Home | History | Annotate | Download | only in JIT
      1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/ExecutionEngine/JIT.h"
     11 #include "llvm/ADT/OwningPtr.h"
     12 #include "llvm/ADT/SmallPtrSet.h"
     13 #include "llvm/Assembly/Parser.h"
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     16 #include "llvm/IR/BasicBlock.h"
     17 #include "llvm/IR/Constant.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/GlobalValue.h"
     22 #include "llvm/IR/GlobalVariable.h"
     23 #include "llvm/IR/IRBuilder.h"
     24 #include "llvm/IR/LLVMContext.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/IR/TypeBuilder.h"
     28 #include "llvm/Support/MemoryBuffer.h"
     29 #include "llvm/Support/SourceMgr.h"
     30 #include "llvm/Support/TargetSelect.h"
     31 #include "gtest/gtest.h"
     32 #include <vector>
     33 
     34 using namespace llvm;
     35 
     36 // This variable is intentionally defined differently in the statically-compiled
     37 // program from the IR input to the JIT to assert that the JIT doesn't use its
     38 // definition.  Note that this variable must be defined even on platforms where
     39 // JIT tests are disabled as it is referenced from the .def file.
     40 extern "C" int32_t JITTest_AvailableExternallyGlobal;
     41 int32_t JITTest_AvailableExternallyGlobal LLVM_ATTRIBUTE_USED = 42;
     42 
     43 // This function is intentionally defined differently in the statically-compiled
     44 // program from the IR input to the JIT to assert that the JIT doesn't use its
     45 // definition.  Note that this function must be defined even on platforms where
     46 // JIT tests are disabled as it is referenced from the .def file.
     47 extern "C" int32_t JITTest_AvailableExternallyFunction() LLVM_ATTRIBUTE_USED;
     48 extern "C" int32_t JITTest_AvailableExternallyFunction() {
     49   return 42;
     50 }
     51 
     52 namespace {
     53 
     54 // Tests on ARM, PowerPC and SystemZ disabled as we're running the old jit
     55 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__)
     56 
     57 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
     58   std::vector<Type*> params;
     59   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
     60                                               params, false);
     61   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
     62   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
     63   IRBuilder<> builder(Entry);
     64   Value *Load = builder.CreateLoad(G);
     65   Type *GTy = G->getType()->getElementType();
     66   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
     67   builder.CreateStore(Add, G);
     68   builder.CreateRet(Add);
     69   return F;
     70 }
     71 
     72 std::string DumpFunction(const Function *F) {
     73   std::string Result;
     74   raw_string_ostream(Result) << "" << *F;
     75   return Result;
     76 }
     77 
     78 class RecordingJITMemoryManager : public JITMemoryManager {
     79   const OwningPtr<JITMemoryManager> Base;
     80 public:
     81   RecordingJITMemoryManager()
     82     : Base(JITMemoryManager::CreateDefaultMemManager()) {
     83     stubsAllocated = 0;
     84   }
     85   virtual void *getPointerToNamedFunction(const std::string &Name,
     86                                           bool AbortOnFailure = true) {
     87     return Base->getPointerToNamedFunction(Name, AbortOnFailure);
     88   }
     89 
     90   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
     91   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
     92   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
     93   virtual void AllocateGOT() { Base->AllocateGOT(); }
     94   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
     95   struct StartFunctionBodyCall {
     96     StartFunctionBodyCall(uint8_t *Result, const Function *F,
     97                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
     98       : Result(Result), F(F), F_dump(DumpFunction(F)),
     99         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
    100     uint8_t *Result;
    101     const Function *F;
    102     std::string F_dump;
    103     uintptr_t ActualSize;
    104     uintptr_t ActualSizeResult;
    105   };
    106   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
    107   virtual uint8_t *startFunctionBody(const Function *F,
    108                                      uintptr_t &ActualSize) {
    109     uintptr_t InitialActualSize = ActualSize;
    110     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
    111     startFunctionBodyCalls.push_back(
    112       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
    113     return Result;
    114   }
    115   int stubsAllocated;
    116   virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
    117                                 unsigned Alignment) {
    118     stubsAllocated++;
    119     return Base->allocateStub(F, StubSize, Alignment);
    120   }
    121   struct EndFunctionBodyCall {
    122     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
    123                         uint8_t *FunctionEnd)
    124       : F(F), F_dump(DumpFunction(F)),
    125         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
    126     const Function *F;
    127     std::string F_dump;
    128     uint8_t *FunctionStart;
    129     uint8_t *FunctionEnd;
    130   };
    131   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
    132   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    133                                uint8_t *FunctionEnd) {
    134     endFunctionBodyCalls.push_back(
    135       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
    136     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
    137   }
    138   virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    139                                        unsigned SectionID, bool IsReadOnly) {
    140     return Base->allocateDataSection(Size, Alignment, SectionID, IsReadOnly);
    141   }
    142   virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    143                                        unsigned SectionID) {
    144     return Base->allocateCodeSection(Size, Alignment, SectionID);
    145   }
    146   virtual bool finalizeMemory(std::string *ErrMsg) { return false; }
    147   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    148     return Base->allocateSpace(Size, Alignment);
    149   }
    150   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    151     return Base->allocateGlobal(Size, Alignment);
    152   }
    153   struct DeallocateFunctionBodyCall {
    154     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
    155     const void *Body;
    156   };
    157   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
    158   virtual void deallocateFunctionBody(void *Body) {
    159     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
    160     Base->deallocateFunctionBody(Body);
    161   }
    162 };
    163 
    164 bool LoadAssemblyInto(Module *M, const char *assembly) {
    165   SMDiagnostic Error;
    166   bool success =
    167     NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
    168   std::string errMsg;
    169   raw_string_ostream os(errMsg);
    170   Error.print("", os);
    171   EXPECT_TRUE(success) << os.str();
    172   return success;
    173 }
    174 
    175 class JITTest : public testing::Test {
    176  protected:
    177   virtual RecordingJITMemoryManager *createMemoryManager() {
    178     return new RecordingJITMemoryManager;
    179   }
    180 
    181   virtual void SetUp() {
    182     M = new Module("<main>", Context);
    183     RJMM = createMemoryManager();
    184     RJMM->setPoisonMemory(true);
    185     std::string Error;
    186     TargetOptions Options;
    187     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
    188                  .setJITMemoryManager(RJMM)
    189                  .setErrorStr(&Error)
    190                  .setTargetOptions(Options).create());
    191     ASSERT_TRUE(TheJIT.get() != NULL) << Error;
    192   }
    193 
    194   void LoadAssembly(const char *assembly) {
    195     LoadAssemblyInto(M, assembly);
    196   }
    197 
    198   LLVMContext Context;
    199   Module *M;  // Owned by ExecutionEngine.
    200   RecordingJITMemoryManager *RJMM;
    201   OwningPtr<ExecutionEngine> TheJIT;
    202 };
    203 
    204 // Regression test for a bug.  The JIT used to allocate globals inside the same
    205 // memory block used for the function, and when the function code was freed,
    206 // the global was left in the same place.  This test allocates a function
    207 // that uses and global, deallocates it, and then makes sure that the global
    208 // stays alive after that.
    209 TEST(JIT, GlobalInFunction) {
    210   LLVMContext context;
    211   Module *M = new Module("<main>", context);
    212 
    213   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
    214   // Tell the memory manager to poison freed memory so that accessing freed
    215   // memory is more easily tested.
    216   MemMgr->setPoisonMemory(true);
    217   std::string Error;
    218   OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
    219                                  .setEngineKind(EngineKind::JIT)
    220                                  .setErrorStr(&Error)
    221                                  .setJITMemoryManager(MemMgr)
    222                                  // The next line enables the fix:
    223                                  .setAllocateGVsWithCode(false)
    224                                  .create());
    225   ASSERT_EQ(Error, "");
    226 
    227   // Create a global variable.
    228   Type *GTy = Type::getInt32Ty(context);
    229   GlobalVariable *G = new GlobalVariable(
    230       *M,
    231       GTy,
    232       false,  // Not constant.
    233       GlobalValue::InternalLinkage,
    234       Constant::getNullValue(GTy),
    235       "myglobal");
    236 
    237   // Make a function that points to a global.
    238   Function *F1 = makeReturnGlobal("F1", G, M);
    239 
    240   // Get the pointer to the native code to force it to JIT the function and
    241   // allocate space for the global.
    242   void (*F1Ptr)() =
    243       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
    244 
    245   // Since F1 was codegen'd, a pointer to G should be available.
    246   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
    247   ASSERT_NE((int32_t*)NULL, GPtr);
    248   EXPECT_EQ(0, *GPtr);
    249 
    250   // F1() should increment G.
    251   F1Ptr();
    252   EXPECT_EQ(1, *GPtr);
    253 
    254   // Make a second function identical to the first, referring to the same
    255   // global.
    256   Function *F2 = makeReturnGlobal("F2", G, M);
    257   void (*F2Ptr)() =
    258       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
    259 
    260   // F2() should increment G.
    261   F2Ptr();
    262   EXPECT_EQ(2, *GPtr);
    263 
    264   // Deallocate F1.
    265   JIT->freeMachineCodeForFunction(F1);
    266 
    267   // F2() should *still* increment G.
    268   F2Ptr();
    269   EXPECT_EQ(3, *GPtr);
    270 }
    271 
    272 int PlusOne(int arg) {
    273   return arg + 1;
    274 }
    275 
    276 TEST_F(JITTest, FarCallToKnownFunction) {
    277   // x86-64 can only make direct calls to functions within 32 bits of
    278   // the current PC.  To call anything farther away, we have to load
    279   // the address into a register and call through the register.  The
    280   // current JIT does this by allocating a stub for any far call.
    281   // There was a bug in which the JIT tried to emit a direct call when
    282   // the target was already in the JIT's global mappings and lazy
    283   // compilation was disabled.
    284 
    285   Function *KnownFunction = Function::Create(
    286       TypeBuilder<int(int), false>::get(Context),
    287       GlobalValue::ExternalLinkage, "known", M);
    288   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
    289 
    290   // int test() { return known(7); }
    291   Function *TestFunction = Function::Create(
    292       TypeBuilder<int(), false>::get(Context),
    293       GlobalValue::ExternalLinkage, "test", M);
    294   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
    295   IRBuilder<> Builder(Entry);
    296   Value *result = Builder.CreateCall(
    297       KnownFunction,
    298       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
    299   Builder.CreateRet(result);
    300 
    301   TheJIT->DisableLazyCompilation(true);
    302   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
    303       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
    304   // This used to crash in trying to call PlusOne().
    305   EXPECT_EQ(8, TestFunctionPtr());
    306 }
    307 
    308 // Test a function C which calls A and B which call each other.
    309 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
    310   TheJIT->DisableLazyCompilation(true);
    311 
    312   FunctionType *Func1Ty =
    313       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
    314   std::vector<Type*> arg_types;
    315   arg_types.push_back(Type::getInt1Ty(Context));
    316   FunctionType *FuncTy = FunctionType::get(
    317       Type::getVoidTy(Context), arg_types, false);
    318   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
    319                                      "func1", M);
    320   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    321                                      "func2", M);
    322   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
    323                                      "func3", M);
    324   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    325   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    326   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
    327   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
    328   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
    329   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
    330   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
    331 
    332   // Make Func1 call Func2(0) and Func3(0).
    333   IRBuilder<> Builder(Block1);
    334   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
    335   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
    336   Builder.CreateRetVoid();
    337 
    338   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
    339   Builder.SetInsertPoint(Block2);
    340   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
    341   Builder.SetInsertPoint(True2);
    342   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
    343   Builder.CreateRetVoid();
    344   Builder.SetInsertPoint(False2);
    345   Builder.CreateRetVoid();
    346 
    347   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
    348   Builder.SetInsertPoint(Block3);
    349   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
    350   Builder.SetInsertPoint(True3);
    351   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
    352   Builder.CreateRetVoid();
    353   Builder.SetInsertPoint(False3);
    354   Builder.CreateRetVoid();
    355 
    356   // Compile the function to native code
    357   void (*F1Ptr)() =
    358      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
    359 
    360   F1Ptr();
    361 }
    362 
    363 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
    364 // JIT's Function to stub mapping.
    365 TEST_F(JITTest, NonLazyLeaksNoStubs) {
    366   TheJIT->DisableLazyCompilation(true);
    367 
    368   // Create two functions with a single basic block each.
    369   FunctionType *FuncTy =
    370       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
    371   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
    372                                      "func1", M);
    373   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    374                                      "func2", M);
    375   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    376   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    377 
    378   // The first function calls the second and returns the result
    379   IRBuilder<> Builder(Block1);
    380   Value *Result = Builder.CreateCall(Func2);
    381   Builder.CreateRet(Result);
    382 
    383   // The second function just returns a constant
    384   Builder.SetInsertPoint(Block2);
    385   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
    386 
    387   // Compile the function to native code
    388   (void)TheJIT->getPointerToFunction(Func1);
    389 
    390   // Free the JIT state for the functions
    391   TheJIT->freeMachineCodeForFunction(Func1);
    392   TheJIT->freeMachineCodeForFunction(Func2);
    393 
    394   // Delete the first function (and show that is has no users)
    395   EXPECT_EQ(Func1->getNumUses(), 0u);
    396   Func1->eraseFromParent();
    397 
    398   // Delete the second function (and show that it has no users - it had one,
    399   // func1 but that's gone now)
    400   EXPECT_EQ(Func2->getNumUses(), 0u);
    401   Func2->eraseFromParent();
    402 }
    403 
    404 TEST_F(JITTest, ModuleDeletion) {
    405   TheJIT->DisableLazyCompilation(false);
    406   LoadAssembly("define void @main() { "
    407                "  call i32 @computeVal() "
    408                "  ret void "
    409                "} "
    410                " "
    411                "define internal i32 @computeVal()  { "
    412                "  ret i32 0 "
    413                "} ");
    414   Function *func = M->getFunction("main");
    415   TheJIT->getPointerToFunction(func);
    416   TheJIT->removeModule(M);
    417   delete M;
    418 
    419   SmallPtrSet<const void*, 2> FunctionsDeallocated;
    420   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
    421        i != e; ++i) {
    422     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
    423   }
    424   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
    425     EXPECT_TRUE(FunctionsDeallocated.count(
    426                   RJMM->startFunctionBodyCalls[i].Result))
    427       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
    428   }
    429   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
    430             RJMM->deallocateFunctionBodyCalls.size());
    431 }
    432 
    433 // ARM, MIPS and PPC still emit stubs for calls since the target may be
    434 // too far away to call directly.  This #if can probably be removed when
    435 // http://llvm.org/PR5201 is fixed.
    436 #if !defined(__arm__) && !defined(__mips__) && \
    437     !defined(__powerpc__) && !defined(__ppc__)
    438 typedef int (*FooPtr) ();
    439 
    440 TEST_F(JITTest, NoStubs) {
    441   LoadAssembly("define void @bar() {"
    442 	       "entry: "
    443 	       "ret void"
    444 	       "}"
    445 	       " "
    446 	       "define i32 @foo() {"
    447 	       "entry:"
    448 	       "call void @bar()"
    449 	       "ret i32 undef"
    450 	       "}"
    451 	       " "
    452 	       "define i32 @main() {"
    453 	       "entry:"
    454 	       "%0 = call i32 @foo()"
    455 	       "call void @bar()"
    456 	       "ret i32 undef"
    457 	       "}");
    458   Function *foo = M->getFunction("foo");
    459   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
    460   FooPtr ptr = (FooPtr)(tmp);
    461 
    462   (ptr)();
    463 
    464   // We should now allocate no more stubs, we have the code to foo
    465   // and the existing stub for bar.
    466   int stubsBefore = RJMM->stubsAllocated;
    467   Function *func = M->getFunction("main");
    468   TheJIT->getPointerToFunction(func);
    469 
    470   Function *bar = M->getFunction("bar");
    471   TheJIT->getPointerToFunction(bar);
    472 
    473   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
    474 }
    475 #endif  // !ARM && !PPC
    476 
    477 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
    478   TheJIT->DisableLazyCompilation(true);
    479   LoadAssembly("define i8()* @get_foo_addr() { "
    480                "  ret i8()* @foo "
    481                "} "
    482                " "
    483                "define i8 @foo() { "
    484                "  ret i8 42 "
    485                "} ");
    486   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
    487 
    488   typedef char(*fooT)();
    489   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
    490       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
    491   fooT foo_addr = get_foo_addr();
    492 
    493   // Now free get_foo_addr.  This should not free the machine code for foo or
    494   // any call stub returned as foo's canonical address.
    495   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
    496 
    497   // Check by calling the reported address of foo.
    498   EXPECT_EQ(42, foo_addr());
    499 
    500   // The reported address should also be the same as the result of a subsequent
    501   // getPointerToFunction(foo).
    502 #if 0
    503   // Fails until PR5126 is fixed:
    504   Function *F_foo = M->getFunction("foo");
    505   fooT foo = reinterpret_cast<fooT>(
    506       (intptr_t)TheJIT->getPointerToFunction(F_foo));
    507   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
    508 #endif
    509 }
    510 
    511 // ARM does not have an implementation of replaceMachineCodeForFunction(),
    512 // so recompileAndRelinkFunction doesn't work.
    513 #if !defined(__arm__)
    514 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
    515   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
    516                                  GlobalValue::ExternalLinkage, "test", M);
    517   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
    518   IRBuilder<> Builder(Entry);
    519   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
    520   Builder.CreateRet(Val);
    521 
    522   TheJIT->DisableLazyCompilation(true);
    523   // Compile the function once, and make sure it works.
    524   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
    525     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    526   EXPECT_EQ(1, OrigFPtr());
    527 
    528   // Now change the function to return a different value.
    529   Entry->eraseFromParent();
    530   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
    531   Builder.SetInsertPoint(NewEntry);
    532   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
    533   Builder.CreateRet(Val);
    534   // Recompile it, which should produce a new function pointer _and_ update the
    535   // old one.
    536   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
    537     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    538 
    539   EXPECT_EQ(2, NewFPtr())
    540     << "The new pointer should call the new version of the function";
    541   EXPECT_EQ(2, OrigFPtr())
    542     << "The old pointer's target should now jump to the new version";
    543 }
    544 #endif  // !defined(__arm__)
    545 
    546 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
    547   TheJIT->DisableLazyCompilation(true);
    548   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
    549                "  available_externally global i32 7 "
    550                " "
    551                "define i32 @loader() { "
    552                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
    553                "  ret i32 %result "
    554                "} ");
    555   Function *loaderIR = M->getFunction("loader");
    556 
    557   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
    558     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
    559   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
    560                           << " not 7 from the IR version.";
    561 }
    562 
    563 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
    564   TheJIT->DisableLazyCompilation(true);
    565   LoadAssembly("define available_externally i32 "
    566                "    @JITTest_AvailableExternallyFunction() { "
    567                "  ret i32 7 "
    568                "} "
    569                " "
    570                "define i32 @func() { "
    571                "  %result = tail call i32 "
    572                "    @JITTest_AvailableExternallyFunction() "
    573                "  ret i32 %result "
    574                "} ");
    575   Function *funcIR = M->getFunction("func");
    576 
    577   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    578     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    579   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    580                         << " not 7 from the IR version.";
    581 }
    582 
    583 TEST_F(JITTest, EscapedLazyStubStillCallable) {
    584   TheJIT->DisableLazyCompilation(false);
    585   LoadAssembly("define internal i32 @stubbed() { "
    586                "  ret i32 42 "
    587                "} "
    588                " "
    589                "define i32()* @get_stub() { "
    590                "  ret i32()* @stubbed "
    591                "} ");
    592   typedef int32_t(*StubTy)();
    593 
    594   // Call get_stub() to get the address of @stubbed without actually JITting it.
    595   Function *get_stubIR = M->getFunction("get_stub");
    596   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
    597     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
    598   StubTy stubbed = get_stub();
    599   // Now get_stubIR is the only reference to stubbed's stub.
    600   get_stubIR->eraseFromParent();
    601   // Now there are no references inside the JIT, but we've got a pointer outside
    602   // it.  The stub should be callable and return the right value.
    603   EXPECT_EQ(42, stubbed());
    604 }
    605 
    606 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
    607 // empty string indicates an error.
    608 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
    609   Module TempModule("TempModule", Context);
    610   if (!LoadAssemblyInto(&TempModule, Assembly)) {
    611     return "";
    612   }
    613 
    614   std::string Result;
    615   raw_string_ostream OS(Result);
    616   WriteBitcodeToFile(&TempModule, OS);
    617   OS.flush();
    618   return Result;
    619 }
    620 
    621 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
    622 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
    623 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
    624 // ExecutionEngine.
    625 ExecutionEngine *getJITFromBitcode(
    626   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
    627   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
    628   MemoryBuffer *BitcodeBuffer =
    629     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
    630   std::string errMsg;
    631   M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
    632   if (M == NULL) {
    633     ADD_FAILURE() << errMsg;
    634     delete BitcodeBuffer;
    635     return NULL;
    636   }
    637   ExecutionEngine *TheJIT = EngineBuilder(M)
    638     .setEngineKind(EngineKind::JIT)
    639     .setErrorStr(&errMsg)
    640     .create();
    641   if (TheJIT == NULL) {
    642     ADD_FAILURE() << errMsg;
    643     delete M;
    644     M = NULL;
    645     return NULL;
    646   }
    647   return TheJIT;
    648 }
    649 
    650 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
    651   LLVMContext Context;
    652   const std::string Bitcode =
    653     AssembleToBitcode(Context,
    654                       "define available_externally i32 "
    655                       "    @JITTest_AvailableExternallyFunction() { "
    656                       "  ret i32 7 "
    657                       "} "
    658                       " "
    659                       "define i32 @func() { "
    660                       "  %result = tail call i32 "
    661                       "    @JITTest_AvailableExternallyFunction() "
    662                       "  ret i32 %result "
    663                       "} ");
    664   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    665   Module *M;
    666   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    667   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    668   TheJIT->DisableLazyCompilation(true);
    669 
    670   Function *funcIR = M->getFunction("func");
    671   Function *availableFunctionIR =
    672     M->getFunction("JITTest_AvailableExternallyFunction");
    673 
    674   // Double-check that the available_externally function is still unmaterialized
    675   // when getPointerToFunction needs to find out if it's available_externally.
    676   EXPECT_TRUE(availableFunctionIR->isMaterializable());
    677 
    678   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    679     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    680   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    681                         << " not 7 from the IR version.";
    682 }
    683 
    684 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
    685   LLVMContext Context;
    686   const std::string Bitcode =
    687     AssembleToBitcode(Context,
    688                       "define i32 @recur1(i32 %a) { "
    689                       "  %zero = icmp eq i32 %a, 0 "
    690                       "  br i1 %zero, label %done, label %notdone "
    691                       "done: "
    692                       "  ret i32 3 "
    693                       "notdone: "
    694                       "  %am1 = sub i32 %a, 1 "
    695                       "  %result = call i32 @recur2(i32 %am1) "
    696                       "  ret i32 %result "
    697                       "} "
    698                       " "
    699                       "define i32 @recur2(i32 %b) { "
    700                       "  %result = call i32 @recur1(i32 %b) "
    701                       "  ret i32 %result "
    702                       "} ");
    703   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    704   Module *M;
    705   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    706   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    707   TheJIT->DisableLazyCompilation(true);
    708 
    709   Function *recur1IR = M->getFunction("recur1");
    710   Function *recur2IR = M->getFunction("recur2");
    711   EXPECT_TRUE(recur1IR->isMaterializable());
    712   EXPECT_TRUE(recur2IR->isMaterializable());
    713 
    714   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
    715     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
    716   EXPECT_EQ(3, recur1(4));
    717 }
    718 #endif // !defined(__arm__) && !defined(__powerpc__) && !defined(__s390__)
    719 
    720 // This code is copied from JITEventListenerTest, but it only runs once for all
    721 // the tests in this directory.  Everything seems fine, but that's strange
    722 // behavior.
    723 class JITEnvironment : public testing::Environment {
    724   virtual void SetUp() {
    725     // Required to create a JIT.
    726     InitializeNativeTarget();
    727   }
    728 };
    729 testing::Environment* const jit_env =
    730   testing::AddGlobalTestEnvironment(new JITEnvironment);
    731 
    732 }
    733