1 /* 2 * Copyright (C) 1999 Lars Knoll (knoll (at) kde.org) 3 * (C) 1999 Antti Koivisto (koivisto (at) kde.org) 4 * (C) 2001 Dirk Mueller (mueller (at) kde.org) 5 * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved. 6 * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies) 7 * Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/) 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Library General Public 11 * License as published by the Free Software Foundation; either 12 * version 2 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Library General Public License for more details. 18 * 19 * You should have received a copy of the GNU Library General Public License 20 * along with this library; see the file COPYING.LIB. If not, write to 21 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, 22 * Boston, MA 02110-1301, USA. 23 */ 24 25 #include "config.h" 26 #include "core/dom/Node.h" 27 28 #include "HTMLNames.h" 29 #include "XMLNames.h" 30 #include "bindings/v8/ExceptionState.h" 31 #include "bindings/v8/ExceptionStatePlaceholder.h" 32 #include "core/accessibility/AXObjectCache.h" 33 #include "core/dom/Attr.h" 34 #include "core/dom/Attribute.h" 35 #include "core/dom/BeforeLoadEvent.h" 36 #include "core/dom/ChildListMutationScope.h" 37 #include "core/dom/ChildNodeList.h" 38 #include "core/dom/ClassNodeList.h" 39 #include "core/dom/DOMImplementation.h" 40 #include "core/dom/Document.h" 41 #include "core/dom/DocumentFragment.h" 42 #include "core/dom/DocumentType.h" 43 #include "core/dom/Element.h" 44 #include "core/dom/ElementRareData.h" 45 #include "core/dom/Event.h" 46 #include "core/dom/EventDispatchMediator.h" 47 #include "core/dom/EventDispatcher.h" 48 #include "core/dom/EventListener.h" 49 #include "core/dom/EventNames.h" 50 #include "core/dom/ExceptionCode.h" 51 #include "core/dom/GestureEvent.h" 52 #include "core/dom/KeyboardEvent.h" 53 #include "core/dom/LiveNodeList.h" 54 #include "core/dom/MouseEvent.h" 55 #include "core/dom/MutationEvent.h" 56 #include "core/dom/NameNodeList.h" 57 #include "core/dom/NodeRareData.h" 58 #include "core/dom/NodeTraversal.h" 59 #include "core/dom/ProcessingInstruction.h" 60 #include "core/dom/SelectorQuery.h" 61 #include "core/dom/TagNodeList.h" 62 #include "core/dom/TemplateContentDocumentFragment.h" 63 #include "core/dom/Text.h" 64 #include "core/dom/TextEvent.h" 65 #include "core/dom/TouchEvent.h" 66 #include "core/dom/TreeScopeAdopter.h" 67 #include "core/dom/UIEvent.h" 68 #include "core/dom/UserActionElementSet.h" 69 #include "core/dom/WheelEvent.h" 70 #include "core/dom/shadow/ElementShadow.h" 71 #include "core/dom/shadow/InsertionPoint.h" 72 #include "core/dom/shadow/ShadowRoot.h" 73 #include "core/editing/htmlediting.h" 74 #include "core/html/HTMLFrameOwnerElement.h" 75 #include "core/html/HTMLStyleElement.h" 76 #include "core/html/RadioNodeList.h" 77 #include "core/inspector/InspectorCounters.h" 78 #include "core/page/ContextMenuController.h" 79 #include "core/page/EventHandler.h" 80 #include "core/page/Frame.h" 81 #include "core/page/Page.h" 82 #include "core/page/Settings.h" 83 #include "core/platform/Partitions.h" 84 #include "core/rendering/FlowThreadController.h" 85 #include "core/rendering/RenderBox.h" 86 #include "wtf/HashSet.h" 87 #include "wtf/PassOwnPtr.h" 88 #include "wtf/RefCountedLeakCounter.h" 89 #include "wtf/UnusedParam.h" 90 #include "wtf/Vector.h" 91 #include "wtf/text/CString.h" 92 #include "wtf/text/StringBuilder.h" 93 94 using namespace std; 95 96 namespace WebCore { 97 98 using namespace HTMLNames; 99 100 void* Node::operator new(size_t size) 101 { 102 ASSERT(isMainThread()); 103 return partitionAlloc(Partitions::getObjectModelPartition(), size); 104 } 105 106 void Node::operator delete(void* ptr) 107 { 108 ASSERT(isMainThread()); 109 partitionFree(ptr); 110 } 111 112 bool Node::isSupported(const String& feature, const String& version) 113 { 114 return DOMImplementation::hasFeature(feature, version); 115 } 116 117 #if DUMP_NODE_STATISTICS 118 static HashSet<Node*> liveNodeSet; 119 #endif 120 121 void Node::dumpStatistics() 122 { 123 #if DUMP_NODE_STATISTICS 124 size_t nodesWithRareData = 0; 125 126 size_t elementNodes = 0; 127 size_t attrNodes = 0; 128 size_t textNodes = 0; 129 size_t cdataNodes = 0; 130 size_t commentNodes = 0; 131 size_t entityNodes = 0; 132 size_t piNodes = 0; 133 size_t documentNodes = 0; 134 size_t docTypeNodes = 0; 135 size_t fragmentNodes = 0; 136 size_t notationNodes = 0; 137 size_t xpathNSNodes = 0; 138 size_t shadowRootNodes = 0; 139 140 HashMap<String, size_t> perTagCount; 141 142 size_t attributes = 0; 143 size_t attributesWithAttr = 0; 144 size_t elementsWithAttributeStorage = 0; 145 size_t elementsWithRareData = 0; 146 size_t elementsWithNamedNodeMap = 0; 147 148 for (HashSet<Node*>::iterator it = liveNodeSet.begin(); it != liveNodeSet.end(); ++it) { 149 Node* node = *it; 150 151 if (node->hasRareData()) { 152 ++nodesWithRareData; 153 if (node->isElementNode()) { 154 ++elementsWithRareData; 155 if (toElement(node)->hasNamedNodeMap()) 156 ++elementsWithNamedNodeMap; 157 } 158 } 159 160 switch (node->nodeType()) { 161 case ELEMENT_NODE: { 162 ++elementNodes; 163 164 // Tag stats 165 Element* element = toElement(node); 166 HashMap<String, size_t>::AddResult result = perTagCount.add(element->tagName(), 1); 167 if (!result.isNewEntry) 168 result.iterator->value++; 169 170 if (ElementData* elementData = element->elementData()) { 171 attributes += elementData->length(); 172 ++elementsWithAttributeStorage; 173 for (unsigned i = 0; i < elementData->length(); ++i) { 174 Attribute* attr = elementData->attributeItem(i); 175 if (attr->attr()) 176 ++attributesWithAttr; 177 } 178 } 179 break; 180 } 181 case ATTRIBUTE_NODE: { 182 ++attrNodes; 183 break; 184 } 185 case TEXT_NODE: { 186 ++textNodes; 187 break; 188 } 189 case CDATA_SECTION_NODE: { 190 ++cdataNodes; 191 break; 192 } 193 case COMMENT_NODE: { 194 ++commentNodes; 195 break; 196 } 197 case ENTITY_NODE: { 198 ++entityNodes; 199 break; 200 } 201 case PROCESSING_INSTRUCTION_NODE: { 202 ++piNodes; 203 break; 204 } 205 case DOCUMENT_NODE: { 206 ++documentNodes; 207 break; 208 } 209 case DOCUMENT_TYPE_NODE: { 210 ++docTypeNodes; 211 break; 212 } 213 case DOCUMENT_FRAGMENT_NODE: { 214 if (node->isShadowRoot()) 215 ++shadowRootNodes; 216 else 217 ++fragmentNodes; 218 break; 219 } 220 case NOTATION_NODE: { 221 ++notationNodes; 222 break; 223 } 224 case XPATH_NAMESPACE_NODE: { 225 ++xpathNSNodes; 226 break; 227 } 228 } 229 } 230 231 printf("Number of Nodes: %d\n\n", liveNodeSet.size()); 232 printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData); 233 234 printf("NodeType distribution:\n"); 235 printf(" Number of Element nodes: %zu\n", elementNodes); 236 printf(" Number of Attribute nodes: %zu\n", attrNodes); 237 printf(" Number of Text nodes: %zu\n", textNodes); 238 printf(" Number of CDATASection nodes: %zu\n", cdataNodes); 239 printf(" Number of Comment nodes: %zu\n", commentNodes); 240 printf(" Number of Entity nodes: %zu\n", entityNodes); 241 printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes); 242 printf(" Number of Document nodes: %zu\n", documentNodes); 243 printf(" Number of DocumentType nodes: %zu\n", docTypeNodes); 244 printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes); 245 printf(" Number of Notation nodes: %zu\n", notationNodes); 246 printf(" Number of XPathNS nodes: %zu\n", xpathNSNodes); 247 printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes); 248 249 printf("Element tag name distibution:\n"); 250 for (HashMap<String, size_t>::iterator it = perTagCount.begin(); it != perTagCount.end(); ++it) 251 printf(" Number of <%s> tags: %zu\n", it->key.utf8().data(), it->value); 252 253 printf("Attributes:\n"); 254 printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute)); 255 printf(" Number of Attributes with an Attr: %zu\n", attributesWithAttr); 256 printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData)); 257 printf(" Number of Elements with RareData: %zu\n", elementsWithRareData); 258 printf(" Number of Elements with NamedNodeMap: %zu [%zu]\n", elementsWithNamedNodeMap, sizeof(NamedNodeMap)); 259 #endif 260 } 261 262 DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode")); 263 264 Node::StyleChange Node::diff(const RenderStyle* s1, const RenderStyle* s2, Document* doc) 265 { 266 StyleChange ch = NoInherit; 267 EDisplay display1 = s1 ? s1->display() : NONE; 268 bool fl1 = s1 && s1->hasPseudoStyle(FIRST_LETTER); 269 EDisplay display2 = s2 ? s2->display() : NONE; 270 bool fl2 = s2 && s2->hasPseudoStyle(FIRST_LETTER); 271 272 // We just detach if a renderer acquires or loses a column-span, since spanning elements 273 // typically won't contain much content. 274 bool colSpan1 = s1 && s1->columnSpan(); 275 bool colSpan2 = s2 && s2->columnSpan(); 276 277 bool specifiesColumns1 = s1 && (!s1->hasAutoColumnCount() || !s1->hasAutoColumnWidth()); 278 bool specifiesColumns2 = s2 && (!s2->hasAutoColumnCount() || !s2->hasAutoColumnWidth()); 279 280 if (display1 != display2 || fl1 != fl2 || colSpan1 != colSpan2 281 || (specifiesColumns1 != specifiesColumns2 && doc->settings()->regionBasedColumnsEnabled()) 282 || (s1 && s2 && !s1->contentDataEquivalent(s2))) 283 ch = Detach; 284 else if (!s1 || !s2) 285 ch = Inherit; 286 else if (*s1 == *s2) 287 ch = NoChange; 288 else if (s1->inheritedNotEqual(s2)) 289 ch = Inherit; 290 else if (s1->hasExplicitlyInheritedProperties() || s2->hasExplicitlyInheritedProperties()) 291 ch = Inherit; 292 293 // If the pseudoStyles have changed, we want any StyleChange that is not NoChange 294 // because setStyle will do the right thing with anything else. 295 if (ch == NoChange && s1->hasAnyPublicPseudoStyles()) { 296 for (PseudoId pseudoId = FIRST_PUBLIC_PSEUDOID; ch == NoChange && pseudoId < FIRST_INTERNAL_PSEUDOID; pseudoId = static_cast<PseudoId>(pseudoId + 1)) { 297 if (s1->hasPseudoStyle(pseudoId)) { 298 RenderStyle* ps2 = s2->getCachedPseudoStyle(pseudoId); 299 if (!ps2) 300 ch = NoInherit; 301 else { 302 RenderStyle* ps1 = s1->getCachedPseudoStyle(pseudoId); 303 ch = ps1 && *ps1 == *ps2 ? NoChange : NoInherit; 304 } 305 } 306 } 307 } 308 309 // When text-combine property has been changed, we need to prepare a separate renderer object. 310 // When text-combine is on, we use RenderCombineText, otherwise RenderText. 311 // https://bugs.webkit.org/show_bug.cgi?id=55069 312 if ((s1 && s2) && (s1->hasTextCombine() != s2->hasTextCombine())) 313 ch = Detach; 314 315 // We need to reattach the node, so that it is moved to the correct RenderFlowThread. 316 if ((s1 && s2) && (s1->flowThread() != s2->flowThread())) 317 ch = Detach; 318 319 // When the region thread has changed, we need to prepare a separate render region object. 320 if ((s1 && s2) && (s1->regionThread() != s2->regionThread())) 321 ch = Detach; 322 323 return ch; 324 } 325 326 void Node::trackForDebugging() 327 { 328 #ifndef NDEBUG 329 nodeCounter.increment(); 330 #endif 331 332 #if DUMP_NODE_STATISTICS 333 liveNodeSet.add(this); 334 #endif 335 } 336 337 Node::~Node() 338 { 339 #ifndef NDEBUG 340 nodeCounter.decrement(); 341 #endif 342 343 #if DUMP_NODE_STATISTICS 344 liveNodeSet.remove(this); 345 #endif 346 347 if (hasRareData()) 348 clearRareData(); 349 350 if (renderer()) 351 detach(); 352 353 if (!isContainerNode()) { 354 if (Document* document = documentInternal()) 355 willBeDeletedFrom(document); 356 } 357 358 if (m_previous) 359 m_previous->setNextSibling(0); 360 if (m_next) 361 m_next->setPreviousSibling(0); 362 363 m_treeScope->guardDeref(); 364 365 InspectorCounters::decrementCounter(InspectorCounters::NodeCounter); 366 } 367 368 void Node::willBeDeletedFrom(Document* document) 369 { 370 if (hasEventTargetData()) { 371 if (document) 372 document->didRemoveEventTargetNode(this); 373 clearEventTargetData(); 374 } 375 376 if (document) { 377 if (AXObjectCache* cache = document->existingAXObjectCache()) 378 cache->remove(this); 379 } 380 } 381 382 NodeRareData* Node::rareData() const 383 { 384 ASSERT(hasRareData()); 385 return static_cast<NodeRareData*>(m_data.m_rareData); 386 } 387 388 NodeRareData* Node::ensureRareData() 389 { 390 if (hasRareData()) 391 return rareData(); 392 393 NodeRareData* data; 394 if (isElementNode()) 395 data = ElementRareData::create(m_data.m_renderer).leakPtr(); 396 else 397 data = NodeRareData::create(m_data.m_renderer).leakPtr(); 398 ASSERT(data); 399 400 m_data.m_rareData = data; 401 setFlag(HasRareDataFlag); 402 return data; 403 } 404 405 void Node::clearRareData() 406 { 407 ASSERT(hasRareData()); 408 ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty()); 409 410 RenderObject* renderer = m_data.m_rareData->renderer(); 411 if (isElementNode()) 412 delete static_cast<ElementRareData*>(m_data.m_rareData); 413 else 414 delete static_cast<NodeRareData*>(m_data.m_rareData); 415 m_data.m_renderer = renderer; 416 clearFlag(HasRareDataFlag); 417 } 418 419 Node* Node::toNode() 420 { 421 return this; 422 } 423 424 short Node::tabIndex() const 425 { 426 return 0; 427 } 428 429 String Node::nodeValue() const 430 { 431 return String(); 432 } 433 434 void Node::setNodeValue(const String&) 435 { 436 // By default, setting nodeValue has no effect. 437 } 438 439 PassRefPtr<NodeList> Node::childNodes() 440 { 441 return ensureRareData()->ensureNodeLists()->ensureChildNodeList(this); 442 } 443 444 Node *Node::lastDescendant() const 445 { 446 Node *n = const_cast<Node *>(this); 447 while (n && n->lastChild()) 448 n = n->lastChild(); 449 return n; 450 } 451 452 Node* Node::firstDescendant() const 453 { 454 Node *n = const_cast<Node *>(this); 455 while (n && n->firstChild()) 456 n = n->firstChild(); 457 return n; 458 } 459 460 Node* Node::pseudoAwarePreviousSibling() const 461 { 462 if (parentElement() && !previousSibling()) { 463 Element* parent = parentElement(); 464 if (isAfterPseudoElement() && parent->lastChild()) 465 return parent->lastChild(); 466 if (!isBeforePseudoElement()) 467 return parent->pseudoElement(BEFORE); 468 } 469 return previousSibling(); 470 } 471 472 Node* Node::pseudoAwareNextSibling() const 473 { 474 if (parentElement() && !nextSibling()) { 475 Element* parent = parentElement(); 476 if (isBeforePseudoElement() && parent->firstChild()) 477 return parent->firstChild(); 478 if (!isAfterPseudoElement()) 479 return parent->pseudoElement(AFTER); 480 } 481 return nextSibling(); 482 } 483 484 Node* Node::pseudoAwareFirstChild() const 485 { 486 if (isElementNode()) { 487 const Element* currentElement = toElement(this); 488 Node* first = currentElement->pseudoElement(BEFORE); 489 if (first) 490 return first; 491 first = currentElement->firstChild(); 492 if (!first) 493 first = currentElement->pseudoElement(AFTER); 494 return first; 495 } 496 497 return firstChild(); 498 } 499 500 Node* Node::pseudoAwareLastChild() const 501 { 502 if (isElementNode()) { 503 const Element* currentElement = toElement(this); 504 Node* last = currentElement->pseudoElement(AFTER); 505 if (last) 506 return last; 507 last = currentElement->lastChild(); 508 if (!last) 509 last = currentElement->pseudoElement(BEFORE); 510 return last; 511 } 512 513 return lastChild(); 514 } 515 516 void Node::insertBefore(PassRefPtr<Node> newChild, Node* refChild, ExceptionState& es, AttachBehavior attachBehavior) 517 { 518 if (isContainerNode()) 519 toContainerNode(this)->insertBefore(newChild, refChild, es, attachBehavior); 520 else 521 es.throwDOMException(HierarchyRequestError); 522 } 523 524 void Node::replaceChild(PassRefPtr<Node> newChild, Node* oldChild, ExceptionState& es, AttachBehavior attachBehavior) 525 { 526 if (isContainerNode()) 527 toContainerNode(this)->replaceChild(newChild, oldChild, es, attachBehavior); 528 else 529 es.throwDOMException(HierarchyRequestError); 530 } 531 532 void Node::removeChild(Node* oldChild, ExceptionState& es) 533 { 534 if (isContainerNode()) 535 toContainerNode(this)->removeChild(oldChild, es); 536 else 537 es.throwDOMException(NotFoundError); 538 } 539 540 void Node::appendChild(PassRefPtr<Node> newChild, ExceptionState& es, AttachBehavior attachBehavior) 541 { 542 if (isContainerNode()) 543 toContainerNode(this)->appendChild(newChild, es, attachBehavior); 544 else 545 es.throwDOMException(HierarchyRequestError); 546 } 547 548 void Node::remove(ExceptionState& es) 549 { 550 if (ContainerNode* parent = parentNode()) 551 parent->removeChild(this, es); 552 } 553 554 void Node::normalize() 555 { 556 // Go through the subtree beneath us, normalizing all nodes. This means that 557 // any two adjacent text nodes are merged and any empty text nodes are removed. 558 559 RefPtr<Node> node = this; 560 while (Node* firstChild = node->firstChild()) 561 node = firstChild; 562 while (node) { 563 NodeType type = node->nodeType(); 564 if (type == ELEMENT_NODE) 565 toElement(node.get())->normalizeAttributes(); 566 567 if (node == this) 568 break; 569 570 if (type != TEXT_NODE) { 571 node = NodeTraversal::nextPostOrder(node.get()); 572 continue; 573 } 574 575 RefPtr<Text> text = toText(node.get()); 576 577 // Remove empty text nodes. 578 if (!text->length()) { 579 // Care must be taken to get the next node before removing the current node. 580 node = NodeTraversal::nextPostOrder(node.get()); 581 text->remove(IGNORE_EXCEPTION); 582 continue; 583 } 584 585 // Merge text nodes. 586 while (Node* nextSibling = node->nextSibling()) { 587 if (nextSibling->nodeType() != TEXT_NODE) 588 break; 589 RefPtr<Text> nextText = toText(nextSibling); 590 591 // Remove empty text nodes. 592 if (!nextText->length()) { 593 nextText->remove(IGNORE_EXCEPTION); 594 continue; 595 } 596 597 // Both non-empty text nodes. Merge them. 598 unsigned offset = text->length(); 599 text->appendData(nextText->data()); 600 document()->textNodesMerged(nextText.get(), offset); 601 nextText->remove(IGNORE_EXCEPTION); 602 } 603 604 node = NodeTraversal::nextPostOrder(node.get()); 605 } 606 } 607 608 const AtomicString& Node::prefix() const 609 { 610 // For nodes other than elements and attributes, the prefix is always null 611 return nullAtom; 612 } 613 614 void Node::setPrefix(const AtomicString& /*prefix*/, ExceptionState& es) 615 { 616 // The spec says that for nodes other than elements and attributes, prefix is always null. 617 // It does not say what to do when the user tries to set the prefix on another type of 618 // node, however Mozilla throws a NamespaceError exception. 619 es.throwDOMException(NamespaceError); 620 } 621 622 const AtomicString& Node::localName() const 623 { 624 return nullAtom; 625 } 626 627 const AtomicString& Node::namespaceURI() const 628 { 629 return nullAtom; 630 } 631 632 bool Node::isContentEditable(UserSelectAllTreatment treatment) 633 { 634 document()->updateStyleIfNeeded(); 635 return rendererIsEditable(Editable, treatment); 636 } 637 638 bool Node::isContentRichlyEditable() 639 { 640 document()->updateStyleIfNeeded(); 641 return rendererIsEditable(RichlyEditable, UserSelectAllIsAlwaysNonEditable); 642 } 643 644 bool Node::rendererIsEditable(EditableLevel editableLevel, UserSelectAllTreatment treatment) const 645 { 646 if (isPseudoElement()) 647 return false; 648 649 // Ideally we'd call ASSERT(!needsStyleRecalc()) here, but 650 // ContainerNode::setFocus() calls setNeedsStyleRecalc(), so the assertion 651 // would fire in the middle of Document::setFocusedNode(). 652 653 for (const Node* node = this; node; node = node->parentNode()) { 654 if ((node->isHTMLElement() || node->isDocumentNode()) && node->renderer()) { 655 // Elements with user-select: all style are considered atomic 656 // therefore non editable. 657 if (Position::nodeIsUserSelectAll(node) && treatment == UserSelectAllIsAlwaysNonEditable) 658 return false; 659 switch (node->renderer()->style()->userModify()) { 660 case READ_ONLY: 661 return false; 662 case READ_WRITE: 663 return true; 664 case READ_WRITE_PLAINTEXT_ONLY: 665 return editableLevel != RichlyEditable; 666 } 667 ASSERT_NOT_REACHED(); 668 return false; 669 } 670 } 671 672 return false; 673 } 674 675 bool Node::isEditableToAccessibility(EditableLevel editableLevel) const 676 { 677 if (rendererIsEditable(editableLevel)) 678 return true; 679 680 // FIXME: Respect editableLevel for ARIA editable elements. 681 if (editableLevel == RichlyEditable) 682 return false; 683 684 ASSERT(document()); 685 ASSERT(AXObjectCache::accessibilityEnabled()); 686 ASSERT(document()->existingAXObjectCache()); 687 688 if (document()) { 689 if (AXObjectCache* cache = document()->existingAXObjectCache()) 690 return cache->rootAXEditableElement(this); 691 } 692 693 return false; 694 } 695 696 bool Node::shouldUseInputMethod() 697 { 698 return isContentEditable(UserSelectAllIsAlwaysNonEditable); 699 } 700 701 RenderBox* Node::renderBox() const 702 { 703 RenderObject* renderer = this->renderer(); 704 return renderer && renderer->isBox() ? toRenderBox(renderer) : 0; 705 } 706 707 RenderBoxModelObject* Node::renderBoxModelObject() const 708 { 709 RenderObject* renderer = this->renderer(); 710 return renderer && renderer->isBoxModelObject() ? toRenderBoxModelObject(renderer) : 0; 711 } 712 713 LayoutRect Node::boundingBox() const 714 { 715 if (renderer()) 716 return renderer()->absoluteBoundingBoxRect(); 717 return LayoutRect(); 718 } 719 720 LayoutRect Node::renderRect(bool* isReplaced) 721 { 722 RenderObject* hitRenderer = this->renderer(); 723 ASSERT(hitRenderer); 724 RenderObject* renderer = hitRenderer; 725 while (renderer && !renderer->isBody() && !renderer->isRoot()) { 726 if (renderer->isRenderBlock() || renderer->isInlineBlockOrInlineTable() || renderer->isReplaced()) { 727 *isReplaced = renderer->isReplaced(); 728 return renderer->absoluteBoundingBoxRect(); 729 } 730 renderer = renderer->parent(); 731 } 732 return LayoutRect(); 733 } 734 735 bool Node::hasNonEmptyBoundingBox() const 736 { 737 // Before calling absoluteRects, check for the common case where the renderer 738 // is non-empty, since this is a faster check and almost always returns true. 739 RenderBoxModelObject* box = renderBoxModelObject(); 740 if (!box) 741 return false; 742 if (!box->borderBoundingBox().isEmpty()) 743 return true; 744 745 Vector<IntRect> rects; 746 FloatPoint absPos = renderer()->localToAbsolute(); 747 renderer()->absoluteRects(rects, flooredLayoutPoint(absPos)); 748 size_t n = rects.size(); 749 for (size_t i = 0; i < n; ++i) 750 if (!rects[i].isEmpty()) 751 return true; 752 753 return false; 754 } 755 756 inline static ShadowRoot* oldestShadowRootFor(const Node* node) 757 { 758 if (!node->isElementNode()) 759 return 0; 760 if (ElementShadow* shadow = toElement(node)->shadow()) 761 return shadow->oldestShadowRoot(); 762 return 0; 763 } 764 765 void Node::recalcDistribution() 766 { 767 if (isElementNode()) { 768 if (ElementShadow* shadow = toElement(this)->shadow()) 769 shadow->distributeIfNeeded(); 770 } 771 772 for (Node* child = firstChild(); child; child = child->nextSibling()) { 773 if (child->childNeedsDistributionRecalc()) 774 child->recalcDistribution(); 775 } 776 777 for (ShadowRoot* root = youngestShadowRoot(); root; root = root->olderShadowRoot()) { 778 if (root->childNeedsDistributionRecalc()) 779 root->recalcDistribution(); 780 } 781 782 clearChildNeedsDistributionRecalc(); 783 } 784 785 void Node::markAncestorsWithChildNeedsDistributionRecalc() 786 { 787 for (Node* node = this; node && !node->childNeedsDistributionRecalc(); node = node->parentOrShadowHostNode()) 788 node->setChildNeedsDistributionRecalc(); 789 if (document()->childNeedsDistributionRecalc()) 790 document()->scheduleStyleRecalc(); 791 } 792 793 inline void Node::setStyleChange(StyleChangeType changeType) 794 { 795 m_nodeFlags = (m_nodeFlags & ~StyleChangeMask) | changeType; 796 } 797 798 inline void Node::markAncestorsWithChildNeedsStyleRecalc() 799 { 800 for (ContainerNode* p = parentOrShadowHostNode(); p && !p->childNeedsStyleRecalc(); p = p->parentOrShadowHostNode()) 801 p->setChildNeedsStyleRecalc(); 802 803 if (document()->needsStyleRecalc() || document()->childNeedsStyleRecalc()) 804 document()->scheduleStyleRecalc(); 805 } 806 807 void Node::refEventTarget() 808 { 809 ref(); 810 } 811 812 void Node::derefEventTarget() 813 { 814 deref(); 815 } 816 817 void Node::setNeedsStyleRecalc(StyleChangeType changeType, StyleChangeSource source) 818 { 819 ASSERT(changeType != NoStyleChange); 820 if (!attached()) // changed compared to what? 821 return; 822 823 if (source == StyleChangeFromRenderer) 824 setFlag(NotifyRendererWithIdenticalStyles); 825 826 StyleChangeType existingChangeType = styleChangeType(); 827 if (changeType > existingChangeType) 828 setStyleChange(changeType); 829 830 if (existingChangeType == NoStyleChange) 831 markAncestorsWithChildNeedsStyleRecalc(); 832 } 833 834 void Node::lazyAttach(ShouldSetAttached shouldSetAttached) 835 { 836 markAncestorsWithChildNeedsStyleRecalc(); 837 for (Node* node = this; node; node = NodeTraversal::next(node, this)) { 838 node->setStyleChange(LazyAttachStyleChange); 839 node->setChildNeedsStyleRecalc(); 840 // FIXME: This flag is only used by HTMLFrameElementBase and doesn't look needed. 841 if (shouldSetAttached == SetAttached) 842 node->setAttached(); 843 for (ShadowRoot* root = node->youngestShadowRoot(); root; root = root->olderShadowRoot()) 844 root->lazyAttach(shouldSetAttached); 845 } 846 } 847 848 Node* Node::focusDelegate() 849 { 850 return this; 851 } 852 853 bool Node::shouldHaveFocusAppearance() const 854 { 855 ASSERT(focused()); 856 return true; 857 } 858 859 unsigned Node::nodeIndex() const 860 { 861 Node *_tempNode = previousSibling(); 862 unsigned count=0; 863 for ( count=0; _tempNode; count++ ) 864 _tempNode = _tempNode->previousSibling(); 865 return count; 866 } 867 868 template<unsigned type> 869 bool shouldInvalidateNodeListCachesForAttr(const unsigned nodeListCounts[], const QualifiedName& attrName) 870 { 871 if (nodeListCounts[type] && LiveNodeListBase::shouldInvalidateTypeOnAttributeChange(static_cast<NodeListInvalidationType>(type), attrName)) 872 return true; 873 return shouldInvalidateNodeListCachesForAttr<type + 1>(nodeListCounts, attrName); 874 } 875 876 template<> 877 bool shouldInvalidateNodeListCachesForAttr<numNodeListInvalidationTypes>(const unsigned[], const QualifiedName&) 878 { 879 return false; 880 } 881 882 bool Document::shouldInvalidateNodeListCaches(const QualifiedName* attrName) const 883 { 884 if (attrName) 885 return shouldInvalidateNodeListCachesForAttr<DoNotInvalidateOnAttributeChanges + 1>(m_nodeListCounts, *attrName); 886 887 for (int type = 0; type < numNodeListInvalidationTypes; type++) { 888 if (m_nodeListCounts[type]) 889 return true; 890 } 891 892 return false; 893 } 894 895 void Document::invalidateNodeListCaches(const QualifiedName* attrName) 896 { 897 HashSet<LiveNodeListBase*>::iterator end = m_listsInvalidatedAtDocument.end(); 898 for (HashSet<LiveNodeListBase*>::iterator it = m_listsInvalidatedAtDocument.begin(); it != end; ++it) 899 (*it)->invalidateCache(attrName); 900 } 901 902 void Node::invalidateNodeListCachesInAncestors(const QualifiedName* attrName, Element* attributeOwnerElement) 903 { 904 if (hasRareData() && (!attrName || isAttributeNode())) { 905 if (NodeListsNodeData* lists = rareData()->nodeLists()) 906 lists->clearChildNodeListCache(); 907 } 908 909 // Modifications to attributes that are not associated with an Element can't invalidate NodeList caches. 910 if (attrName && !attributeOwnerElement) 911 return; 912 913 if (!document()->shouldInvalidateNodeListCaches(attrName)) 914 return; 915 916 document()->invalidateNodeListCaches(attrName); 917 918 for (Node* node = this; node; node = node->parentNode()) { 919 if (!node->hasRareData()) 920 continue; 921 NodeRareData* data = node->rareData(); 922 if (data->nodeLists()) 923 data->nodeLists()->invalidateCaches(attrName); 924 } 925 } 926 927 NodeListsNodeData* Node::nodeLists() 928 { 929 return hasRareData() ? rareData()->nodeLists() : 0; 930 } 931 932 void Node::clearNodeLists() 933 { 934 rareData()->clearNodeLists(); 935 } 936 937 void Node::checkSetPrefix(const AtomicString& prefix, ExceptionState& es) 938 { 939 // Perform error checking as required by spec for setting Node.prefix. Used by 940 // Element::setPrefix() and Attr::setPrefix() 941 942 if (!prefix.isEmpty() && !Document::isValidName(prefix)) { 943 es.throwDOMException(InvalidCharacterError); 944 return; 945 } 946 947 // FIXME: Raise NamespaceError if prefix is malformed per the Namespaces in XML specification. 948 949 const AtomicString& nodeNamespaceURI = namespaceURI(); 950 if ((nodeNamespaceURI.isEmpty() && !prefix.isEmpty()) 951 || (prefix == xmlAtom && nodeNamespaceURI != XMLNames::xmlNamespaceURI)) { 952 es.throwDOMException(NamespaceError); 953 return; 954 } 955 // Attribute-specific checks are in Attr::setPrefix(). 956 } 957 958 bool Node::isDescendantOf(const Node *other) const 959 { 960 // Return true if other is an ancestor of this, otherwise false 961 if (!other || !other->hasChildNodes() || inDocument() != other->inDocument()) 962 return false; 963 if (other->treeScope() != treeScope()) 964 return false; 965 if (other->isTreeScope()) 966 return !isTreeScope(); 967 for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) { 968 if (n == other) 969 return true; 970 } 971 return false; 972 } 973 974 bool Node::contains(const Node* node) const 975 { 976 if (!node) 977 return false; 978 return this == node || node->isDescendantOf(this); 979 } 980 981 bool Node::containsIncludingShadowDOM(const Node* node) const 982 { 983 if (!node) 984 return false; 985 986 if (this == node) 987 return true; 988 989 if (document() != node->document()) 990 return false; 991 992 if (inDocument() != node->inDocument()) 993 return false; 994 995 bool hasChildren = isContainerNode() && toContainerNode(this)->hasChildNodes(); 996 bool hasShadow = isElementNode() && toElement(this)->shadow(); 997 if (!hasChildren && !hasShadow) 998 return false; 999 1000 for (; node; node = node->shadowHost()) { 1001 if (treeScope() == node->treeScope()) 1002 return contains(node); 1003 } 1004 1005 return false; 1006 } 1007 1008 bool Node::containsIncludingHostElements(const Node* node) const 1009 { 1010 while (node) { 1011 if (node == this) 1012 return true; 1013 if (node->isDocumentFragment() && static_cast<const DocumentFragment*>(node)->isTemplateContent()) 1014 node = static_cast<const TemplateContentDocumentFragment*>(node)->host(); 1015 else 1016 node = node->parentOrShadowHostNode(); 1017 } 1018 return false; 1019 } 1020 1021 void Node::reattach(const AttachContext& context) 1022 { 1023 // FIXME: Text::updateTextRenderer calls reattach outside a style recalc. 1024 ASSERT(document()->inStyleRecalc() || isTextNode()); 1025 AttachContext reattachContext(context); 1026 reattachContext.performingReattach = true; 1027 1028 if (attached()) 1029 detach(reattachContext); 1030 attach(reattachContext); 1031 } 1032 1033 void Node::attach(const AttachContext&) 1034 { 1035 ASSERT(!attached()); 1036 ASSERT(!renderer() || (renderer()->style() && (renderer()->parent() || renderer()->isRenderView()))); 1037 1038 // If this node got a renderer it may be the previousRenderer() of sibling text nodes and thus affect the 1039 // result of Text::textRendererIsNeeded() for those nodes. 1040 // FIXME: This loop is no longer required once we lazy attach all the time. 1041 if (renderer() && !document()->inStyleRecalc()) { 1042 for (Node* next = nextSibling(); next; next = next->nextSibling()) { 1043 if (next->renderer()) 1044 break; 1045 if (!next->attached()) 1046 break; // Assume this means none of the following siblings are attached. 1047 if (!next->isTextNode()) 1048 continue; 1049 ASSERT(!next->renderer()); 1050 toText(next)->reattach(); 1051 // If we again decided not to create a renderer for next, we can bail out the loop, 1052 // because it won't affect the result of Text::textRendererIsNeeded() for the rest 1053 // of sibling nodes. 1054 if (!next->renderer()) 1055 break; 1056 } 1057 } 1058 1059 setAttached(); 1060 clearNeedsStyleRecalc(); 1061 1062 if (Document* doc = documentInternal()) { 1063 if (AXObjectCache* cache = doc->axObjectCache()) 1064 cache->updateCacheAfterNodeIsAttached(this); 1065 } 1066 } 1067 1068 #ifndef NDEBUG 1069 static Node* detachingNode; 1070 1071 bool Node::inDetach() const 1072 { 1073 return detachingNode == this; 1074 } 1075 #endif 1076 1077 void Node::detach(const AttachContext& context) 1078 { 1079 #ifndef NDEBUG 1080 ASSERT(!detachingNode); 1081 detachingNode = this; 1082 #endif 1083 1084 if (renderer()) 1085 renderer()->destroyAndCleanupAnonymousWrappers(); 1086 setRenderer(0); 1087 1088 // Do not remove the element's hovered and active status 1089 // if performing a reattach. 1090 if (!context.performingReattach) { 1091 Document* doc = document(); 1092 if (isUserActionElement()) { 1093 if (hovered()) 1094 doc->hoveredNodeDetached(this); 1095 if (inActiveChain()) 1096 doc->activeChainNodeDetached(this); 1097 doc->userActionElements().didDetach(this); 1098 } 1099 } 1100 1101 clearFlag(IsAttachedFlag); 1102 1103 #ifndef NDEBUG 1104 detachingNode = 0; 1105 #endif 1106 } 1107 1108 // FIXME: This code is used by editing. Seems like it could move over there and not pollute Node. 1109 Node *Node::previousNodeConsideringAtomicNodes() const 1110 { 1111 if (previousSibling()) { 1112 Node *n = previousSibling(); 1113 while (!isAtomicNode(n) && n->lastChild()) 1114 n = n->lastChild(); 1115 return n; 1116 } 1117 else if (parentNode()) { 1118 return parentNode(); 1119 } 1120 else { 1121 return 0; 1122 } 1123 } 1124 1125 Node *Node::nextNodeConsideringAtomicNodes() const 1126 { 1127 if (!isAtomicNode(this) && firstChild()) 1128 return firstChild(); 1129 if (nextSibling()) 1130 return nextSibling(); 1131 const Node *n = this; 1132 while (n && !n->nextSibling()) 1133 n = n->parentNode(); 1134 if (n) 1135 return n->nextSibling(); 1136 return 0; 1137 } 1138 1139 Node *Node::previousLeafNode() const 1140 { 1141 Node *node = previousNodeConsideringAtomicNodes(); 1142 while (node) { 1143 if (isAtomicNode(node)) 1144 return node; 1145 node = node->previousNodeConsideringAtomicNodes(); 1146 } 1147 return 0; 1148 } 1149 1150 Node *Node::nextLeafNode() const 1151 { 1152 Node *node = nextNodeConsideringAtomicNodes(); 1153 while (node) { 1154 if (isAtomicNode(node)) 1155 return node; 1156 node = node->nextNodeConsideringAtomicNodes(); 1157 } 1158 return 0; 1159 } 1160 1161 RenderStyle* Node::virtualComputedStyle(PseudoId pseudoElementSpecifier) 1162 { 1163 return parentOrShadowHostNode() ? parentOrShadowHostNode()->computedStyle(pseudoElementSpecifier) : 0; 1164 } 1165 1166 int Node::maxCharacterOffset() const 1167 { 1168 ASSERT_NOT_REACHED(); 1169 return 0; 1170 } 1171 1172 // FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class 1173 // is obviously misplaced. 1174 bool Node::canStartSelection() const 1175 { 1176 if (rendererIsEditable()) 1177 return true; 1178 1179 if (renderer()) { 1180 RenderStyle* style = renderer()->style(); 1181 // We allow selections to begin within an element that has -webkit-user-select: none set, 1182 // but if the element is draggable then dragging should take priority over selection. 1183 if (style->userDrag() == DRAG_ELEMENT && style->userSelect() == SELECT_NONE) 1184 return false; 1185 } 1186 return parentOrShadowHostNode() ? parentOrShadowHostNode()->canStartSelection() : true; 1187 } 1188 1189 bool Node::isRegisteredWithNamedFlow() const 1190 { 1191 return document()->renderView()->flowThreadController()->isContentNodeRegisteredWithAnyNamedFlow(this); 1192 } 1193 1194 Element* Node::shadowHost() const 1195 { 1196 if (ShadowRoot* root = containingShadowRoot()) 1197 return root->host(); 1198 return 0; 1199 } 1200 1201 Node* Node::deprecatedShadowAncestorNode() const 1202 { 1203 if (ShadowRoot* root = containingShadowRoot()) 1204 return root->host(); 1205 1206 return const_cast<Node*>(this); 1207 } 1208 1209 ShadowRoot* Node::containingShadowRoot() const 1210 { 1211 Node* root = treeScope()->rootNode(); 1212 return root && root->isShadowRoot() ? toShadowRoot(root) : 0; 1213 } 1214 1215 Node* Node::nonBoundaryShadowTreeRootNode() 1216 { 1217 ASSERT(!isShadowRoot()); 1218 Node* root = this; 1219 while (root) { 1220 if (root->isShadowRoot()) 1221 return root; 1222 Node* parent = root->parentNodeGuaranteedHostFree(); 1223 if (parent && parent->isShadowRoot()) 1224 return root; 1225 root = parent; 1226 } 1227 return 0; 1228 } 1229 1230 ContainerNode* Node::nonShadowBoundaryParentNode() const 1231 { 1232 ContainerNode* parent = parentNode(); 1233 return parent && !parent->isShadowRoot() ? parent : 0; 1234 } 1235 1236 Element* Node::parentOrShadowHostElement() const 1237 { 1238 ContainerNode* parent = parentOrShadowHostNode(); 1239 if (!parent) 1240 return 0; 1241 1242 if (parent->isShadowRoot()) 1243 return toShadowRoot(parent)->host(); 1244 1245 if (!parent->isElementNode()) 1246 return 0; 1247 1248 return toElement(parent); 1249 } 1250 1251 bool Node::isBlockFlowElement() const 1252 { 1253 return isElementNode() && renderer() && renderer()->isBlockFlow(); 1254 } 1255 1256 Element *Node::enclosingBlockFlowElement() const 1257 { 1258 Node *n = const_cast<Node *>(this); 1259 if (isBlockFlowElement()) 1260 return toElement(n); 1261 1262 while (1) { 1263 n = n->parentNode(); 1264 if (!n) 1265 break; 1266 if (n->isBlockFlowElement() || n->hasTagName(bodyTag)) 1267 return toElement(n); 1268 } 1269 return 0; 1270 } 1271 1272 bool Node::isRootEditableElement() const 1273 { 1274 return rendererIsEditable() && isElementNode() && (!parentNode() || !parentNode()->rendererIsEditable() 1275 || !parentNode()->isElementNode() || hasTagName(bodyTag)); 1276 } 1277 1278 Element* Node::rootEditableElement(EditableType editableType) const 1279 { 1280 if (editableType == HasEditableAXRole) { 1281 if (AXObjectCache* cache = document()->existingAXObjectCache()) 1282 return const_cast<Element*>(cache->rootAXEditableElement(this)); 1283 } 1284 1285 return rootEditableElement(); 1286 } 1287 1288 Element* Node::rootEditableElement() const 1289 { 1290 Element* result = 0; 1291 for (Node* n = const_cast<Node*>(this); n && n->rendererIsEditable(); n = n->parentNode()) { 1292 if (n->isElementNode()) 1293 result = toElement(n); 1294 if (n->hasTagName(bodyTag)) 1295 break; 1296 } 1297 return result; 1298 } 1299 1300 bool Node::inSameContainingBlockFlowElement(Node *n) 1301 { 1302 return n ? enclosingBlockFlowElement() == n->enclosingBlockFlowElement() : false; 1303 } 1304 1305 // FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node. 1306 1307 PassRefPtr<NodeList> Node::getElementsByTagName(const AtomicString& localName) 1308 { 1309 if (localName.isNull()) 1310 return 0; 1311 1312 if (document()->isHTMLDocument()) 1313 return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<HTMLTagNodeList>(this, HTMLTagNodeListType, localName); 1314 return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<TagNodeList>(this, TagNodeListType, localName); 1315 } 1316 1317 PassRefPtr<NodeList> Node::getElementsByTagNameNS(const AtomicString& namespaceURI, const AtomicString& localName) 1318 { 1319 if (localName.isNull()) 1320 return 0; 1321 1322 if (namespaceURI == starAtom) 1323 return getElementsByTagName(localName); 1324 1325 return ensureRareData()->ensureNodeLists()->addCacheWithQualifiedName(this, namespaceURI.isEmpty() ? nullAtom : namespaceURI, localName); 1326 } 1327 1328 PassRefPtr<NodeList> Node::getElementsByName(const String& elementName) 1329 { 1330 return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<NameNodeList>(this, NameNodeListType, elementName); 1331 } 1332 1333 PassRefPtr<NodeList> Node::getElementsByClassName(const String& classNames) 1334 { 1335 return ensureRareData()->ensureNodeLists()->addCacheWithName<ClassNodeList>(this, ClassNodeListType, classNames); 1336 } 1337 1338 PassRefPtr<RadioNodeList> Node::radioNodeList(const AtomicString& name) 1339 { 1340 ASSERT(hasTagName(formTag) || hasTagName(fieldsetTag)); 1341 return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<RadioNodeList>(this, RadioNodeListType, name); 1342 } 1343 1344 PassRefPtr<Element> Node::querySelector(const AtomicString& selectors, ExceptionState& es) 1345 { 1346 if (selectors.isEmpty()) { 1347 es.throwDOMException(SyntaxError); 1348 return 0; 1349 } 1350 1351 SelectorQuery* selectorQuery = document()->selectorQueryCache()->add(selectors, document(), es); 1352 if (!selectorQuery) 1353 return 0; 1354 return selectorQuery->queryFirst(this); 1355 } 1356 1357 PassRefPtr<NodeList> Node::querySelectorAll(const AtomicString& selectors, ExceptionState& es) 1358 { 1359 if (selectors.isEmpty()) { 1360 es.throwDOMException(SyntaxError); 1361 return 0; 1362 } 1363 1364 SelectorQuery* selectorQuery = document()->selectorQueryCache()->add(selectors, document(), es); 1365 if (!selectorQuery) 1366 return 0; 1367 return selectorQuery->queryAll(this); 1368 } 1369 1370 Document *Node::ownerDocument() const 1371 { 1372 Document *doc = document(); 1373 return doc == this ? 0 : doc; 1374 } 1375 1376 KURL Node::baseURI() const 1377 { 1378 return parentNode() ? parentNode()->baseURI() : KURL(); 1379 } 1380 1381 bool Node::isEqualNode(Node* other) const 1382 { 1383 if (!other) 1384 return false; 1385 1386 NodeType nodeType = this->nodeType(); 1387 if (nodeType != other->nodeType()) 1388 return false; 1389 1390 if (nodeName() != other->nodeName()) 1391 return false; 1392 1393 if (localName() != other->localName()) 1394 return false; 1395 1396 if (namespaceURI() != other->namespaceURI()) 1397 return false; 1398 1399 if (prefix() != other->prefix()) 1400 return false; 1401 1402 if (nodeValue() != other->nodeValue()) 1403 return false; 1404 1405 if (isElementNode() && !toElement(this)->hasEquivalentAttributes(toElement(other))) 1406 return false; 1407 1408 Node* child = firstChild(); 1409 Node* otherChild = other->firstChild(); 1410 1411 while (child) { 1412 if (!child->isEqualNode(otherChild)) 1413 return false; 1414 1415 child = child->nextSibling(); 1416 otherChild = otherChild->nextSibling(); 1417 } 1418 1419 if (otherChild) 1420 return false; 1421 1422 if (nodeType == DOCUMENT_TYPE_NODE) { 1423 const DocumentType* documentTypeThis = static_cast<const DocumentType*>(this); 1424 const DocumentType* documentTypeOther = static_cast<const DocumentType*>(other); 1425 1426 if (documentTypeThis->publicId() != documentTypeOther->publicId()) 1427 return false; 1428 1429 if (documentTypeThis->systemId() != documentTypeOther->systemId()) 1430 return false; 1431 1432 if (documentTypeThis->internalSubset() != documentTypeOther->internalSubset()) 1433 return false; 1434 1435 // FIXME: We don't compare entities or notations because currently both are always empty. 1436 } 1437 1438 return true; 1439 } 1440 1441 bool Node::isDefaultNamespace(const AtomicString& namespaceURIMaybeEmpty) const 1442 { 1443 const AtomicString& namespaceURI = namespaceURIMaybeEmpty.isEmpty() ? nullAtom : namespaceURIMaybeEmpty; 1444 1445 switch (nodeType()) { 1446 case ELEMENT_NODE: { 1447 const Element* elem = toElement(this); 1448 1449 if (elem->prefix().isNull()) 1450 return elem->namespaceURI() == namespaceURI; 1451 1452 if (elem->hasAttributes()) { 1453 for (unsigned i = 0; i < elem->attributeCount(); i++) { 1454 const Attribute* attr = elem->attributeItem(i); 1455 1456 if (attr->localName() == xmlnsAtom) 1457 return attr->value() == namespaceURI; 1458 } 1459 } 1460 1461 if (Element* ancestor = ancestorElement()) 1462 return ancestor->isDefaultNamespace(namespaceURI); 1463 1464 return false; 1465 } 1466 case DOCUMENT_NODE: 1467 if (Element* de = toDocument(this)->documentElement()) 1468 return de->isDefaultNamespace(namespaceURI); 1469 return false; 1470 case ENTITY_NODE: 1471 case NOTATION_NODE: 1472 case DOCUMENT_TYPE_NODE: 1473 case DOCUMENT_FRAGMENT_NODE: 1474 return false; 1475 case ATTRIBUTE_NODE: { 1476 const Attr* attr = toAttr(this); 1477 if (attr->ownerElement()) 1478 return attr->ownerElement()->isDefaultNamespace(namespaceURI); 1479 return false; 1480 } 1481 default: 1482 if (Element* ancestor = ancestorElement()) 1483 return ancestor->isDefaultNamespace(namespaceURI); 1484 return false; 1485 } 1486 } 1487 1488 String Node::lookupPrefix(const AtomicString &namespaceURI) const 1489 { 1490 // Implemented according to 1491 // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespacePrefixAlgo 1492 1493 if (namespaceURI.isEmpty()) 1494 return String(); 1495 1496 switch (nodeType()) { 1497 case ELEMENT_NODE: 1498 return lookupNamespacePrefix(namespaceURI, toElement(this)); 1499 case DOCUMENT_NODE: 1500 if (Element* de = toDocument(this)->documentElement()) 1501 return de->lookupPrefix(namespaceURI); 1502 return String(); 1503 case ENTITY_NODE: 1504 case NOTATION_NODE: 1505 case DOCUMENT_FRAGMENT_NODE: 1506 case DOCUMENT_TYPE_NODE: 1507 return String(); 1508 case ATTRIBUTE_NODE: { 1509 const Attr *attr = static_cast<const Attr *>(this); 1510 if (attr->ownerElement()) 1511 return attr->ownerElement()->lookupPrefix(namespaceURI); 1512 return String(); 1513 } 1514 default: 1515 if (Element* ancestor = ancestorElement()) 1516 return ancestor->lookupPrefix(namespaceURI); 1517 return String(); 1518 } 1519 } 1520 1521 String Node::lookupNamespaceURI(const String &prefix) const 1522 { 1523 // Implemented according to 1524 // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespaceURIAlgo 1525 1526 if (!prefix.isNull() && prefix.isEmpty()) 1527 return String(); 1528 1529 switch (nodeType()) { 1530 case ELEMENT_NODE: { 1531 const Element *elem = toElement(this); 1532 1533 if (!elem->namespaceURI().isNull() && elem->prefix() == prefix) 1534 return elem->namespaceURI(); 1535 1536 if (elem->hasAttributes()) { 1537 for (unsigned i = 0; i < elem->attributeCount(); i++) { 1538 const Attribute* attr = elem->attributeItem(i); 1539 1540 if (attr->prefix() == xmlnsAtom && attr->localName() == prefix) { 1541 if (!attr->value().isEmpty()) 1542 return attr->value(); 1543 1544 return String(); 1545 } else if (attr->localName() == xmlnsAtom && prefix.isNull()) { 1546 if (!attr->value().isEmpty()) 1547 return attr->value(); 1548 1549 return String(); 1550 } 1551 } 1552 } 1553 if (Element* ancestor = ancestorElement()) 1554 return ancestor->lookupNamespaceURI(prefix); 1555 return String(); 1556 } 1557 case DOCUMENT_NODE: 1558 if (Element* de = toDocument(this)->documentElement()) 1559 return de->lookupNamespaceURI(prefix); 1560 return String(); 1561 case ENTITY_NODE: 1562 case NOTATION_NODE: 1563 case DOCUMENT_TYPE_NODE: 1564 case DOCUMENT_FRAGMENT_NODE: 1565 return String(); 1566 case ATTRIBUTE_NODE: { 1567 const Attr *attr = static_cast<const Attr *>(this); 1568 1569 if (attr->ownerElement()) 1570 return attr->ownerElement()->lookupNamespaceURI(prefix); 1571 else 1572 return String(); 1573 } 1574 default: 1575 if (Element* ancestor = ancestorElement()) 1576 return ancestor->lookupNamespaceURI(prefix); 1577 return String(); 1578 } 1579 } 1580 1581 String Node::lookupNamespacePrefix(const AtomicString &_namespaceURI, const Element *originalElement) const 1582 { 1583 if (_namespaceURI.isNull()) 1584 return String(); 1585 1586 if (originalElement->lookupNamespaceURI(prefix()) == _namespaceURI) 1587 return prefix(); 1588 1589 ASSERT(isElementNode()); 1590 const Element* thisElement = toElement(this); 1591 if (thisElement->hasAttributes()) { 1592 for (unsigned i = 0; i < thisElement->attributeCount(); i++) { 1593 const Attribute* attr = thisElement->attributeItem(i); 1594 1595 if (attr->prefix() == xmlnsAtom && attr->value() == _namespaceURI 1596 && originalElement->lookupNamespaceURI(attr->localName()) == _namespaceURI) 1597 return attr->localName(); 1598 } 1599 } 1600 1601 if (Element* ancestor = ancestorElement()) 1602 return ancestor->lookupNamespacePrefix(_namespaceURI, originalElement); 1603 return String(); 1604 } 1605 1606 static void appendTextContent(const Node* node, bool convertBRsToNewlines, bool& isNullString, StringBuilder& content) 1607 { 1608 switch (node->nodeType()) { 1609 case Node::TEXT_NODE: 1610 case Node::CDATA_SECTION_NODE: 1611 case Node::COMMENT_NODE: 1612 isNullString = false; 1613 content.append(static_cast<const CharacterData*>(node)->data()); 1614 break; 1615 1616 case Node::PROCESSING_INSTRUCTION_NODE: 1617 isNullString = false; 1618 content.append(static_cast<const ProcessingInstruction*>(node)->data()); 1619 break; 1620 1621 case Node::ELEMENT_NODE: 1622 if (node->hasTagName(brTag) && convertBRsToNewlines) { 1623 isNullString = false; 1624 content.append('\n'); 1625 break; 1626 } 1627 // Fall through. 1628 case Node::ATTRIBUTE_NODE: 1629 case Node::ENTITY_NODE: 1630 case Node::DOCUMENT_FRAGMENT_NODE: 1631 isNullString = false; 1632 for (Node* child = node->firstChild(); child; child = child->nextSibling()) { 1633 if (child->nodeType() == Node::COMMENT_NODE || child->nodeType() == Node::PROCESSING_INSTRUCTION_NODE) 1634 continue; 1635 appendTextContent(child, convertBRsToNewlines, isNullString, content); 1636 } 1637 break; 1638 1639 case Node::DOCUMENT_NODE: 1640 case Node::DOCUMENT_TYPE_NODE: 1641 case Node::NOTATION_NODE: 1642 case Node::XPATH_NAMESPACE_NODE: 1643 break; 1644 } 1645 } 1646 1647 String Node::textContent(bool convertBRsToNewlines) const 1648 { 1649 StringBuilder content; 1650 bool isNullString = true; 1651 appendTextContent(this, convertBRsToNewlines, isNullString, content); 1652 return isNullString ? String() : content.toString(); 1653 } 1654 1655 void Node::setTextContent(const String& text, ExceptionState& es) 1656 { 1657 switch (nodeType()) { 1658 case TEXT_NODE: 1659 case CDATA_SECTION_NODE: 1660 case COMMENT_NODE: 1661 case PROCESSING_INSTRUCTION_NODE: 1662 setNodeValue(text); 1663 return; 1664 case ELEMENT_NODE: 1665 case ATTRIBUTE_NODE: 1666 case ENTITY_NODE: 1667 case DOCUMENT_FRAGMENT_NODE: { 1668 RefPtr<ContainerNode> container = toContainerNode(this); 1669 ChildListMutationScope mutation(this); 1670 container->removeChildren(); 1671 if (!text.isEmpty()) 1672 container->appendChild(document()->createTextNode(text), es, AttachLazily); 1673 return; 1674 } 1675 case DOCUMENT_NODE: 1676 case DOCUMENT_TYPE_NODE: 1677 case NOTATION_NODE: 1678 case XPATH_NAMESPACE_NODE: 1679 // Do nothing. 1680 return; 1681 } 1682 ASSERT_NOT_REACHED(); 1683 } 1684 1685 Element* Node::ancestorElement() const 1686 { 1687 // In theory, there can be EntityReference nodes between elements, but this is currently not supported. 1688 for (ContainerNode* n = parentNode(); n; n = n->parentNode()) { 1689 if (n->isElementNode()) 1690 return toElement(n); 1691 } 1692 return 0; 1693 } 1694 1695 bool Node::offsetInCharacters() const 1696 { 1697 return false; 1698 } 1699 1700 unsigned short Node::compareDocumentPosition(const Node* otherNode) const 1701 { 1702 return compareDocumentPositionInternal(otherNode, TreatShadowTreesAsDisconnected); 1703 } 1704 1705 unsigned short Node::compareDocumentPositionInternal(const Node* otherNode, ShadowTreesTreatment treatment) const 1706 { 1707 // It is not clear what should be done if |otherNode| is 0. 1708 if (!otherNode) 1709 return DOCUMENT_POSITION_DISCONNECTED; 1710 1711 if (otherNode == this) 1712 return DOCUMENT_POSITION_EQUIVALENT; 1713 1714 const Attr* attr1 = nodeType() == ATTRIBUTE_NODE ? toAttr(this) : 0; 1715 const Attr* attr2 = otherNode->nodeType() == ATTRIBUTE_NODE ? toAttr(otherNode) : 0; 1716 1717 const Node* start1 = attr1 ? attr1->ownerElement() : this; 1718 const Node* start2 = attr2 ? attr2->ownerElement() : otherNode; 1719 1720 // If either of start1 or start2 is null, then we are disconnected, since one of the nodes is 1721 // an orphaned attribute node. 1722 if (!start1 || !start2) { 1723 unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING; 1724 return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; 1725 } 1726 1727 Vector<const Node*, 16> chain1; 1728 Vector<const Node*, 16> chain2; 1729 if (attr1) 1730 chain1.append(attr1); 1731 if (attr2) 1732 chain2.append(attr2); 1733 1734 if (attr1 && attr2 && start1 == start2 && start1) { 1735 // We are comparing two attributes on the same node. Crawl our attribute map and see which one we hit first. 1736 const Element* owner1 = attr1->ownerElement(); 1737 owner1->synchronizeAllAttributes(); 1738 unsigned length = owner1->attributeCount(); 1739 for (unsigned i = 0; i < length; ++i) { 1740 // If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an 1741 // implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of 1742 // the same nodeType are inserted into or removed from the direct container. This would be the case, for example, 1743 // when comparing two attributes of the same element, and inserting or removing additional attributes might change 1744 // the order between existing attributes. 1745 const Attribute* attribute = owner1->attributeItem(i); 1746 if (attr1->qualifiedName() == attribute->name()) 1747 return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING; 1748 if (attr2->qualifiedName() == attribute->name()) 1749 return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING; 1750 } 1751 1752 ASSERT_NOT_REACHED(); 1753 return DOCUMENT_POSITION_DISCONNECTED; 1754 } 1755 1756 // If one node is in the document and the other is not, we must be disconnected. 1757 // If the nodes have different owning documents, they must be disconnected. Note that we avoid 1758 // comparing Attr nodes here, since they return false from inDocument() all the time (which seems like a bug). 1759 if (start1->inDocument() != start2->inDocument() || (treatment == TreatShadowTreesAsDisconnected && start1->treeScope() != start2->treeScope())) { 1760 unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING; 1761 return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; 1762 } 1763 1764 // We need to find a common ancestor container, and then compare the indices of the two immediate children. 1765 const Node* current; 1766 for (current = start1; current; current = current->parentOrShadowHostNode()) 1767 chain1.append(current); 1768 for (current = start2; current; current = current->parentOrShadowHostNode()) 1769 chain2.append(current); 1770 1771 unsigned index1 = chain1.size(); 1772 unsigned index2 = chain2.size(); 1773 1774 // If the two elements don't have a common root, they're not in the same tree. 1775 if (chain1[index1 - 1] != chain2[index2 - 1]) { 1776 unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING; 1777 return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; 1778 } 1779 1780 unsigned connection = start1->treeScope() != start2->treeScope() ? DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC : 0; 1781 1782 // Walk the two chains backwards and look for the first difference. 1783 for (unsigned i = min(index1, index2); i; --i) { 1784 const Node* child1 = chain1[--index1]; 1785 const Node* child2 = chain2[--index2]; 1786 if (child1 != child2) { 1787 // If one of the children is an attribute, it wins. 1788 if (child1->nodeType() == ATTRIBUTE_NODE) 1789 return DOCUMENT_POSITION_FOLLOWING | connection; 1790 if (child2->nodeType() == ATTRIBUTE_NODE) 1791 return DOCUMENT_POSITION_PRECEDING | connection; 1792 1793 // If one of the children is a shadow root, 1794 if (child1->isShadowRoot() || child2->isShadowRoot()) { 1795 if (!child2->isShadowRoot()) 1796 return Node::DOCUMENT_POSITION_FOLLOWING | connection; 1797 if (!child1->isShadowRoot()) 1798 return Node::DOCUMENT_POSITION_PRECEDING | connection; 1799 1800 for (ShadowRoot* child = toShadowRoot(child2)->olderShadowRoot(); child; child = child->olderShadowRoot()) 1801 if (child == child1) 1802 return Node::DOCUMENT_POSITION_FOLLOWING | connection; 1803 1804 return Node::DOCUMENT_POSITION_PRECEDING | connection; 1805 } 1806 1807 if (!child2->nextSibling()) 1808 return DOCUMENT_POSITION_FOLLOWING | connection; 1809 if (!child1->nextSibling()) 1810 return DOCUMENT_POSITION_PRECEDING | connection; 1811 1812 // Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1. 1813 for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) { 1814 if (child == child1) 1815 return DOCUMENT_POSITION_FOLLOWING | connection; 1816 } 1817 return DOCUMENT_POSITION_PRECEDING | connection; 1818 } 1819 } 1820 1821 // There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter 1822 // chain is the ancestor. 1823 return index1 < index2 ? 1824 DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY | connection : 1825 DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS | connection; 1826 } 1827 1828 FloatPoint Node::convertToPage(const FloatPoint& p) const 1829 { 1830 // If there is a renderer, just ask it to do the conversion 1831 if (renderer()) 1832 return renderer()->localToAbsolute(p, UseTransforms); 1833 1834 // Otherwise go up the tree looking for a renderer 1835 Element *parent = ancestorElement(); 1836 if (parent) 1837 return parent->convertToPage(p); 1838 1839 // No parent - no conversion needed 1840 return p; 1841 } 1842 1843 FloatPoint Node::convertFromPage(const FloatPoint& p) const 1844 { 1845 // If there is a renderer, just ask it to do the conversion 1846 if (renderer()) 1847 return renderer()->absoluteToLocal(p, UseTransforms); 1848 1849 // Otherwise go up the tree looking for a renderer 1850 Element *parent = ancestorElement(); 1851 if (parent) 1852 return parent->convertFromPage(p); 1853 1854 // No parent - no conversion needed 1855 return p; 1856 } 1857 1858 #ifndef NDEBUG 1859 1860 String Node::debugName() const 1861 { 1862 StringBuilder name; 1863 name.append(nodeName()); 1864 1865 if (hasID()) { 1866 name.appendLiteral(" id=\'"); 1867 name.append(toElement(this)->getIdAttribute()); 1868 name.append('\''); 1869 } 1870 1871 if (hasClass()) { 1872 name.appendLiteral(" class=\'"); 1873 for (size_t i = 0; i < toElement(this)->classNames().size(); ++i) { 1874 if (i > 0) 1875 name.append(' '); 1876 name.append(toElement(this)->classNames()[i]); 1877 } 1878 name.append('\''); 1879 } 1880 1881 return name.toString(); 1882 } 1883 1884 static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc) 1885 { 1886 if (!node->isElementNode()) 1887 return; 1888 1889 String attr = toElement(node)->getAttribute(name); 1890 if (attr.isEmpty()) 1891 return; 1892 1893 stringBuilder.append(attrDesc); 1894 stringBuilder.append(attr); 1895 } 1896 1897 void Node::showNode(const char* prefix) const 1898 { 1899 if (!prefix) 1900 prefix = ""; 1901 if (isTextNode()) { 1902 String value = nodeValue(); 1903 value.replaceWithLiteral('\\', "\\\\"); 1904 value.replaceWithLiteral('\n', "\\n"); 1905 fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data()); 1906 } else { 1907 StringBuilder attrs; 1908 appendAttributeDesc(this, attrs, classAttr, " CLASS="); 1909 appendAttributeDesc(this, attrs, styleAttr, " STYLE="); 1910 fprintf(stderr, "%s%s\t%p%s\n", prefix, nodeName().utf8().data(), this, attrs.toString().utf8().data()); 1911 } 1912 } 1913 1914 void Node::showTreeForThis() const 1915 { 1916 showTreeAndMark(this, "*"); 1917 } 1918 1919 void Node::showNodePathForThis() const 1920 { 1921 Vector<const Node*, 16> chain; 1922 const Node* node = this; 1923 while (node->parentOrShadowHostNode()) { 1924 chain.append(node); 1925 node = node->parentOrShadowHostNode(); 1926 } 1927 for (unsigned index = chain.size(); index > 0; --index) { 1928 const Node* node = chain[index - 1]; 1929 if (node->isShadowRoot()) { 1930 int count = 0; 1931 for (ShadowRoot* shadowRoot = toShadowRoot(node)->olderShadowRoot(); shadowRoot; shadowRoot = shadowRoot->olderShadowRoot()) 1932 ++count; 1933 fprintf(stderr, "/#shadow-root[%d]", count); 1934 continue; 1935 } 1936 1937 switch (node->nodeType()) { 1938 case ELEMENT_NODE: { 1939 fprintf(stderr, "/%s", node->nodeName().utf8().data()); 1940 1941 const Element* element = toElement(node); 1942 const AtomicString& idattr = element->getIdAttribute(); 1943 bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty(); 1944 if (node->previousSibling() || node->nextSibling()) { 1945 int count = 0; 1946 for (Node* previous = node->previousSibling(); previous; previous = previous->previousSibling()) 1947 if (previous->nodeName() == node->nodeName()) 1948 ++count; 1949 if (hasIdAttr) 1950 fprintf(stderr, "[@id=\"%s\" and position()=%d]", idattr.string().utf8().data(), count); 1951 else 1952 fprintf(stderr, "[%d]", count); 1953 } else if (hasIdAttr) 1954 fprintf(stderr, "[@id=\"%s\"]", idattr.string().utf8().data()); 1955 break; 1956 } 1957 case TEXT_NODE: 1958 fprintf(stderr, "/text()"); 1959 break; 1960 case ATTRIBUTE_NODE: 1961 fprintf(stderr, "/@%s", node->nodeName().utf8().data()); 1962 break; 1963 default: 1964 break; 1965 } 1966 } 1967 fprintf(stderr, "\n"); 1968 } 1969 1970 static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) 1971 { 1972 for (const Node* node = rootNode; node; node = NodeTraversal::next(node)) { 1973 if (node == markedNode1) 1974 fprintf(stderr, "%s", markedLabel1); 1975 if (node == markedNode2) 1976 fprintf(stderr, "%s", markedLabel2); 1977 1978 StringBuilder indent; 1979 indent.append(baseIndent); 1980 for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrShadowHostNode()) 1981 indent.append('\t'); 1982 fprintf(stderr, "%s", indent.toString().utf8().data()); 1983 node->showNode(); 1984 indent.append('\t'); 1985 if (node->isShadowRoot()) { 1986 if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot()) 1987 traverseTreeAndMark(indent.toString(), youngerShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2); 1988 } else if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node)) 1989 traverseTreeAndMark(indent.toString(), oldestShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2); 1990 } 1991 } 1992 1993 void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const 1994 { 1995 const Node* rootNode; 1996 const Node* node = this; 1997 while (node->parentOrShadowHostNode() && !node->hasTagName(bodyTag)) 1998 node = node->parentOrShadowHostNode(); 1999 rootNode = node; 2000 2001 String startingIndent; 2002 traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2); 2003 } 2004 2005 void Node::formatForDebugger(char* buffer, unsigned length) const 2006 { 2007 String result; 2008 String s; 2009 2010 s = nodeName(); 2011 if (s.isEmpty()) 2012 result = "<none>"; 2013 else 2014 result = s; 2015 2016 strncpy(buffer, result.utf8().data(), length - 1); 2017 } 2018 2019 static ContainerNode* parentOrShadowHostOrFrameOwner(const Node* node) 2020 { 2021 ContainerNode* parent = node->parentOrShadowHostNode(); 2022 if (!parent && node->document() && node->document()->frame()) 2023 parent = node->document()->frame()->ownerElement(); 2024 return parent; 2025 } 2026 2027 static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent) 2028 { 2029 if (node == markedNode) 2030 fputs("*", stderr); 2031 fputs(indent.utf8().data(), stderr); 2032 node->showNode(); 2033 if (node->isShadowRoot()) { 2034 if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot()) 2035 showSubTreeAcrossFrame(youngerShadowRoot, markedNode, indent + "\t"); 2036 } else { 2037 if (node->isFrameOwnerElement()) 2038 showSubTreeAcrossFrame(static_cast<const HTMLFrameOwnerElement*>(node)->contentDocument(), markedNode, indent + "\t"); 2039 if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node)) 2040 showSubTreeAcrossFrame(oldestShadowRoot, markedNode, indent + "\t"); 2041 } 2042 for (Node* child = node->firstChild(); child; child = child->nextSibling()) 2043 showSubTreeAcrossFrame(child, markedNode, indent + "\t"); 2044 } 2045 2046 void Node::showTreeForThisAcrossFrame() const 2047 { 2048 Node* rootNode = const_cast<Node*>(this); 2049 while (parentOrShadowHostOrFrameOwner(rootNode)) 2050 rootNode = parentOrShadowHostOrFrameOwner(rootNode); 2051 showSubTreeAcrossFrame(rootNode, this, ""); 2052 } 2053 2054 #endif 2055 2056 // -------- 2057 2058 void NodeListsNodeData::invalidateCaches(const QualifiedName* attrName) 2059 { 2060 NodeListAtomicNameCacheMap::const_iterator atomicNameCacheEnd = m_atomicNameCaches.end(); 2061 for (NodeListAtomicNameCacheMap::const_iterator it = m_atomicNameCaches.begin(); it != atomicNameCacheEnd; ++it) 2062 it->value->invalidateCache(attrName); 2063 2064 NodeListNameCacheMap::const_iterator nameCacheEnd = m_nameCaches.end(); 2065 for (NodeListNameCacheMap::const_iterator it = m_nameCaches.begin(); it != nameCacheEnd; ++it) 2066 it->value->invalidateCache(attrName); 2067 2068 if (attrName) 2069 return; 2070 2071 TagNodeListCacheNS::iterator tagCacheEnd = m_tagNodeListCacheNS.end(); 2072 for (TagNodeListCacheNS::iterator it = m_tagNodeListCacheNS.begin(); it != tagCacheEnd; ++it) 2073 it->value->invalidateCache(); 2074 } 2075 2076 Node* Node::enclosingLinkEventParentOrSelf() 2077 { 2078 for (Node* node = this; node; node = node->parentOrShadowHostNode()) { 2079 // For imagemaps, the enclosing link node is the associated area element not the image itself. 2080 // So we don't let images be the enclosingLinkNode, even though isLink sometimes returns true 2081 // for them. 2082 if (node->isLink() && !node->hasTagName(imgTag)) 2083 return node; 2084 } 2085 2086 return 0; 2087 } 2088 2089 const AtomicString& Node::interfaceName() const 2090 { 2091 return eventNames().interfaceForNode; 2092 } 2093 2094 ScriptExecutionContext* Node::scriptExecutionContext() const 2095 { 2096 return document(); 2097 } 2098 2099 void Node::didMoveToNewDocument(Document* oldDocument) 2100 { 2101 TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument); 2102 2103 if (const EventTargetData* eventTargetData = this->eventTargetData()) { 2104 const EventListenerMap& listenerMap = eventTargetData->eventListenerMap; 2105 if (!listenerMap.isEmpty()) { 2106 Vector<AtomicString> types = listenerMap.eventTypes(); 2107 for (unsigned i = 0; i < types.size(); ++i) 2108 document()->addListenerTypeIfNeeded(types[i]); 2109 } 2110 } 2111 2112 if (AXObjectCache::accessibilityEnabled() && oldDocument) 2113 if (AXObjectCache* cache = oldDocument->existingAXObjectCache()) 2114 cache->remove(this); 2115 2116 const EventListenerVector& wheelListeners = getEventListeners(eventNames().mousewheelEvent); 2117 for (size_t i = 0; i < wheelListeners.size(); ++i) { 2118 oldDocument->didRemoveWheelEventHandler(); 2119 document()->didAddWheelEventHandler(); 2120 } 2121 2122 if (const TouchEventTargetSet* touchHandlers = oldDocument ? oldDocument->touchEventTargets() : 0) { 2123 while (touchHandlers->contains(this)) { 2124 oldDocument->didRemoveTouchEventHandler(this); 2125 document()->didAddTouchEventHandler(this); 2126 } 2127 } 2128 2129 if (Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry()) { 2130 for (size_t i = 0; i < registry->size(); ++i) { 2131 document()->addMutationObserverTypes(registry->at(i)->mutationTypes()); 2132 } 2133 } 2134 2135 if (HashSet<MutationObserverRegistration*>* transientRegistry = transientMutationObserverRegistry()) { 2136 for (HashSet<MutationObserverRegistration*>::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) { 2137 document()->addMutationObserverTypes((*iter)->mutationTypes()); 2138 } 2139 } 2140 } 2141 2142 static inline bool tryAddEventListener(Node* targetNode, const AtomicString& eventType, PassRefPtr<EventListener> listener, bool useCapture) 2143 { 2144 if (!targetNode->EventTarget::addEventListener(eventType, listener, useCapture)) 2145 return false; 2146 2147 if (Document* document = targetNode->document()) { 2148 document->addListenerTypeIfNeeded(eventType); 2149 if (eventType == eventNames().mousewheelEvent) 2150 document->didAddWheelEventHandler(); 2151 else if (eventNames().isTouchEventType(eventType)) 2152 document->didAddTouchEventHandler(targetNode); 2153 } 2154 2155 return true; 2156 } 2157 2158 bool Node::addEventListener(const AtomicString& eventType, PassRefPtr<EventListener> listener, bool useCapture) 2159 { 2160 return tryAddEventListener(this, eventType, listener, useCapture); 2161 } 2162 2163 static inline bool tryRemoveEventListener(Node* targetNode, const AtomicString& eventType, EventListener* listener, bool useCapture) 2164 { 2165 if (!targetNode->EventTarget::removeEventListener(eventType, listener, useCapture)) 2166 return false; 2167 2168 // FIXME: Notify Document that the listener has vanished. We need to keep track of a number of 2169 // listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861 2170 if (Document* document = targetNode->document()) { 2171 if (eventType == eventNames().mousewheelEvent) 2172 document->didRemoveWheelEventHandler(); 2173 else if (eventNames().isTouchEventType(eventType)) 2174 document->didRemoveTouchEventHandler(targetNode); 2175 } 2176 2177 return true; 2178 } 2179 2180 bool Node::removeEventListener(const AtomicString& eventType, EventListener* listener, bool useCapture) 2181 { 2182 return tryRemoveEventListener(this, eventType, listener, useCapture); 2183 } 2184 2185 typedef HashMap<Node*, OwnPtr<EventTargetData> > EventTargetDataMap; 2186 2187 static EventTargetDataMap& eventTargetDataMap() 2188 { 2189 DEFINE_STATIC_LOCAL(EventTargetDataMap, map, ()); 2190 return map; 2191 } 2192 2193 EventTargetData* Node::eventTargetData() 2194 { 2195 return hasEventTargetData() ? eventTargetDataMap().get(this) : 0; 2196 } 2197 2198 EventTargetData* Node::ensureEventTargetData() 2199 { 2200 if (hasEventTargetData()) 2201 return eventTargetDataMap().get(this); 2202 setHasEventTargetData(true); 2203 EventTargetData* data = new EventTargetData; 2204 eventTargetDataMap().set(this, adoptPtr(data)); 2205 return data; 2206 } 2207 2208 void Node::clearEventTargetData() 2209 { 2210 eventTargetDataMap().remove(this); 2211 } 2212 2213 Vector<OwnPtr<MutationObserverRegistration> >* Node::mutationObserverRegistry() 2214 { 2215 if (!hasRareData()) 2216 return 0; 2217 NodeMutationObserverData* data = rareData()->mutationObserverData(); 2218 if (!data) 2219 return 0; 2220 return &data->registry; 2221 } 2222 2223 HashSet<MutationObserverRegistration*>* Node::transientMutationObserverRegistry() 2224 { 2225 if (!hasRareData()) 2226 return 0; 2227 NodeMutationObserverData* data = rareData()->mutationObserverData(); 2228 if (!data) 2229 return 0; 2230 return &data->transientRegistry; 2231 } 2232 2233 template<typename Registry> 2234 static inline void collectMatchingObserversForMutation(HashMap<MutationObserver*, MutationRecordDeliveryOptions>& observers, Registry* registry, Node* target, MutationObserver::MutationType type, const QualifiedName* attributeName) 2235 { 2236 if (!registry) 2237 return; 2238 for (typename Registry::iterator iter = registry->begin(); iter != registry->end(); ++iter) { 2239 const MutationObserverRegistration& registration = **iter; 2240 if (registration.shouldReceiveMutationFrom(target, type, attributeName)) { 2241 MutationRecordDeliveryOptions deliveryOptions = registration.deliveryOptions(); 2242 HashMap<MutationObserver*, MutationRecordDeliveryOptions>::AddResult result = observers.add(registration.observer(), deliveryOptions); 2243 if (!result.isNewEntry) 2244 result.iterator->value |= deliveryOptions; 2245 } 2246 } 2247 } 2248 2249 void Node::getRegisteredMutationObserversOfType(HashMap<MutationObserver*, MutationRecordDeliveryOptions>& observers, MutationObserver::MutationType type, const QualifiedName* attributeName) 2250 { 2251 ASSERT((type == MutationObserver::Attributes && attributeName) || !attributeName); 2252 collectMatchingObserversForMutation(observers, mutationObserverRegistry(), this, type, attributeName); 2253 collectMatchingObserversForMutation(observers, transientMutationObserverRegistry(), this, type, attributeName); 2254 for (Node* node = parentNode(); node; node = node->parentNode()) { 2255 collectMatchingObserversForMutation(observers, node->mutationObserverRegistry(), this, type, attributeName); 2256 collectMatchingObserversForMutation(observers, node->transientMutationObserverRegistry(), this, type, attributeName); 2257 } 2258 } 2259 2260 void Node::registerMutationObserver(MutationObserver* observer, MutationObserverOptions options, const HashSet<AtomicString>& attributeFilter) 2261 { 2262 MutationObserverRegistration* registration = 0; 2263 Vector<OwnPtr<MutationObserverRegistration> >& registry = ensureRareData()->ensureMutationObserverData()->registry; 2264 for (size_t i = 0; i < registry.size(); ++i) { 2265 if (registry[i]->observer() == observer) { 2266 registration = registry[i].get(); 2267 registration->resetObservation(options, attributeFilter); 2268 } 2269 } 2270 2271 if (!registration) { 2272 registry.append(MutationObserverRegistration::create(observer, this, options, attributeFilter)); 2273 registration = registry.last().get(); 2274 } 2275 2276 document()->addMutationObserverTypes(registration->mutationTypes()); 2277 } 2278 2279 void Node::unregisterMutationObserver(MutationObserverRegistration* registration) 2280 { 2281 Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry(); 2282 ASSERT(registry); 2283 if (!registry) 2284 return; 2285 2286 size_t index = registry->find(registration); 2287 ASSERT(index != notFound); 2288 if (index == notFound) 2289 return; 2290 2291 // Deleting the registration may cause this node to be derefed, so we must make sure the Vector operation completes 2292 // before that, in case |this| is destroyed (see MutationObserverRegistration::m_registrationNodeKeepAlive). 2293 // FIXME: Simplify the registration/transient registration logic to make this understandable by humans. 2294 RefPtr<Node> protect(this); 2295 registry->remove(index); 2296 } 2297 2298 void Node::registerTransientMutationObserver(MutationObserverRegistration* registration) 2299 { 2300 ensureRareData()->ensureMutationObserverData()->transientRegistry.add(registration); 2301 } 2302 2303 void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration) 2304 { 2305 HashSet<MutationObserverRegistration*>* transientRegistry = transientMutationObserverRegistry(); 2306 ASSERT(transientRegistry); 2307 if (!transientRegistry) 2308 return; 2309 2310 ASSERT(transientRegistry->contains(registration)); 2311 transientRegistry->remove(registration); 2312 } 2313 2314 void Node::notifyMutationObserversNodeWillDetach() 2315 { 2316 if (!document()->hasMutationObservers()) 2317 return; 2318 2319 for (Node* node = parentNode(); node; node = node->parentNode()) { 2320 if (Vector<OwnPtr<MutationObserverRegistration> >* registry = node->mutationObserverRegistry()) { 2321 const size_t size = registry->size(); 2322 for (size_t i = 0; i < size; ++i) 2323 registry->at(i)->observedSubtreeNodeWillDetach(this); 2324 } 2325 2326 if (HashSet<MutationObserverRegistration*>* transientRegistry = node->transientMutationObserverRegistry()) { 2327 for (HashSet<MutationObserverRegistration*>::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) 2328 (*iter)->observedSubtreeNodeWillDetach(this); 2329 } 2330 } 2331 } 2332 2333 void Node::handleLocalEvents(Event* event) 2334 { 2335 if (!hasEventTargetData()) 2336 return; 2337 2338 if (isDisabledFormControl(this) && event->isMouseEvent()) 2339 return; 2340 2341 fireEventListeners(event); 2342 } 2343 2344 void Node::dispatchScopedEvent(PassRefPtr<Event> event) 2345 { 2346 dispatchScopedEventDispatchMediator(EventDispatchMediator::create(event)); 2347 } 2348 2349 void Node::dispatchScopedEventDispatchMediator(PassRefPtr<EventDispatchMediator> eventDispatchMediator) 2350 { 2351 EventDispatcher::dispatchScopedEvent(this, eventDispatchMediator); 2352 } 2353 2354 bool Node::dispatchEvent(PassRefPtr<Event> event) 2355 { 2356 if (event->isMouseEvent()) 2357 return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(adoptRef(toMouseEvent(event.leakRef())), MouseEventDispatchMediator::SyntheticMouseEvent)); 2358 if (event->isTouchEvent()) 2359 return dispatchTouchEvent(adoptRef(toTouchEvent(event.leakRef()))); 2360 return EventDispatcher::dispatchEvent(this, EventDispatchMediator::create(event)); 2361 } 2362 2363 void Node::dispatchSubtreeModifiedEvent() 2364 { 2365 if (isInShadowTree()) 2366 return; 2367 2368 ASSERT(!NoEventDispatchAssertion::isEventDispatchForbidden()); 2369 2370 if (!document()->hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER)) 2371 return; 2372 2373 dispatchScopedEvent(MutationEvent::create(eventNames().DOMSubtreeModifiedEvent, true)); 2374 } 2375 2376 bool Node::dispatchDOMActivateEvent(int detail, PassRefPtr<Event> underlyingEvent) 2377 { 2378 ASSERT(!NoEventDispatchAssertion::isEventDispatchForbidden()); 2379 RefPtr<UIEvent> event = UIEvent::create(eventNames().DOMActivateEvent, true, true, document()->defaultView(), detail); 2380 event->setUnderlyingEvent(underlyingEvent); 2381 dispatchScopedEvent(event); 2382 return event->defaultHandled(); 2383 } 2384 2385 bool Node::dispatchKeyEvent(const PlatformKeyboardEvent& event) 2386 { 2387 return EventDispatcher::dispatchEvent(this, KeyboardEventDispatchMediator::create(KeyboardEvent::create(event, document()->defaultView()))); 2388 } 2389 2390 bool Node::dispatchMouseEvent(const PlatformMouseEvent& event, const AtomicString& eventType, 2391 int detail, Node* relatedTarget) 2392 { 2393 return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(MouseEvent::create(eventType, document()->defaultView(), event, detail, relatedTarget))); 2394 } 2395 2396 bool Node::dispatchGestureEvent(const PlatformGestureEvent& event) 2397 { 2398 RefPtr<GestureEvent> gestureEvent = GestureEvent::create(document()->defaultView(), event); 2399 if (!gestureEvent.get()) 2400 return false; 2401 return EventDispatcher::dispatchEvent(this, GestureEventDispatchMediator::create(gestureEvent)); 2402 } 2403 2404 bool Node::dispatchTouchEvent(PassRefPtr<TouchEvent> event) 2405 { 2406 return EventDispatcher::dispatchEvent(this, TouchEventDispatchMediator::create(event)); 2407 } 2408 2409 void Node::dispatchSimulatedClick(Event* underlyingEvent, SimulatedClickMouseEventOptions eventOptions, SimulatedClickVisualOptions visualOptions) 2410 { 2411 EventDispatcher::dispatchSimulatedClick(this, underlyingEvent, eventOptions, visualOptions); 2412 } 2413 2414 bool Node::dispatchBeforeLoadEvent(const String& sourceURL) 2415 { 2416 if (!document()->hasListenerType(Document::BEFORELOAD_LISTENER)) 2417 return true; 2418 2419 RefPtr<Node> protector(this); 2420 RefPtr<BeforeLoadEvent> beforeLoadEvent = BeforeLoadEvent::create(sourceURL); 2421 dispatchEvent(beforeLoadEvent.get()); 2422 return !beforeLoadEvent->defaultPrevented(); 2423 } 2424 2425 bool Node::dispatchWheelEvent(const PlatformWheelEvent& event) 2426 { 2427 return EventDispatcher::dispatchEvent(this, WheelEventDispatchMediator::create(event, document()->defaultView())); 2428 } 2429 2430 void Node::dispatchChangeEvent() 2431 { 2432 dispatchScopedEvent(Event::create(eventNames().changeEvent, true, false)); 2433 } 2434 2435 void Node::dispatchInputEvent() 2436 { 2437 dispatchScopedEvent(Event::create(eventNames().inputEvent, true, false)); 2438 } 2439 2440 void Node::defaultEventHandler(Event* event) 2441 { 2442 if (event->target() != this) 2443 return; 2444 const AtomicString& eventType = event->type(); 2445 if (eventType == eventNames().keydownEvent || eventType == eventNames().keypressEvent) { 2446 if (event->isKeyboardEvent()) { 2447 if (Frame* frame = document()->frame()) 2448 frame->eventHandler()->defaultKeyboardEventHandler(toKeyboardEvent(event)); 2449 } 2450 } else if (eventType == eventNames().clickEvent) { 2451 int detail = event->isUIEvent() ? static_cast<UIEvent*>(event)->detail() : 0; 2452 if (dispatchDOMActivateEvent(detail, event)) 2453 event->setDefaultHandled(); 2454 } else if (eventType == eventNames().contextmenuEvent) { 2455 if (Frame* frame = document()->frame()) 2456 if (Page* page = frame->page()) 2457 page->contextMenuController()->handleContextMenuEvent(event); 2458 } else if (eventType == eventNames().textInputEvent) { 2459 if (event->hasInterface(eventNames().interfaceForTextEvent)) 2460 if (Frame* frame = document()->frame()) 2461 frame->eventHandler()->defaultTextInputEventHandler(static_cast<TextEvent*>(event)); 2462 #if OS(WINDOWS) 2463 } else if (eventType == eventNames().mousedownEvent && event->isMouseEvent()) { 2464 MouseEvent* mouseEvent = toMouseEvent(event); 2465 if (mouseEvent->button() == MiddleButton) { 2466 if (enclosingLinkEventParentOrSelf()) 2467 return; 2468 2469 RenderObject* renderer = this->renderer(); 2470 while (renderer && (!renderer->isBox() || !toRenderBox(renderer)->canBeScrolledAndHasScrollableArea())) 2471 renderer = renderer->parent(); 2472 2473 if (renderer) { 2474 if (Frame* frame = document()->frame()) 2475 frame->eventHandler()->startPanScrolling(renderer); 2476 } 2477 } 2478 #endif 2479 } else if (eventType == eventNames().mousewheelEvent && event->hasInterface(eventNames().interfaceForWheelEvent)) { 2480 WheelEvent* wheelEvent = static_cast<WheelEvent*>(event); 2481 2482 // If we don't have a renderer, send the wheel event to the first node we find with a renderer. 2483 // This is needed for <option> and <optgroup> elements so that <select>s get a wheel scroll. 2484 Node* startNode = this; 2485 while (startNode && !startNode->renderer()) 2486 startNode = startNode->parentOrShadowHostNode(); 2487 2488 if (startNode && startNode->renderer()) 2489 if (Frame* frame = document()->frame()) 2490 frame->eventHandler()->defaultWheelEventHandler(startNode, wheelEvent); 2491 } else if (event->type() == eventNames().webkitEditableContentChangedEvent) { 2492 dispatchInputEvent(); 2493 } 2494 } 2495 2496 void Node::willCallDefaultEventHandler(const Event&) 2497 { 2498 } 2499 2500 bool Node::willRespondToMouseMoveEvents() 2501 { 2502 if (isDisabledFormControl(this)) 2503 return false; 2504 return hasEventListeners(eventNames().mousemoveEvent) || hasEventListeners(eventNames().mouseoverEvent) || hasEventListeners(eventNames().mouseoutEvent); 2505 } 2506 2507 bool Node::willRespondToMouseClickEvents() 2508 { 2509 if (isDisabledFormControl(this)) 2510 return false; 2511 return isContentEditable(UserSelectAllIsAlwaysNonEditable) || hasEventListeners(eventNames().mouseupEvent) || hasEventListeners(eventNames().mousedownEvent) || hasEventListeners(eventNames().clickEvent) || hasEventListeners(eventNames().DOMActivateEvent); 2512 } 2513 2514 bool Node::willRespondToTouchEvents() 2515 { 2516 if (isDisabledFormControl(this)) 2517 return false; 2518 return hasEventListeners(eventNames().touchstartEvent) || hasEventListeners(eventNames().touchmoveEvent) || hasEventListeners(eventNames().touchcancelEvent) || hasEventListeners(eventNames().touchendEvent); 2519 } 2520 2521 // This is here for inlining 2522 inline void TreeScope::removedLastRefToScope() 2523 { 2524 ASSERT(!deletionHasBegun()); 2525 if (m_guardRefCount) { 2526 // If removing a child removes the last self-only ref, we don't 2527 // want the scope to be destructed until after 2528 // removeDetachedChildren returns, so we guard ourselves with an 2529 // extra self-only ref. 2530 guardRef(); 2531 dispose(); 2532 #ifndef NDEBUG 2533 // We need to do this right now since guardDeref() can delete this. 2534 rootNode()->m_inRemovedLastRefFunction = false; 2535 #endif 2536 guardDeref(); 2537 } else { 2538 #ifndef NDEBUG 2539 rootNode()->m_inRemovedLastRefFunction = false; 2540 beginDeletion(); 2541 #endif 2542 delete this; 2543 } 2544 } 2545 2546 // It's important not to inline removedLastRef, because we don't want to inline the code to 2547 // delete a Node at each deref call site. 2548 void Node::removedLastRef() 2549 { 2550 // An explicit check for Document here is better than a virtual function since it is 2551 // faster for non-Document nodes, and because the call to removedLastRef that is inlined 2552 // at all deref call sites is smaller if it's a non-virtual function. 2553 if (isTreeScope()) { 2554 treeScope()->removedLastRefToScope(); 2555 return; 2556 } 2557 2558 #ifndef NDEBUG 2559 m_deletionHasBegun = true; 2560 #endif 2561 delete this; 2562 } 2563 2564 void Node::textRects(Vector<IntRect>& rects) const 2565 { 2566 RefPtr<Range> range = Range::create(document()); 2567 range->selectNodeContents(const_cast<Node*>(this), IGNORE_EXCEPTION); 2568 range->textRects(rects); 2569 } 2570 2571 unsigned Node::connectedSubframeCount() const 2572 { 2573 return hasRareData() ? rareData()->connectedSubframeCount() : 0; 2574 } 2575 2576 void Node::incrementConnectedSubframeCount(unsigned amount) 2577 { 2578 ASSERT(isContainerNode()); 2579 ensureRareData()->incrementConnectedSubframeCount(amount); 2580 } 2581 2582 void Node::decrementConnectedSubframeCount(unsigned amount) 2583 { 2584 rareData()->decrementConnectedSubframeCount(amount); 2585 } 2586 2587 void Node::updateAncestorConnectedSubframeCountForRemoval() const 2588 { 2589 unsigned count = connectedSubframeCount(); 2590 2591 if (!count) 2592 return; 2593 2594 for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode()) 2595 node->decrementConnectedSubframeCount(count); 2596 } 2597 2598 void Node::updateAncestorConnectedSubframeCountForInsertion() const 2599 { 2600 unsigned count = connectedSubframeCount(); 2601 2602 if (!count) 2603 return; 2604 2605 for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode()) 2606 node->incrementConnectedSubframeCount(count); 2607 } 2608 2609 PassRefPtr<NodeList> Node::getDestinationInsertionPoints() 2610 { 2611 document()->updateDistributionForNodeIfNeeded(this); 2612 Vector<InsertionPoint*, 8> insertionPoints; 2613 collectInsertionPointsWhereNodeIsDistributed(this, insertionPoints); 2614 for (size_t i = 0; i < insertionPoints.size(); ++i) { 2615 InsertionPoint* insertionPoint = insertionPoints[i]; 2616 ASSERT(insertionPoint->containingShadowRoot()); 2617 if (insertionPoint->containingShadowRoot()->type() == ShadowRoot::UserAgentShadowRoot) 2618 return StaticNodeList::createEmpty(); 2619 } 2620 Vector<RefPtr<Node> > asNodes; 2621 asNodes.appendRange(insertionPoints.begin(), insertionPoints.end()); 2622 return StaticNodeList::adopt(asNodes); 2623 } 2624 2625 void Node::registerScopedHTMLStyleChild() 2626 { 2627 setHasScopedHTMLStyleChild(true); 2628 } 2629 2630 void Node::unregisterScopedHTMLStyleChild() 2631 { 2632 ASSERT(hasScopedHTMLStyleChild()); 2633 setHasScopedHTMLStyleChild(numberOfScopedHTMLStyleChildren()); 2634 } 2635 2636 size_t Node::numberOfScopedHTMLStyleChildren() const 2637 { 2638 size_t count = 0; 2639 for (Node* child = firstChild(); child; child = child->nextSibling()) { 2640 if (child->hasTagName(HTMLNames::styleTag) && toHTMLStyleElement(child)->isRegisteredAsScoped()) 2641 count++; 2642 } 2643 2644 return count; 2645 } 2646 2647 void Node::setFocus(bool flag) 2648 { 2649 if (Document* document = this->document()) 2650 document->userActionElements().setFocused(this, flag); 2651 } 2652 2653 void Node::setActive(bool flag, bool) 2654 { 2655 if (Document* document = this->document()) 2656 document->userActionElements().setActive(this, flag); 2657 } 2658 2659 void Node::setHovered(bool flag) 2660 { 2661 if (Document* document = this->document()) 2662 document->userActionElements().setHovered(this, flag); 2663 } 2664 2665 bool Node::isUserActionElementActive() const 2666 { 2667 ASSERT(isUserActionElement()); 2668 return document()->userActionElements().isActive(this); 2669 } 2670 2671 bool Node::isUserActionElementInActiveChain() const 2672 { 2673 ASSERT(isUserActionElement()); 2674 return document()->userActionElements().isInActiveChain(this); 2675 } 2676 2677 bool Node::isUserActionElementHovered() const 2678 { 2679 ASSERT(isUserActionElement()); 2680 return document()->userActionElements().isHovered(this); 2681 } 2682 2683 bool Node::isUserActionElementFocused() const 2684 { 2685 ASSERT(isUserActionElement()); 2686 return document()->userActionElements().isFocused(this); 2687 } 2688 2689 void Node::setCustomElementState(CustomElementState newState) 2690 { 2691 CustomElementState oldState = customElementState(); 2692 2693 switch (newState) { 2694 case NotCustomElement: 2695 ASSERT_NOT_REACHED(); // Everything starts in this state 2696 return; 2697 2698 case UpgradeCandidate: 2699 ASSERT(NotCustomElement == oldState); 2700 break; 2701 2702 case Defined: 2703 ASSERT(UpgradeCandidate == oldState || NotCustomElement == oldState); 2704 break; 2705 2706 case Upgraded: 2707 ASSERT(Defined == oldState); 2708 break; 2709 } 2710 2711 ASSERT(isHTMLElement() || isSVGElement()); 2712 setFlag(newState & 1, CustomElementIsUpgradeCandidateOrUpgraded); 2713 setFlag(newState & 2, CustomElementHasDefinitionOrIsUpgraded); 2714 2715 if (oldState == NotCustomElement || newState == Upgraded) 2716 setNeedsStyleRecalc(); // :unresolved has changed 2717 } 2718 2719 } // namespace WebCore 2720 2721 #ifndef NDEBUG 2722 2723 void showTree(const WebCore::Node* node) 2724 { 2725 if (node) 2726 node->showTreeForThis(); 2727 } 2728 2729 void showNodePath(const WebCore::Node* node) 2730 { 2731 if (node) 2732 node->showNodePathForThis(); 2733 } 2734 2735 #endif 2736