1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <assert.h> 12 13 #include "./vpx_scale_rtcd.h" 14 #include "./vpx_config.h" 15 16 #include "vpx/vpx_integer.h" 17 18 #include "vp9/common/vp9_blockd.h" 19 #include "vp9/common/vp9_filter.h" 20 #include "vp9/common/vp9_reconinter.h" 21 #include "vp9/common/vp9_reconintra.h" 22 23 24 void vp9_setup_interp_filters(MACROBLOCKD *xd, 25 INTERPOLATIONFILTERTYPE mcomp_filter_type, 26 VP9_COMMON *cm) { 27 if (xd->mi_8x8 && xd->this_mi) { 28 MB_MODE_INFO * mbmi = &xd->this_mi->mbmi; 29 30 set_scale_factors(xd, mbmi->ref_frame[0] - 1, mbmi->ref_frame[1] - 1, 31 cm->active_ref_scale); 32 } else { 33 set_scale_factors(xd, -1, -1, cm->active_ref_scale); 34 } 35 36 switch (mcomp_filter_type) { 37 case EIGHTTAP: 38 case SWITCHABLE: 39 xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8; 40 break; 41 case EIGHTTAP_SMOOTH: 42 xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp; 43 break; 44 case EIGHTTAP_SHARP: 45 xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s; 46 break; 47 case BILINEAR: 48 xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters; 49 break; 50 } 51 assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); 52 } 53 54 void vp9_build_inter_predictor(const uint8_t *src, int src_stride, 55 uint8_t *dst, int dst_stride, 56 const MV *src_mv, 57 const struct scale_factors *scale, 58 int w, int h, int ref, 59 const struct subpix_fn_table *subpix, 60 enum mv_precision precision) { 61 const int is_q4 = precision == MV_PRECISION_Q4; 62 const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row << 1, 63 is_q4 ? src_mv->col : src_mv->col << 1 }; 64 const MV32 mv = scale->scale_mv(&mv_q4, scale); 65 const int subpel_x = mv.col & SUBPEL_MASK; 66 const int subpel_y = mv.row & SUBPEL_MASK; 67 68 src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); 69 scale->predict[subpel_x != 0][subpel_y != 0][ref]( 70 src, src_stride, dst, dst_stride, 71 subpix->filter_x[subpel_x], scale->x_step_q4, 72 subpix->filter_y[subpel_y], scale->y_step_q4, 73 w, h); 74 } 75 76 static INLINE int round_mv_comp_q4(int value) { 77 return (value < 0 ? value - 2 : value + 2) / 4; 78 } 79 80 static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { 81 MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row + 82 mi->bmi[1].as_mv[idx].as_mv.row + 83 mi->bmi[2].as_mv[idx].as_mv.row + 84 mi->bmi[3].as_mv[idx].as_mv.row), 85 round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col + 86 mi->bmi[1].as_mv[idx].as_mv.col + 87 mi->bmi[2].as_mv[idx].as_mv.col + 88 mi->bmi[3].as_mv[idx].as_mv.col) }; 89 return res; 90 } 91 92 // TODO(jkoleszar): yet another mv clamping function :-( 93 MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, 94 int bw, int bh, int ss_x, int ss_y) { 95 // If the MV points so far into the UMV border that no visible pixels 96 // are used for reconstruction, the subpel part of the MV can be 97 // discarded and the MV limited to 16 pixels with equivalent results. 98 const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; 99 const int spel_right = spel_left - SUBPEL_SHIFTS; 100 const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; 101 const int spel_bottom = spel_top - SUBPEL_SHIFTS; 102 MV clamped_mv = { 103 src_mv->row << (1 - ss_y), 104 src_mv->col << (1 - ss_x) 105 }; 106 assert(ss_x <= 1); 107 assert(ss_y <= 1); 108 109 clamp_mv(&clamped_mv, (xd->mb_to_left_edge << (1 - ss_x)) - spel_left, 110 (xd->mb_to_right_edge << (1 - ss_x)) + spel_right, 111 (xd->mb_to_top_edge << (1 - ss_y)) - spel_top, 112 (xd->mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); 113 114 return clamped_mv; 115 } 116 117 struct build_inter_predictors_args { 118 MACROBLOCKD *xd; 119 int x, y; 120 }; 121 122 static void build_inter_predictors(int plane, int block, BLOCK_SIZE bsize, 123 int pred_w, int pred_h, 124 void *argv) { 125 const struct build_inter_predictors_args* const arg = argv; 126 MACROBLOCKD *const xd = arg->xd; 127 struct macroblockd_plane *const pd = &xd->plane[plane]; 128 const int bwl = b_width_log2(bsize) - pd->subsampling_x; 129 const int bw = 4 << bwl; 130 const int bh = plane_block_height(bsize, pd); 131 const int x = 4 * (block & ((1 << bwl) - 1)); 132 const int y = 4 * (block >> bwl); 133 const MODE_INFO *mi = xd->this_mi; 134 const int use_second_ref = mi->mbmi.ref_frame[1] > 0; 135 int ref; 136 137 assert(x < bw); 138 assert(y < bh); 139 assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw); 140 assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh); 141 142 for (ref = 0; ref < 1 + use_second_ref; ++ref) { 143 struct scale_factors *const scale = &xd->scale_factor[ref]; 144 struct buf_2d *const pre_buf = &pd->pre[ref]; 145 struct buf_2d *const dst_buf = &pd->dst; 146 147 const uint8_t *const pre = pre_buf->buf + scaled_buffer_offset(x, y, 148 pre_buf->stride, scale); 149 150 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; 151 152 // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the 153 // same MV (the average of the 4 luma MVs) but we could do something 154 // smarter for non-4:2:0. Just punt for now, pending the changes to get 155 // rid of SPLITMV mode entirely. 156 const MV mv = mi->mbmi.sb_type < BLOCK_8X8 157 ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv 158 : mi_mv_pred_q4(mi, ref)) 159 : mi->mbmi.mv[ref].as_mv; 160 161 // TODO(jkoleszar): This clamping is done in the incorrect place for the 162 // scaling case. It needs to be done on the scaled MV, not the pre-scaling 163 // MV. Note however that it performs the subsampling aware scaling so 164 // that the result is always q4. 165 const MV res_mv = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, 166 pd->subsampling_x, 167 pd->subsampling_y); 168 169 scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); 170 vp9_build_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, 171 &res_mv, scale, 172 4 << pred_w, 4 << pred_h, ref, 173 &xd->subpix, MV_PRECISION_Q4); 174 } 175 } 176 177 // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could 178 // calculate the subsampled BLOCK_SIZE, but that type isn't defined for 179 // sizes smaller than 16x16 yet. 180 typedef void (*foreach_predicted_block_visitor)(int plane, int block, 181 BLOCK_SIZE bsize, 182 int pred_w, int pred_h, 183 void *arg); 184 static INLINE void foreach_predicted_block_in_plane( 185 const MACROBLOCKD* const xd, BLOCK_SIZE bsize, int plane, 186 foreach_predicted_block_visitor visit, void *arg) { 187 int i, x, y; 188 189 // block sizes in number of 4x4 blocks log 2 ("*_b") 190 // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 191 // subsampled size of the block 192 const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; 193 const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; 194 195 // size of the predictor to use. 196 int pred_w, pred_h; 197 198 if (xd->this_mi->mbmi.sb_type < BLOCK_8X8) { 199 assert(bsize == BLOCK_8X8); 200 pred_w = 0; 201 pred_h = 0; 202 } else { 203 pred_w = bwl; 204 pred_h = bhl; 205 } 206 assert(pred_w <= bwl); 207 assert(pred_h <= bhl); 208 209 // visit each subblock in raster order 210 i = 0; 211 for (y = 0; y < 1 << bhl; y += 1 << pred_h) { 212 for (x = 0; x < 1 << bwl; x += 1 << pred_w) { 213 visit(plane, i, bsize, pred_w, pred_h, arg); 214 i += 1 << pred_w; 215 } 216 i += (1 << (bwl + pred_h)) - (1 << bwl); 217 } 218 } 219 220 static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, 221 int mi_row, int mi_col, 222 int plane_from, int plane_to) { 223 int plane; 224 for (plane = plane_from; plane <= plane_to; ++plane) { 225 struct build_inter_predictors_args args = { 226 xd, mi_col * MI_SIZE, mi_row * MI_SIZE, 227 }; 228 foreach_predicted_block_in_plane(xd, bsize, plane, build_inter_predictors, 229 &args); 230 } 231 } 232 233 void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, 234 BLOCK_SIZE bsize) { 235 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); 236 } 237 void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, 238 BLOCK_SIZE bsize) { 239 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, 240 MAX_MB_PLANE - 1); 241 } 242 void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, 243 BLOCK_SIZE bsize) { 244 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 245 MAX_MB_PLANE - 1); 246 } 247 248 // TODO(dkovalev: find better place for this function) 249 void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { 250 const int ref = cm->active_ref_idx[i]; 251 struct scale_factors *const sf = &cm->active_ref_scale[i]; 252 if (ref >= NUM_YV12_BUFFERS) { 253 vp9_zero(*sf); 254 } else { 255 YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; 256 vp9_setup_scale_factors_for_frame(sf, 257 fb->y_crop_width, fb->y_crop_height, 258 cm->width, cm->height); 259 260 if (vp9_is_scaled(sf)) 261 vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y); 262 } 263 } 264 265