	24
    142 #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
    143 #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
    144 
    145 /*
    146  * "Linux" PTE definitions.
    147  *
    148  * We keep two sets of PTEs - the hardware and the linux version.
    149  * This allows greater flexibility in the way we map the Linux bits
    150  * onto the hardware tables, and allows us to have YOUNG and DIRTY
    151  * bits.
    152  *
    153  * The PTE table pointer refers to the hardware entries; the "Linux"
    154  * entries are stored 1024 bytes below.
    155  */
    156 #define L_PTE_PRESENT		(1 << 0)
    157 #define L_PTE_FILE		(1 << 1)	/* only when !PRESENT */
    158 #define L_PTE_YOUNG		(1 << 1)
    159 #define L_PTE_BUFFERABLE	(1 << 2)	/* matches PTE */
    160 #define L_PTE_CACHEABLE		(1 << 3)	/* matches PTE */
    161 #define L_PTE_USER		(1 << 4)
    162 #define L_PTE_WRITE		(1 << 5)
    163 #define L_PTE_EXEC		(1 << 6)
    164 #define L_PTE_DIRTY		(1 << 7)
    165 #define L_PTE_COHERENT		(1 << 9)	/* I/O coherent (xsc3) */
    166 #define L_PTE_SHARED		(1 << 10)	/* shared between CPUs (v6) */
    167 #define L_PTE_ASID		(1 << 11)	/* non-global (use ASID, v6) */
    168 
    169 #ifndef __ASSEMBLY__
    170 
    171 /*
    172  * The following macros handle the cache and bufferable bits...
    173  */
    174 #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
    175 #define _L_PTE_READ	L_PTE_USER | L_PTE_EXEC
    176 
    177 extern pgprot_t		pgprot_kernel;
    178 
    179 #define PAGE_NONE       __pgprot(_L_PTE_DEFAULT)
    180 #define PAGE_COPY       __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
    181 #define PAGE_SHARED     __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
    182 #define PAGE_READONLY   __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
    183 #define PAGE_KERNEL	pgprot_kernel
    184 
    185 #endif /* __ASSEMBLY__ */
    186 
    187 /*
    188  * The table below defines the page protection levels that we insert into our
    189  * Linux page table version.  These get translated into the best that the
    190  * architecture can perform.  Note that on most ARM hardware:
    191  *  1) We cannot do execute protection
    192  *  2) If we could do execute protection, then read is implied
    193  *  3) write implies read permissions
    194  */
    195 #define __P000  PAGE_NONE
    196 #define __P001  PAGE_READONLY
    197 #define __P010  PAGE_COPY
    198 #define __P011  PAGE_COPY
    199 #define __P100  PAGE_READONLY
    200 #define __P101  PAGE_READONLY
    201 #define __P110  PAGE_COPY
    202 #define __P111  PAGE_COPY
    203 
    204 #define __S000  PAGE_NONE
    205 #define __S001  PAGE_READONLY
    206 #define __S010  PAGE_SHARED
    207 #define __S011  PAGE_SHARED
    208 #define __S100  PAGE_READONLY
    209 #define __S101  PAGE_READONLY
    210 #define __S110  PAGE_SHARED
    211 #define __S111  PAGE_SHARED
    212 
    213 #ifndef __ASSEMBLY__
    214 /*
    215  * ZERO_PAGE is a global shared page that is always zero: used
    216  * for zero-mapped memory areas etc..
    217  */
    218 extern struct page *empty_zero_page;
    219 #define ZERO_PAGE(vaddr)	(empty_zero_page)
    220 
    221 #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
    222 #define pfn_pte(pfn,prot)	(__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
    223 
    224 #define pte_none(pte)		(!pte_val(pte))
    225 #define pte_clear(mm,addr,ptep)	set_pte_at((mm),(addr),(ptep), __pte(0))
    226 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
    227 #define pte_offset_kernel(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
    228 #define pte_offset_map(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
    229 #define pte_offset_map_nested(dir,addr)	(pmd_page_kernel(*(dir)) + __pte_index(addr))
    230 #define pte_unmap(pte)		do { } while (0)
    231 #define pte_unmap_nested(pte)	do { } while (0)
    232 
    233 #define set_pte(ptep, pte)	cpu_set_pte(ptep,pte)
    234 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
    235 
    236 /*
    237  * The following only work if pte_present() is true.
    238  * Undefined behaviour if not..
    239  */
    240 #define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
    241 #define pte_read(pte)		(pte_val(pte) & L_PTE_USER)
    242 #define pte_write(pte)		(pte_val(pte) & L_PTE_WRITE)
    243 #define pte_exec(pte)		(pte_val(pte) & L_PTE_EXEC)
    244 #define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
    245 #define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
    246 
    247 /*
    248  * The following only works if pte_present() is not true.
    249  */
    250 #define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
    251 #define pte_to_pgoff(x)		(pte_val(x) >> 2)
    252 #define pgoff_to_pte(x)		__pte(((x) << 2) | L_PTE_FILE)
    253 
    254 #define PTE_FILE_MAX_BITS	30
    255 
    256 #define PTE_BIT_FUNC(fn,op) \
    257 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
    258 
    259 /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
    260 /*PTE_BIT_FUNC(mkread,    |= L_PTE_USER);*/
    261 PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
    262 PTE_BIT_FUNC(mkwrite,   |= L_PTE_WRITE);
    263 PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
    264 PTE_BIT_FUNC(mkexec,    |= L_PTE_EXEC);
    265 PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
    266 PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
    267 PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
    268 PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
    269 
    270 /*
    271  * Mark the prot value as uncacheable and unbufferable.
    272  */
    273 #define pgprot_noncached(prot)	__pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
    274 #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
    275 
    276 #define pmd_none(pmd)		(!pmd_val(pmd))
    277 #define pmd_present(pmd)	(pmd_val(pmd))
    278 #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
    279 
    280 #define copy_pmd(pmdpd,pmdps)		\
    281 	do {				\
    282 		pmdpd[0] = pmdps[0];	\
    283 		pmdpd[1] = pmdps[1];	\
    284 		flush_pmd_entry(pmdpd);	\
    285 	} while (0)
    286 
    287 #define pmd_clear(pmdp)			\
    288 	do {				\
    289 		pmdp[0] = __pmd(0);	\
    290 		pmdp[1] = __pmd(0);	\
    291 		clean_pmd_entry(pmdp);	\
    292 	} while (0)
    293 
    294 static inline pte_t *pmd_page_kernel(pmd_t pmd)
    295 {
    296 	unsigned long ptr;
    297 
    298 	ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
    299 	ptr += PTRS_PER_PTE * sizeof(void *);
    300 
    301 	return __va(ptr);
    302 }
    303 
    304 #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
    305 
    306 /*
    307  * Permanent address of a page. We never have highmem, so this is trivial.
    308  */
    309 #define pages_to_mb(x)		((x) >> (20 - PAGE_SHIFT))
    310 
    311 /*
    312  * Conversion functions: convert a page and protection to a page entry,
    313  * and a page entry and page directory to the page they refer to.
    314  */
    315 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
    316 
    317 /*
    318  * The "pgd_xxx()" functions here are trivial for a folded two-level
    319  * setup: the pgd is never bad, and a pmd always exists (as it's folded
    320  * into the pgd entry)
    321  */
    322 #define pgd_none(pgd)		(0)
    323 #define pgd_bad(pgd)		(0)
    324 #define pgd_present(pgd)	(1)
    325 #define pgd_clear(pgdp)		do { } while (0)
    326 #define set_pgd(pgd,pgdp)	do { } while (0)
    327 
    328 /* to find an entry in a page-table-directory */
    329 #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
    330 
    331 #define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr))
    332 
    333 /* to find an entry in a kernel page-table-directory */
    334 #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
    335 
    336 /* Find an entry in the second-level page table.. */
    337 #define pmd_offset(dir, addr)	((pmd_t *)(dir))
    338 
    339 /* Find an entry in the third-level page table.. */
    340 #define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
    341 
    342 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
    343 {
    344 	const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
    345 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
    346 	return pte;
    347 }
    348 
    349 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
    350 
    351 /* Encode and decode a swap entry.
    352  *
    353  * We support up to 32GB of swap on 4k machines
    354  */
    355 #define __swp_type(x)		(((x).val >> 2) & 0x7f)
    356 #define __swp_offset(x)		((x).val >> 9)
    357 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
    358 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
    359 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
    360 
    361 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
    362 /* FIXME: this is not correct */
    363 #define kern_addr_valid(addr)	(1)
    364 
    365 #include <asm-generic/pgtable.h>
    366 
    367 /*
    368  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
    369  */
    370 #define HAVE_ARCH_UNMAPPED_AREA
    371 
    372 /*
    373  * remap a physical page `pfn' of size `size' with page protection `prot'
    374  * into virtual address `from'
    375  */
    376 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
    377 		remap_pfn_range(vma, from, pfn, size, prot)
    378 
    379 #define MK_IOSPACE_PFN(space, pfn)	(pfn)
    380 #define GET_IOSPACE(pfn)		0
    381 #define GET_PFN(pfn)			(pfn)
    382 
    383 #define pgtable_cache_init() do { } while (0)
    384 
    385 #endif /* !__ASSEMBLY__ */
    386 
    387 #endif /* CONFIG_MMU */
    388 
    389 #endif /* _ASMARM_PGTABLE_H */
    390