Home | History | Annotate | Download | only in eap_peer
      1 /*
      2  * EAP peer state machines (RFC 4137)
      3  * Copyright (c) 2004-2012, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  *
      8  * This file implements the Peer State Machine as defined in RFC 4137. The used
      9  * states and state transitions match mostly with the RFC. However, there are
     10  * couple of additional transitions for working around small issues noticed
     11  * during testing. These exceptions are explained in comments within the
     12  * functions in this file. The method functions, m.func(), are similar to the
     13  * ones used in RFC 4137, but some small changes have used here to optimize
     14  * operations and to add functionality needed for fast re-authentication
     15  * (session resumption).
     16  */
     17 
     18 #include "includes.h"
     19 
     20 #include "common.h"
     21 #include "pcsc_funcs.h"
     22 #include "state_machine.h"
     23 #include "ext_password.h"
     24 #include "crypto/crypto.h"
     25 #include "crypto/tls.h"
     26 #include "common/wpa_ctrl.h"
     27 #include "eap_common/eap_wsc_common.h"
     28 #include "eap_i.h"
     29 #include "eap_config.h"
     30 
     31 #define STATE_MACHINE_DATA struct eap_sm
     32 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
     33 
     34 #define EAP_MAX_AUTH_ROUNDS 50
     35 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
     36 
     37 
     38 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
     39 				  EapType method);
     40 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
     41 static void eap_sm_processIdentity(struct eap_sm *sm,
     42 				   const struct wpabuf *req);
     43 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
     44 static struct wpabuf * eap_sm_buildNotify(int id);
     45 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
     46 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
     47 static const char * eap_sm_method_state_txt(EapMethodState state);
     48 static const char * eap_sm_decision_txt(EapDecision decision);
     49 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
     50 
     51 
     52 
     53 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
     54 {
     55 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
     56 }
     57 
     58 
     59 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
     60 			   Boolean value)
     61 {
     62 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
     63 }
     64 
     65 
     66 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
     67 {
     68 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
     69 }
     70 
     71 
     72 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
     73 			  unsigned int value)
     74 {
     75 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
     76 }
     77 
     78 
     79 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
     80 {
     81 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
     82 }
     83 
     84 
     85 static void eap_notify_status(struct eap_sm *sm, const char *status,
     86 				      const char *parameter)
     87 {
     88 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
     89 		   status, parameter);
     90 	if (sm->eapol_cb->notify_status)
     91 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
     92 }
     93 
     94 
     95 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
     96 {
     97 	ext_password_free(sm->ext_pw_buf);
     98 	sm->ext_pw_buf = NULL;
     99 
    100 	if (sm->m == NULL || sm->eap_method_priv == NULL)
    101 		return;
    102 
    103 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
    104 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
    105 	sm->m->deinit(sm, sm->eap_method_priv);
    106 	sm->eap_method_priv = NULL;
    107 	sm->m = NULL;
    108 }
    109 
    110 
    111 /**
    112  * eap_allowed_method - Check whether EAP method is allowed
    113  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
    114  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
    115  * @method: EAP type
    116  * Returns: 1 = allowed EAP method, 0 = not allowed
    117  */
    118 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
    119 {
    120 	struct eap_peer_config *config = eap_get_config(sm);
    121 	int i;
    122 	struct eap_method_type *m;
    123 
    124 	if (config == NULL || config->eap_methods == NULL)
    125 		return 1;
    126 
    127 	m = config->eap_methods;
    128 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
    129 		     m[i].method != EAP_TYPE_NONE; i++) {
    130 		if (m[i].vendor == vendor && m[i].method == method)
    131 			return 1;
    132 	}
    133 	return 0;
    134 }
    135 
    136 
    137 /*
    138  * This state initializes state machine variables when the machine is
    139  * activated (portEnabled = TRUE). This is also used when re-starting
    140  * authentication (eapRestart == TRUE).
    141  */
    142 SM_STATE(EAP, INITIALIZE)
    143 {
    144 	SM_ENTRY(EAP, INITIALIZE);
    145 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
    146 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
    147 	    !sm->prev_failure) {
    148 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
    149 			   "fast reauthentication");
    150 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
    151 	} else {
    152 		eap_deinit_prev_method(sm, "INITIALIZE");
    153 	}
    154 	sm->selectedMethod = EAP_TYPE_NONE;
    155 	sm->methodState = METHOD_NONE;
    156 	sm->allowNotifications = TRUE;
    157 	sm->decision = DECISION_FAIL;
    158 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    159 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    160 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
    161 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
    162 	os_free(sm->eapKeyData);
    163 	sm->eapKeyData = NULL;
    164 	os_free(sm->eapSessionId);
    165 	sm->eapSessionId = NULL;
    166 	sm->eapKeyAvailable = FALSE;
    167 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
    168 	sm->lastId = -1; /* new session - make sure this does not match with
    169 			  * the first EAP-Packet */
    170 	/*
    171 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
    172 	 * seemed to be able to trigger cases where both were set and if EAPOL
    173 	 * state machine uses eapNoResp first, it may end up not sending a real
    174 	 * reply correctly. This occurred when the workaround in FAIL state set
    175 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
    176 	 * something else(?)
    177 	 */
    178 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
    179 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
    180 	sm->num_rounds = 0;
    181 	sm->prev_failure = 0;
    182 }
    183 
    184 
    185 /*
    186  * This state is reached whenever service from the lower layer is interrupted
    187  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
    188  * occurs when the port becomes enabled.
    189  */
    190 SM_STATE(EAP, DISABLED)
    191 {
    192 	SM_ENTRY(EAP, DISABLED);
    193 	sm->num_rounds = 0;
    194 	/*
    195 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
    196 	 * allows the timer tick to be stopped more quickly when EAP is not in
    197 	 * use.
    198 	 */
    199 	eapol_set_int(sm, EAPOL_idleWhile, 0);
    200 }
    201 
    202 
    203 /*
    204  * The state machine spends most of its time here, waiting for something to
    205  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
    206  * SEND_RESPONSE states.
    207  */
    208 SM_STATE(EAP, IDLE)
    209 {
    210 	SM_ENTRY(EAP, IDLE);
    211 }
    212 
    213 
    214 /*
    215  * This state is entered when an EAP packet is received (eapReq == TRUE) to
    216  * parse the packet header.
    217  */
    218 SM_STATE(EAP, RECEIVED)
    219 {
    220 	const struct wpabuf *eapReqData;
    221 
    222 	SM_ENTRY(EAP, RECEIVED);
    223 	eapReqData = eapol_get_eapReqData(sm);
    224 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
    225 	eap_sm_parseEapReq(sm, eapReqData);
    226 	sm->num_rounds++;
    227 }
    228 
    229 
    230 /*
    231  * This state is entered when a request for a new type comes in. Either the
    232  * correct method is started, or a Nak response is built.
    233  */
    234 SM_STATE(EAP, GET_METHOD)
    235 {
    236 	int reinit;
    237 	EapType method;
    238 	const struct eap_method *eap_method;
    239 
    240 	SM_ENTRY(EAP, GET_METHOD);
    241 
    242 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    243 		method = sm->reqVendorMethod;
    244 	else
    245 		method = sm->reqMethod;
    246 
    247 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
    248 
    249 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
    250 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
    251 			   sm->reqVendor, method);
    252 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    253 			"vendor=%u method=%u -> NAK",
    254 			sm->reqVendor, method);
    255 		eap_notify_status(sm, "refuse proposed method",
    256 				  eap_method ?  eap_method->name : "unknown");
    257 		goto nak;
    258 	}
    259 
    260 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    261 		"vendor=%u method=%u", sm->reqVendor, method);
    262 
    263 	eap_notify_status(sm, "accept proposed method",
    264 			  eap_method ?  eap_method->name : "unknown");
    265 	/*
    266 	 * RFC 4137 does not define specific operation for fast
    267 	 * re-authentication (session resumption). The design here is to allow
    268 	 * the previously used method data to be maintained for
    269 	 * re-authentication if the method support session resumption.
    270 	 * Otherwise, the previously used method data is freed and a new method
    271 	 * is allocated here.
    272 	 */
    273 	if (sm->fast_reauth &&
    274 	    sm->m && sm->m->vendor == sm->reqVendor &&
    275 	    sm->m->method == method &&
    276 	    sm->m->has_reauth_data &&
    277 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
    278 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
    279 			   " for fast re-authentication");
    280 		reinit = 1;
    281 	} else {
    282 		eap_deinit_prev_method(sm, "GET_METHOD");
    283 		reinit = 0;
    284 	}
    285 
    286 	sm->selectedMethod = sm->reqMethod;
    287 	if (sm->m == NULL)
    288 		sm->m = eap_method;
    289 	if (!sm->m) {
    290 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
    291 			   "vendor %d method %d",
    292 			   sm->reqVendor, method);
    293 		goto nak;
    294 	}
    295 
    296 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    297 
    298 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
    299 		   "vendor %u method %u (%s)",
    300 		   sm->reqVendor, method, sm->m->name);
    301 	if (reinit)
    302 		sm->eap_method_priv = sm->m->init_for_reauth(
    303 			sm, sm->eap_method_priv);
    304 	else
    305 		sm->eap_method_priv = sm->m->init(sm);
    306 
    307 	if (sm->eap_method_priv == NULL) {
    308 		struct eap_peer_config *config = eap_get_config(sm);
    309 		wpa_msg(sm->msg_ctx, MSG_INFO,
    310 			"EAP: Failed to initialize EAP method: vendor %u "
    311 			"method %u (%s)",
    312 			sm->reqVendor, method, sm->m->name);
    313 		sm->m = NULL;
    314 		sm->methodState = METHOD_NONE;
    315 		sm->selectedMethod = EAP_TYPE_NONE;
    316 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
    317 		    (config->pending_req_pin ||
    318 		     config->pending_req_passphrase)) {
    319 			/*
    320 			 * Return without generating Nak in order to allow
    321 			 * entering of PIN code or passphrase to retry the
    322 			 * current EAP packet.
    323 			 */
    324 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
    325 				   "request - skip Nak");
    326 			return;
    327 		}
    328 
    329 		goto nak;
    330 	}
    331 
    332 	sm->methodState = METHOD_INIT;
    333 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
    334 		"EAP vendor %u method %u (%s) selected",
    335 		sm->reqVendor, method, sm->m->name);
    336 	return;
    337 
    338 nak:
    339 	wpabuf_free(sm->eapRespData);
    340 	sm->eapRespData = NULL;
    341 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
    342 }
    343 
    344 
    345 /*
    346  * The method processing happens here. The request from the authenticator is
    347  * processed, and an appropriate response packet is built.
    348  */
    349 SM_STATE(EAP, METHOD)
    350 {
    351 	struct wpabuf *eapReqData;
    352 	struct eap_method_ret ret;
    353 	int min_len = 1;
    354 
    355 	SM_ENTRY(EAP, METHOD);
    356 	if (sm->m == NULL) {
    357 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
    358 		return;
    359 	}
    360 
    361 	eapReqData = eapol_get_eapReqData(sm);
    362 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
    363 		min_len = 0; /* LEAP uses EAP-Success without payload */
    364 	if (!eap_hdr_len_valid(eapReqData, min_len))
    365 		return;
    366 
    367 	/*
    368 	 * Get ignore, methodState, decision, allowNotifications, and
    369 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
    370 	 * process, and buildResp) in this state. These have been combined into
    371 	 * a single function call to m->process() in order to optimize EAP
    372 	 * method implementation interface a bit. These procedures are only
    373 	 * used from within this METHOD state, so there is no need to keep
    374 	 * these as separate C functions.
    375 	 *
    376 	 * The RFC 4137 procedures return values as follows:
    377 	 * ignore = m.check(eapReqData)
    378 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
    379 	 * eapRespData = m.buildResp(reqId)
    380 	 */
    381 	os_memset(&ret, 0, sizeof(ret));
    382 	ret.ignore = sm->ignore;
    383 	ret.methodState = sm->methodState;
    384 	ret.decision = sm->decision;
    385 	ret.allowNotifications = sm->allowNotifications;
    386 	wpabuf_free(sm->eapRespData);
    387 	sm->eapRespData = NULL;
    388 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
    389 					 eapReqData);
    390 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
    391 		   "methodState=%s decision=%s",
    392 		   ret.ignore ? "TRUE" : "FALSE",
    393 		   eap_sm_method_state_txt(ret.methodState),
    394 		   eap_sm_decision_txt(ret.decision));
    395 
    396 	sm->ignore = ret.ignore;
    397 	if (sm->ignore)
    398 		return;
    399 	sm->methodState = ret.methodState;
    400 	sm->decision = ret.decision;
    401 	sm->allowNotifications = ret.allowNotifications;
    402 
    403 	if (sm->m->isKeyAvailable && sm->m->getKey &&
    404 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
    405 		os_free(sm->eapKeyData);
    406 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
    407 					       &sm->eapKeyDataLen);
    408 		os_free(sm->eapSessionId);
    409 		sm->eapSessionId = NULL;
    410 		if (sm->m->getSessionId) {
    411 			sm->eapSessionId = sm->m->getSessionId(
    412 				sm, sm->eap_method_priv,
    413 				&sm->eapSessionIdLen);
    414 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
    415 				    sm->eapSessionId, sm->eapSessionIdLen);
    416 		}
    417 	}
    418 }
    419 
    420 
    421 /*
    422  * This state signals the lower layer that a response packet is ready to be
    423  * sent.
    424  */
    425 SM_STATE(EAP, SEND_RESPONSE)
    426 {
    427 	SM_ENTRY(EAP, SEND_RESPONSE);
    428 	wpabuf_free(sm->lastRespData);
    429 	if (sm->eapRespData) {
    430 		if (sm->workaround)
    431 			os_memcpy(sm->last_md5, sm->req_md5, 16);
    432 		sm->lastId = sm->reqId;
    433 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
    434 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
    435 	} else
    436 		sm->lastRespData = NULL;
    437 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    438 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    439 }
    440 
    441 
    442 /*
    443  * This state signals the lower layer that the request was discarded, and no
    444  * response packet will be sent at this time.
    445  */
    446 SM_STATE(EAP, DISCARD)
    447 {
    448 	SM_ENTRY(EAP, DISCARD);
    449 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    450 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    451 }
    452 
    453 
    454 /*
    455  * Handles requests for Identity method and builds a response.
    456  */
    457 SM_STATE(EAP, IDENTITY)
    458 {
    459 	const struct wpabuf *eapReqData;
    460 
    461 	SM_ENTRY(EAP, IDENTITY);
    462 	eapReqData = eapol_get_eapReqData(sm);
    463 	if (!eap_hdr_len_valid(eapReqData, 1))
    464 		return;
    465 	eap_sm_processIdentity(sm, eapReqData);
    466 	wpabuf_free(sm->eapRespData);
    467 	sm->eapRespData = NULL;
    468 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
    469 }
    470 
    471 
    472 /*
    473  * Handles requests for Notification method and builds a response.
    474  */
    475 SM_STATE(EAP, NOTIFICATION)
    476 {
    477 	const struct wpabuf *eapReqData;
    478 
    479 	SM_ENTRY(EAP, NOTIFICATION);
    480 	eapReqData = eapol_get_eapReqData(sm);
    481 	if (!eap_hdr_len_valid(eapReqData, 1))
    482 		return;
    483 	eap_sm_processNotify(sm, eapReqData);
    484 	wpabuf_free(sm->eapRespData);
    485 	sm->eapRespData = NULL;
    486 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
    487 }
    488 
    489 
    490 /*
    491  * This state retransmits the previous response packet.
    492  */
    493 SM_STATE(EAP, RETRANSMIT)
    494 {
    495 	SM_ENTRY(EAP, RETRANSMIT);
    496 	wpabuf_free(sm->eapRespData);
    497 	if (sm->lastRespData)
    498 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
    499 	else
    500 		sm->eapRespData = NULL;
    501 }
    502 
    503 
    504 /*
    505  * This state is entered in case of a successful completion of authentication
    506  * and state machine waits here until port is disabled or EAP authentication is
    507  * restarted.
    508  */
    509 SM_STATE(EAP, SUCCESS)
    510 {
    511 	SM_ENTRY(EAP, SUCCESS);
    512 	if (sm->eapKeyData != NULL)
    513 		sm->eapKeyAvailable = TRUE;
    514 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
    515 
    516 	/*
    517 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    518 	 * to avoid processing the same request twice when state machine is
    519 	 * initialized.
    520 	 */
    521 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    522 
    523 	/*
    524 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
    525 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
    526 	 * addition, either eapResp or eapNoResp is required to be set after
    527 	 * processing the received EAP frame.
    528 	 */
    529 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    530 
    531 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
    532 		"EAP authentication completed successfully");
    533 }
    534 
    535 
    536 /*
    537  * This state is entered in case of a failure and state machine waits here
    538  * until port is disabled or EAP authentication is restarted.
    539  */
    540 SM_STATE(EAP, FAILURE)
    541 {
    542 	SM_ENTRY(EAP, FAILURE);
    543 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
    544 
    545 	/*
    546 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    547 	 * to avoid processing the same request twice when state machine is
    548 	 * initialized.
    549 	 */
    550 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    551 
    552 	/*
    553 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
    554 	 * eapNoResp is required to be set after processing the received EAP
    555 	 * frame.
    556 	 */
    557 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    558 
    559 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
    560 		"EAP authentication failed");
    561 
    562 	sm->prev_failure = 1;
    563 }
    564 
    565 
    566 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
    567 {
    568 	/*
    569 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
    570 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
    571 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
    572 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
    573 	 *
    574 	 * Accept this kind of Id if EAP workarounds are enabled. These are
    575 	 * unauthenticated plaintext messages, so this should have minimal
    576 	 * security implications (bit easier to fake EAP-Success/Failure).
    577 	 */
    578 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
    579 			       reqId == ((lastId + 2) & 0xff))) {
    580 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
    581 			   "identifier field in EAP Success: "
    582 			   "reqId=%d lastId=%d (these are supposed to be "
    583 			   "same)", reqId, lastId);
    584 		return 1;
    585 	}
    586 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
    587 		   "lastId=%d", reqId, lastId);
    588 	return 0;
    589 }
    590 
    591 
    592 /*
    593  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
    594  */
    595 
    596 static void eap_peer_sm_step_idle(struct eap_sm *sm)
    597 {
    598 	/*
    599 	 * The first three transitions are from RFC 4137. The last two are
    600 	 * local additions to handle special cases with LEAP and PEAP server
    601 	 * not sending EAP-Success in some cases.
    602 	 */
    603 	if (eapol_get_bool(sm, EAPOL_eapReq))
    604 		SM_ENTER(EAP, RECEIVED);
    605 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
    606 		  sm->decision != DECISION_FAIL) ||
    607 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    608 		  sm->decision == DECISION_UNCOND_SUCC))
    609 		SM_ENTER(EAP, SUCCESS);
    610 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
    611 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    612 		  sm->decision != DECISION_UNCOND_SUCC) ||
    613 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
    614 		  sm->methodState != METHOD_CONT &&
    615 		  sm->decision == DECISION_FAIL))
    616 		SM_ENTER(EAP, FAILURE);
    617 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    618 		 sm->leap_done && sm->decision != DECISION_FAIL &&
    619 		 sm->methodState == METHOD_DONE)
    620 		SM_ENTER(EAP, SUCCESS);
    621 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
    622 		 sm->peap_done && sm->decision != DECISION_FAIL &&
    623 		 sm->methodState == METHOD_DONE)
    624 		SM_ENTER(EAP, SUCCESS);
    625 }
    626 
    627 
    628 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
    629 {
    630 	int duplicate;
    631 
    632 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
    633 	if (sm->workaround && duplicate &&
    634 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
    635 		/*
    636 		 * RFC 4137 uses (reqId == lastId) as the only verification for
    637 		 * duplicate EAP requests. However, this misses cases where the
    638 		 * AS is incorrectly using the same id again; and
    639 		 * unfortunately, such implementations exist. Use MD5 hash as
    640 		 * an extra verification for the packets being duplicate to
    641 		 * workaround these issues.
    642 		 */
    643 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
    644 			   "EAP packets were not identical");
    645 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
    646 			   "duplicate packet");
    647 		duplicate = 0;
    648 	}
    649 
    650 	return duplicate;
    651 }
    652 
    653 
    654 static void eap_peer_sm_step_received(struct eap_sm *sm)
    655 {
    656 	int duplicate = eap_peer_req_is_duplicate(sm);
    657 
    658 	/*
    659 	 * Two special cases below for LEAP are local additions to work around
    660 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
    661 	 * then swapped roles). Other transitions are based on RFC 4137.
    662 	 */
    663 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
    664 	    (sm->reqId == sm->lastId ||
    665 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
    666 		SM_ENTER(EAP, SUCCESS);
    667 	else if (sm->methodState != METHOD_CONT &&
    668 		 ((sm->rxFailure &&
    669 		   sm->decision != DECISION_UNCOND_SUCC) ||
    670 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
    671 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
    672 		    sm->methodState != METHOD_MAY_CONT))) &&
    673 		 (sm->reqId == sm->lastId ||
    674 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
    675 		SM_ENTER(EAP, FAILURE);
    676 	else if (sm->rxReq && duplicate)
    677 		SM_ENTER(EAP, RETRANSMIT);
    678 	else if (sm->rxReq && !duplicate &&
    679 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
    680 		 sm->allowNotifications)
    681 		SM_ENTER(EAP, NOTIFICATION);
    682 	else if (sm->rxReq && !duplicate &&
    683 		 sm->selectedMethod == EAP_TYPE_NONE &&
    684 		 sm->reqMethod == EAP_TYPE_IDENTITY)
    685 		SM_ENTER(EAP, IDENTITY);
    686 	else if (sm->rxReq && !duplicate &&
    687 		 sm->selectedMethod == EAP_TYPE_NONE &&
    688 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
    689 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
    690 		SM_ENTER(EAP, GET_METHOD);
    691 	else if (sm->rxReq && !duplicate &&
    692 		 sm->reqMethod == sm->selectedMethod &&
    693 		 sm->methodState != METHOD_DONE)
    694 		SM_ENTER(EAP, METHOD);
    695 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    696 		 (sm->rxSuccess || sm->rxResp))
    697 		SM_ENTER(EAP, METHOD);
    698 	else
    699 		SM_ENTER(EAP, DISCARD);
    700 }
    701 
    702 
    703 static void eap_peer_sm_step_local(struct eap_sm *sm)
    704 {
    705 	switch (sm->EAP_state) {
    706 	case EAP_INITIALIZE:
    707 		SM_ENTER(EAP, IDLE);
    708 		break;
    709 	case EAP_DISABLED:
    710 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
    711 		    !sm->force_disabled)
    712 			SM_ENTER(EAP, INITIALIZE);
    713 		break;
    714 	case EAP_IDLE:
    715 		eap_peer_sm_step_idle(sm);
    716 		break;
    717 	case EAP_RECEIVED:
    718 		eap_peer_sm_step_received(sm);
    719 		break;
    720 	case EAP_GET_METHOD:
    721 		if (sm->selectedMethod == sm->reqMethod)
    722 			SM_ENTER(EAP, METHOD);
    723 		else
    724 			SM_ENTER(EAP, SEND_RESPONSE);
    725 		break;
    726 	case EAP_METHOD:
    727 		if (sm->ignore)
    728 			SM_ENTER(EAP, DISCARD);
    729 		else
    730 			SM_ENTER(EAP, SEND_RESPONSE);
    731 		break;
    732 	case EAP_SEND_RESPONSE:
    733 		SM_ENTER(EAP, IDLE);
    734 		break;
    735 	case EAP_DISCARD:
    736 		SM_ENTER(EAP, IDLE);
    737 		break;
    738 	case EAP_IDENTITY:
    739 		SM_ENTER(EAP, SEND_RESPONSE);
    740 		break;
    741 	case EAP_NOTIFICATION:
    742 		SM_ENTER(EAP, SEND_RESPONSE);
    743 		break;
    744 	case EAP_RETRANSMIT:
    745 		SM_ENTER(EAP, SEND_RESPONSE);
    746 		break;
    747 	case EAP_SUCCESS:
    748 		break;
    749 	case EAP_FAILURE:
    750 		break;
    751 	}
    752 }
    753 
    754 
    755 SM_STEP(EAP)
    756 {
    757 	/* Global transitions */
    758 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
    759 	    eapol_get_bool(sm, EAPOL_portEnabled))
    760 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
    761 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
    762 		SM_ENTER_GLOBAL(EAP, DISABLED);
    763 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
    764 		/* RFC 4137 does not place any limit on number of EAP messages
    765 		 * in an authentication session. However, some error cases have
    766 		 * ended up in a state were EAP messages were sent between the
    767 		 * peer and server in a loop (e.g., TLS ACK frame in both
    768 		 * direction). Since this is quite undesired outcome, limit the
    769 		 * total number of EAP round-trips and abort authentication if
    770 		 * this limit is exceeded.
    771 		 */
    772 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
    773 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
    774 				"authentication rounds - abort",
    775 				EAP_MAX_AUTH_ROUNDS);
    776 			sm->num_rounds++;
    777 			SM_ENTER_GLOBAL(EAP, FAILURE);
    778 		}
    779 	} else {
    780 		/* Local transitions */
    781 		eap_peer_sm_step_local(sm);
    782 	}
    783 }
    784 
    785 
    786 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
    787 				  EapType method)
    788 {
    789 	if (!eap_allowed_method(sm, vendor, method)) {
    790 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
    791 			   "vendor %u method %u", vendor, method);
    792 		return FALSE;
    793 	}
    794 	if (eap_peer_get_eap_method(vendor, method))
    795 		return TRUE;
    796 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
    797 		   "vendor %u method %u", vendor, method);
    798 	return FALSE;
    799 }
    800 
    801 
    802 static struct wpabuf * eap_sm_build_expanded_nak(
    803 	struct eap_sm *sm, int id, const struct eap_method *methods,
    804 	size_t count)
    805 {
    806 	struct wpabuf *resp;
    807 	int found = 0;
    808 	const struct eap_method *m;
    809 
    810 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
    811 
    812 	/* RFC 3748 - 5.3.2: Expanded Nak */
    813 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
    814 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
    815 	if (resp == NULL)
    816 		return NULL;
    817 
    818 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    819 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
    820 
    821 	for (m = methods; m; m = m->next) {
    822 		if (sm->reqVendor == m->vendor &&
    823 		    sm->reqVendorMethod == m->method)
    824 			continue; /* do not allow the current method again */
    825 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    826 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
    827 				   "vendor=%u method=%u",
    828 				   m->vendor, m->method);
    829 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    830 			wpabuf_put_be24(resp, m->vendor);
    831 			wpabuf_put_be32(resp, m->method);
    832 
    833 			found++;
    834 		}
    835 	}
    836 	if (!found) {
    837 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
    838 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    839 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    840 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
    841 	}
    842 
    843 	eap_update_len(resp);
    844 
    845 	return resp;
    846 }
    847 
    848 
    849 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
    850 {
    851 	struct wpabuf *resp;
    852 	u8 *start;
    853 	int found = 0, expanded_found = 0;
    854 	size_t count;
    855 	const struct eap_method *methods, *m;
    856 
    857 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
    858 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
    859 		   sm->reqVendor, sm->reqVendorMethod);
    860 	methods = eap_peer_get_methods(&count);
    861 	if (methods == NULL)
    862 		return NULL;
    863 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    864 		return eap_sm_build_expanded_nak(sm, id, methods, count);
    865 
    866 	/* RFC 3748 - 5.3.1: Legacy Nak */
    867 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
    868 			     sizeof(struct eap_hdr) + 1 + count + 1,
    869 			     EAP_CODE_RESPONSE, id);
    870 	if (resp == NULL)
    871 		return NULL;
    872 
    873 	start = wpabuf_put(resp, 0);
    874 	for (m = methods; m; m = m->next) {
    875 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
    876 			continue; /* do not allow the current method again */
    877 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    878 			if (m->vendor != EAP_VENDOR_IETF) {
    879 				if (expanded_found)
    880 					continue;
    881 				expanded_found = 1;
    882 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    883 			} else
    884 				wpabuf_put_u8(resp, m->method);
    885 			found++;
    886 		}
    887 	}
    888 	if (!found)
    889 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
    890 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
    891 
    892 	eap_update_len(resp);
    893 
    894 	return resp;
    895 }
    896 
    897 
    898 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
    899 {
    900 	const u8 *pos;
    901 	size_t msg_len;
    902 
    903 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
    904 		"EAP authentication started");
    905 	eap_notify_status(sm, "started", "");
    906 
    907 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
    908 			       &msg_len);
    909 	if (pos == NULL)
    910 		return;
    911 
    912 	/*
    913 	 * RFC 3748 - 5.1: Identity
    914 	 * Data field may contain a displayable message in UTF-8. If this
    915 	 * includes NUL-character, only the data before that should be
    916 	 * displayed. Some EAP implementasitons may piggy-back additional
    917 	 * options after the NUL.
    918 	 */
    919 	/* TODO: could save displayable message so that it can be shown to the
    920 	 * user in case of interaction is required */
    921 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
    922 			  pos, msg_len);
    923 }
    924 
    925 
    926 #ifdef PCSC_FUNCS
    927 
    928 /*
    929  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
    930  * include MNC length field.
    931  */
    932 static int mnc_len_from_imsi(const char *imsi)
    933 {
    934 	char mcc_str[4];
    935 	unsigned int mcc;
    936 
    937 	os_memcpy(mcc_str, imsi, 3);
    938 	mcc_str[3] = '\0';
    939 	mcc = atoi(mcc_str);
    940 
    941 	if (mcc == 228)
    942 		return 2; /* Networks in Switzerland use 2-digit MNC */
    943 	if (mcc == 244)
    944 		return 2; /* Networks in Finland use 2-digit MNC */
    945 
    946 	return -1;
    947 }
    948 
    949 
    950 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
    951 				    size_t max_len, size_t *imsi_len)
    952 {
    953 	int mnc_len;
    954 	char *pos, mnc[4];
    955 
    956 	if (*imsi_len + 36 > max_len) {
    957 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
    958 		return -1;
    959 	}
    960 
    961 	/* MNC (2 or 3 digits) */
    962 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
    963 	if (mnc_len < 0)
    964 		mnc_len = mnc_len_from_imsi(imsi);
    965 	if (mnc_len < 0) {
    966 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
    967 			   "assuming 3");
    968 		mnc_len = 3;
    969 	}
    970 
    971 	if (mnc_len == 2) {
    972 		mnc[0] = '0';
    973 		mnc[1] = imsi[3];
    974 		mnc[2] = imsi[4];
    975 	} else if (mnc_len == 3) {
    976 		mnc[0] = imsi[3];
    977 		mnc[1] = imsi[4];
    978 		mnc[2] = imsi[5];
    979 	}
    980 	mnc[3] = '\0';
    981 
    982 	pos = imsi + *imsi_len;
    983 	pos += os_snprintf(pos, imsi + max_len - pos,
    984 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
    985 			   mnc, imsi[0], imsi[1], imsi[2]);
    986 	*imsi_len = pos - imsi;
    987 
    988 	return 0;
    989 }
    990 
    991 
    992 static int eap_sm_imsi_identity(struct eap_sm *sm,
    993 				struct eap_peer_config *conf)
    994 {
    995 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
    996 	char imsi[100];
    997 	size_t imsi_len;
    998 	struct eap_method_type *m = conf->eap_methods;
    999 	int i;
   1000 
   1001 	imsi_len = sizeof(imsi);
   1002 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
   1003 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
   1004 		return -1;
   1005 	}
   1006 
   1007 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
   1008 
   1009 	if (imsi_len < 7) {
   1010 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
   1011 		return -1;
   1012 	}
   1013 
   1014 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
   1015 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
   1016 		return -1;
   1017 	}
   1018 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
   1019 
   1020 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
   1021 			  m[i].method != EAP_TYPE_NONE); i++) {
   1022 		if (m[i].vendor == EAP_VENDOR_IETF &&
   1023 		    m[i].method == EAP_TYPE_AKA_PRIME) {
   1024 			method = EAP_SM_AKA_PRIME;
   1025 			break;
   1026 		}
   1027 
   1028 		if (m[i].vendor == EAP_VENDOR_IETF &&
   1029 		    m[i].method == EAP_TYPE_AKA) {
   1030 			method = EAP_SM_AKA;
   1031 			break;
   1032 		}
   1033 	}
   1034 
   1035 	os_free(conf->identity);
   1036 	conf->identity = os_malloc(1 + imsi_len);
   1037 	if (conf->identity == NULL) {
   1038 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
   1039 			   "IMSI-based identity");
   1040 		return -1;
   1041 	}
   1042 
   1043 	switch (method) {
   1044 	case EAP_SM_SIM:
   1045 		conf->identity[0] = '1';
   1046 		break;
   1047 	case EAP_SM_AKA:
   1048 		conf->identity[0] = '0';
   1049 		break;
   1050 	case EAP_SM_AKA_PRIME:
   1051 		conf->identity[0] = '6';
   1052 		break;
   1053 	}
   1054 	os_memcpy(conf->identity + 1, imsi, imsi_len);
   1055 	conf->identity_len = 1 + imsi_len;
   1056 
   1057 	return 0;
   1058 }
   1059 
   1060 #endif /* PCSC_FUNCS */
   1061 
   1062 
   1063 static int eap_sm_set_scard_pin(struct eap_sm *sm,
   1064 				struct eap_peer_config *conf)
   1065 {
   1066 #ifdef PCSC_FUNCS
   1067 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
   1068 		/*
   1069 		 * Make sure the same PIN is not tried again in order to avoid
   1070 		 * blocking SIM.
   1071 		 */
   1072 		os_free(conf->pin);
   1073 		conf->pin = NULL;
   1074 
   1075 		wpa_printf(MSG_WARNING, "PIN validation failed");
   1076 		eap_sm_request_pin(sm);
   1077 		return -1;
   1078 	}
   1079 	return 0;
   1080 #else /* PCSC_FUNCS */
   1081 	return -1;
   1082 #endif /* PCSC_FUNCS */
   1083 }
   1084 
   1085 static int eap_sm_get_scard_identity(struct eap_sm *sm,
   1086 				     struct eap_peer_config *conf)
   1087 {
   1088 #ifdef PCSC_FUNCS
   1089 	if (eap_sm_set_scard_pin(sm, conf))
   1090 		return -1;
   1091 
   1092 	return eap_sm_imsi_identity(sm, conf);
   1093 #else /* PCSC_FUNCS */
   1094 	return -1;
   1095 #endif /* PCSC_FUNCS */
   1096 }
   1097 
   1098 
   1099 /**
   1100  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
   1101  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1102  * @id: EAP identifier for the packet
   1103  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
   1104  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
   1105  * failure
   1106  *
   1107  * This function allocates and builds an EAP-Identity/Response packet for the
   1108  * current network. The caller is responsible for freeing the returned data.
   1109  */
   1110 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
   1111 {
   1112 	struct eap_peer_config *config = eap_get_config(sm);
   1113 	struct wpabuf *resp;
   1114 	const u8 *identity;
   1115 	size_t identity_len;
   1116 
   1117 	if (config == NULL) {
   1118 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
   1119 			   "was not available");
   1120 		return NULL;
   1121 	}
   1122 
   1123 	if (sm->m && sm->m->get_identity &&
   1124 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
   1125 					    &identity_len)) != NULL) {
   1126 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
   1127 				  "identity", identity, identity_len);
   1128 	} else if (!encrypted && config->anonymous_identity) {
   1129 		identity = config->anonymous_identity;
   1130 		identity_len = config->anonymous_identity_len;
   1131 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
   1132 				  identity, identity_len);
   1133 	} else {
   1134 		identity = config->identity;
   1135 		identity_len = config->identity_len;
   1136 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
   1137 				  identity, identity_len);
   1138 	}
   1139 
   1140 	if (identity == NULL) {
   1141 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
   1142 			   "configuration was not available");
   1143 		if (config->pcsc) {
   1144 			if (eap_sm_get_scard_identity(sm, config) < 0)
   1145 				return NULL;
   1146 			identity = config->identity;
   1147 			identity_len = config->identity_len;
   1148 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
   1149 					  "IMSI", identity, identity_len);
   1150 		} else {
   1151 			eap_sm_request_identity(sm);
   1152 			return NULL;
   1153 		}
   1154 	} else if (config->pcsc) {
   1155 		if (eap_sm_set_scard_pin(sm, config) < 0)
   1156 			return NULL;
   1157 	}
   1158 
   1159 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
   1160 			     EAP_CODE_RESPONSE, id);
   1161 	if (resp == NULL)
   1162 		return NULL;
   1163 
   1164 	wpabuf_put_data(resp, identity, identity_len);
   1165 
   1166 	return resp;
   1167 }
   1168 
   1169 
   1170 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
   1171 {
   1172 	const u8 *pos;
   1173 	char *msg;
   1174 	size_t i, msg_len;
   1175 
   1176 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
   1177 			       &msg_len);
   1178 	if (pos == NULL)
   1179 		return;
   1180 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
   1181 			  pos, msg_len);
   1182 
   1183 	msg = os_malloc(msg_len + 1);
   1184 	if (msg == NULL)
   1185 		return;
   1186 	for (i = 0; i < msg_len; i++)
   1187 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
   1188 	msg[msg_len] = '\0';
   1189 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
   1190 		WPA_EVENT_EAP_NOTIFICATION, msg);
   1191 	os_free(msg);
   1192 }
   1193 
   1194 
   1195 static struct wpabuf * eap_sm_buildNotify(int id)
   1196 {
   1197 	struct wpabuf *resp;
   1198 
   1199 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
   1200 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
   1201 			     EAP_CODE_RESPONSE, id);
   1202 	if (resp == NULL)
   1203 		return NULL;
   1204 
   1205 	return resp;
   1206 }
   1207 
   1208 
   1209 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
   1210 {
   1211 	const struct eap_hdr *hdr;
   1212 	size_t plen;
   1213 	const u8 *pos;
   1214 
   1215 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
   1216 	sm->reqId = 0;
   1217 	sm->reqMethod = EAP_TYPE_NONE;
   1218 	sm->reqVendor = EAP_VENDOR_IETF;
   1219 	sm->reqVendorMethod = EAP_TYPE_NONE;
   1220 
   1221 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
   1222 		return;
   1223 
   1224 	hdr = wpabuf_head(req);
   1225 	plen = be_to_host16(hdr->length);
   1226 	if (plen > wpabuf_len(req)) {
   1227 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
   1228 			   "(len=%lu plen=%lu)",
   1229 			   (unsigned long) wpabuf_len(req),
   1230 			   (unsigned long) plen);
   1231 		return;
   1232 	}
   1233 
   1234 	sm->reqId = hdr->identifier;
   1235 
   1236 	if (sm->workaround) {
   1237 		const u8 *addr[1];
   1238 		addr[0] = wpabuf_head(req);
   1239 		md5_vector(1, addr, &plen, sm->req_md5);
   1240 	}
   1241 
   1242 	switch (hdr->code) {
   1243 	case EAP_CODE_REQUEST:
   1244 		if (plen < sizeof(*hdr) + 1) {
   1245 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
   1246 				   "no Type field");
   1247 			return;
   1248 		}
   1249 		sm->rxReq = TRUE;
   1250 		pos = (const u8 *) (hdr + 1);
   1251 		sm->reqMethod = *pos++;
   1252 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
   1253 			if (plen < sizeof(*hdr) + 8) {
   1254 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
   1255 					   "expanded EAP-Packet (plen=%lu)",
   1256 					   (unsigned long) plen);
   1257 				return;
   1258 			}
   1259 			sm->reqVendor = WPA_GET_BE24(pos);
   1260 			pos += 3;
   1261 			sm->reqVendorMethod = WPA_GET_BE32(pos);
   1262 		}
   1263 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
   1264 			   "method=%u vendor=%u vendorMethod=%u",
   1265 			   sm->reqId, sm->reqMethod, sm->reqVendor,
   1266 			   sm->reqVendorMethod);
   1267 		break;
   1268 	case EAP_CODE_RESPONSE:
   1269 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
   1270 			/*
   1271 			 * LEAP differs from RFC 4137 by using reversed roles
   1272 			 * for mutual authentication and because of this, we
   1273 			 * need to accept EAP-Response frames if LEAP is used.
   1274 			 */
   1275 			if (plen < sizeof(*hdr) + 1) {
   1276 				wpa_printf(MSG_DEBUG, "EAP: Too short "
   1277 					   "EAP-Response - no Type field");
   1278 				return;
   1279 			}
   1280 			sm->rxResp = TRUE;
   1281 			pos = (const u8 *) (hdr + 1);
   1282 			sm->reqMethod = *pos;
   1283 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
   1284 				   "LEAP method=%d id=%d",
   1285 				   sm->reqMethod, sm->reqId);
   1286 			break;
   1287 		}
   1288 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
   1289 		break;
   1290 	case EAP_CODE_SUCCESS:
   1291 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
   1292 		eap_notify_status(sm, "completion", "success");
   1293 		sm->rxSuccess = TRUE;
   1294 		break;
   1295 	case EAP_CODE_FAILURE:
   1296 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
   1297 		eap_notify_status(sm, "completion", "failure");
   1298 		sm->rxFailure = TRUE;
   1299 		break;
   1300 	default:
   1301 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
   1302 			   "code %d", hdr->code);
   1303 		break;
   1304 	}
   1305 }
   1306 
   1307 
   1308 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
   1309 				  union tls_event_data *data)
   1310 {
   1311 	struct eap_sm *sm = ctx;
   1312 	char *hash_hex = NULL;
   1313 
   1314 	switch (ev) {
   1315 	case TLS_CERT_CHAIN_SUCCESS:
   1316 		eap_notify_status(sm, "remote certificate verification",
   1317 				  "success");
   1318 		break;
   1319 	case TLS_CERT_CHAIN_FAILURE:
   1320 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
   1321 			"reason=%d depth=%d subject='%s' err='%s'",
   1322 			data->cert_fail.reason,
   1323 			data->cert_fail.depth,
   1324 			data->cert_fail.subject,
   1325 			data->cert_fail.reason_txt);
   1326 		eap_notify_status(sm, "remote certificate verification",
   1327 				  data->cert_fail.reason_txt);
   1328 		break;
   1329 	case TLS_PEER_CERTIFICATE:
   1330 		if (!sm->eapol_cb->notify_cert)
   1331 			break;
   1332 
   1333 		if (data->peer_cert.hash) {
   1334 			size_t len = data->peer_cert.hash_len * 2 + 1;
   1335 			hash_hex = os_malloc(len);
   1336 			if (hash_hex) {
   1337 				wpa_snprintf_hex(hash_hex, len,
   1338 						 data->peer_cert.hash,
   1339 						 data->peer_cert.hash_len);
   1340 			}
   1341 		}
   1342 
   1343 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
   1344 					  data->peer_cert.depth,
   1345 					  data->peer_cert.subject,
   1346 					  hash_hex, data->peer_cert.cert);
   1347 		break;
   1348 	case TLS_ALERT:
   1349 		if (data->alert.is_local)
   1350 			eap_notify_status(sm, "local TLS alert",
   1351 					  data->alert.description);
   1352 		else
   1353 			eap_notify_status(sm, "remote TLS alert",
   1354 					  data->alert.description);
   1355 		break;
   1356 	}
   1357 
   1358 	os_free(hash_hex);
   1359 }
   1360 
   1361 
   1362 /**
   1363  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
   1364  * @eapol_ctx: Context data to be used with eapol_cb calls
   1365  * @eapol_cb: Pointer to EAPOL callback functions
   1366  * @msg_ctx: Context data for wpa_msg() calls
   1367  * @conf: EAP configuration
   1368  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
   1369  *
   1370  * This function allocates and initializes an EAP state machine. In addition,
   1371  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
   1372  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
   1373  * state machine. Consequently, the caller must make sure that this data
   1374  * structure remains alive while the EAP state machine is active.
   1375  */
   1376 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
   1377 				 struct eapol_callbacks *eapol_cb,
   1378 				 void *msg_ctx, struct eap_config *conf)
   1379 {
   1380 	struct eap_sm *sm;
   1381 	struct tls_config tlsconf;
   1382 
   1383 	sm = os_zalloc(sizeof(*sm));
   1384 	if (sm == NULL)
   1385 		return NULL;
   1386 	sm->eapol_ctx = eapol_ctx;
   1387 	sm->eapol_cb = eapol_cb;
   1388 	sm->msg_ctx = msg_ctx;
   1389 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
   1390 	sm->wps = conf->wps;
   1391 
   1392 	os_memset(&tlsconf, 0, sizeof(tlsconf));
   1393 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
   1394 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
   1395 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
   1396 #ifdef CONFIG_FIPS
   1397 	tlsconf.fips_mode = 1;
   1398 #endif /* CONFIG_FIPS */
   1399 	tlsconf.event_cb = eap_peer_sm_tls_event;
   1400 	tlsconf.cb_ctx = sm;
   1401 	tlsconf.cert_in_cb = conf->cert_in_cb;
   1402 	sm->ssl_ctx = tls_init(&tlsconf);
   1403 	if (sm->ssl_ctx == NULL) {
   1404 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
   1405 			   "context.");
   1406 		os_free(sm);
   1407 		return NULL;
   1408 	}
   1409 
   1410 	sm->ssl_ctx2 = tls_init(&tlsconf);
   1411 	if (sm->ssl_ctx2 == NULL) {
   1412 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
   1413 			   "context (2).");
   1414 		/* Run without separate TLS context within TLS tunnel */
   1415 	}
   1416 
   1417 	return sm;
   1418 }
   1419 
   1420 
   1421 /**
   1422  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
   1423  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1424  *
   1425  * This function deinitializes EAP state machine and frees all allocated
   1426  * resources.
   1427  */
   1428 void eap_peer_sm_deinit(struct eap_sm *sm)
   1429 {
   1430 	if (sm == NULL)
   1431 		return;
   1432 	eap_deinit_prev_method(sm, "EAP deinit");
   1433 	eap_sm_abort(sm);
   1434 	if (sm->ssl_ctx2)
   1435 		tls_deinit(sm->ssl_ctx2);
   1436 	tls_deinit(sm->ssl_ctx);
   1437 	os_free(sm);
   1438 }
   1439 
   1440 
   1441 /**
   1442  * eap_peer_sm_step - Step EAP peer state machine
   1443  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1444  * Returns: 1 if EAP state was changed or 0 if not
   1445  *
   1446  * This function advances EAP state machine to a new state to match with the
   1447  * current variables. This should be called whenever variables used by the EAP
   1448  * state machine have changed.
   1449  */
   1450 int eap_peer_sm_step(struct eap_sm *sm)
   1451 {
   1452 	int res = 0;
   1453 	do {
   1454 		sm->changed = FALSE;
   1455 		SM_STEP_RUN(EAP);
   1456 		if (sm->changed)
   1457 			res = 1;
   1458 	} while (sm->changed);
   1459 	return res;
   1460 }
   1461 
   1462 
   1463 /**
   1464  * eap_sm_abort - Abort EAP authentication
   1465  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1466  *
   1467  * Release system resources that have been allocated for the authentication
   1468  * session without fully deinitializing the EAP state machine.
   1469  */
   1470 void eap_sm_abort(struct eap_sm *sm)
   1471 {
   1472 	wpabuf_free(sm->lastRespData);
   1473 	sm->lastRespData = NULL;
   1474 	wpabuf_free(sm->eapRespData);
   1475 	sm->eapRespData = NULL;
   1476 	os_free(sm->eapKeyData);
   1477 	sm->eapKeyData = NULL;
   1478 	os_free(sm->eapSessionId);
   1479 	sm->eapSessionId = NULL;
   1480 
   1481 	/* This is not clearly specified in the EAP statemachines draft, but
   1482 	 * it seems necessary to make sure that some of the EAPOL variables get
   1483 	 * cleared for the next authentication. */
   1484 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
   1485 }
   1486 
   1487 
   1488 #ifdef CONFIG_CTRL_IFACE
   1489 static const char * eap_sm_state_txt(int state)
   1490 {
   1491 	switch (state) {
   1492 	case EAP_INITIALIZE:
   1493 		return "INITIALIZE";
   1494 	case EAP_DISABLED:
   1495 		return "DISABLED";
   1496 	case EAP_IDLE:
   1497 		return "IDLE";
   1498 	case EAP_RECEIVED:
   1499 		return "RECEIVED";
   1500 	case EAP_GET_METHOD:
   1501 		return "GET_METHOD";
   1502 	case EAP_METHOD:
   1503 		return "METHOD";
   1504 	case EAP_SEND_RESPONSE:
   1505 		return "SEND_RESPONSE";
   1506 	case EAP_DISCARD:
   1507 		return "DISCARD";
   1508 	case EAP_IDENTITY:
   1509 		return "IDENTITY";
   1510 	case EAP_NOTIFICATION:
   1511 		return "NOTIFICATION";
   1512 	case EAP_RETRANSMIT:
   1513 		return "RETRANSMIT";
   1514 	case EAP_SUCCESS:
   1515 		return "SUCCESS";
   1516 	case EAP_FAILURE:
   1517 		return "FAILURE";
   1518 	default:
   1519 		return "UNKNOWN";
   1520 	}
   1521 }
   1522 #endif /* CONFIG_CTRL_IFACE */
   1523 
   1524 
   1525 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1526 static const char * eap_sm_method_state_txt(EapMethodState state)
   1527 {
   1528 	switch (state) {
   1529 	case METHOD_NONE:
   1530 		return "NONE";
   1531 	case METHOD_INIT:
   1532 		return "INIT";
   1533 	case METHOD_CONT:
   1534 		return "CONT";
   1535 	case METHOD_MAY_CONT:
   1536 		return "MAY_CONT";
   1537 	case METHOD_DONE:
   1538 		return "DONE";
   1539 	default:
   1540 		return "UNKNOWN";
   1541 	}
   1542 }
   1543 
   1544 
   1545 static const char * eap_sm_decision_txt(EapDecision decision)
   1546 {
   1547 	switch (decision) {
   1548 	case DECISION_FAIL:
   1549 		return "FAIL";
   1550 	case DECISION_COND_SUCC:
   1551 		return "COND_SUCC";
   1552 	case DECISION_UNCOND_SUCC:
   1553 		return "UNCOND_SUCC";
   1554 	default:
   1555 		return "UNKNOWN";
   1556 	}
   1557 }
   1558 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1559 
   1560 
   1561 #ifdef CONFIG_CTRL_IFACE
   1562 
   1563 /**
   1564  * eap_sm_get_status - Get EAP state machine status
   1565  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1566  * @buf: Buffer for status information
   1567  * @buflen: Maximum buffer length
   1568  * @verbose: Whether to include verbose status information
   1569  * Returns: Number of bytes written to buf.
   1570  *
   1571  * Query EAP state machine for status information. This function fills in a
   1572  * text area with current status information from the EAPOL state machine. If
   1573  * the buffer (buf) is not large enough, status information will be truncated
   1574  * to fit the buffer.
   1575  */
   1576 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
   1577 {
   1578 	int len, ret;
   1579 
   1580 	if (sm == NULL)
   1581 		return 0;
   1582 
   1583 	len = os_snprintf(buf, buflen,
   1584 			  "EAP state=%s\n",
   1585 			  eap_sm_state_txt(sm->EAP_state));
   1586 	if (len < 0 || (size_t) len >= buflen)
   1587 		return 0;
   1588 
   1589 	if (sm->selectedMethod != EAP_TYPE_NONE) {
   1590 		const char *name;
   1591 		if (sm->m) {
   1592 			name = sm->m->name;
   1593 		} else {
   1594 			const struct eap_method *m =
   1595 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
   1596 							sm->selectedMethod);
   1597 			if (m)
   1598 				name = m->name;
   1599 			else
   1600 				name = "?";
   1601 		}
   1602 		ret = os_snprintf(buf + len, buflen - len,
   1603 				  "selectedMethod=%d (EAP-%s)\n",
   1604 				  sm->selectedMethod, name);
   1605 		if (ret < 0 || (size_t) ret >= buflen - len)
   1606 			return len;
   1607 		len += ret;
   1608 
   1609 		if (sm->m && sm->m->get_status) {
   1610 			len += sm->m->get_status(sm, sm->eap_method_priv,
   1611 						 buf + len, buflen - len,
   1612 						 verbose);
   1613 		}
   1614 	}
   1615 
   1616 	if (verbose) {
   1617 		ret = os_snprintf(buf + len, buflen - len,
   1618 				  "reqMethod=%d\n"
   1619 				  "methodState=%s\n"
   1620 				  "decision=%s\n"
   1621 				  "ClientTimeout=%d\n",
   1622 				  sm->reqMethod,
   1623 				  eap_sm_method_state_txt(sm->methodState),
   1624 				  eap_sm_decision_txt(sm->decision),
   1625 				  sm->ClientTimeout);
   1626 		if (ret < 0 || (size_t) ret >= buflen - len)
   1627 			return len;
   1628 		len += ret;
   1629 	}
   1630 
   1631 	return len;
   1632 }
   1633 #endif /* CONFIG_CTRL_IFACE */
   1634 
   1635 
   1636 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1637 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
   1638 			   const char *msg, size_t msglen)
   1639 {
   1640 	struct eap_peer_config *config;
   1641 	char *txt = NULL, *tmp;
   1642 
   1643 	if (sm == NULL)
   1644 		return;
   1645 	config = eap_get_config(sm);
   1646 	if (config == NULL)
   1647 		return;
   1648 
   1649 	switch (field) {
   1650 	case WPA_CTRL_REQ_EAP_IDENTITY:
   1651 		config->pending_req_identity++;
   1652 		break;
   1653 	case WPA_CTRL_REQ_EAP_PASSWORD:
   1654 		config->pending_req_password++;
   1655 		break;
   1656 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
   1657 		config->pending_req_new_password++;
   1658 		break;
   1659 	case WPA_CTRL_REQ_EAP_PIN:
   1660 		config->pending_req_pin++;
   1661 		break;
   1662 	case WPA_CTRL_REQ_EAP_OTP:
   1663 		if (msg) {
   1664 			tmp = os_malloc(msglen + 3);
   1665 			if (tmp == NULL)
   1666 				return;
   1667 			tmp[0] = '[';
   1668 			os_memcpy(tmp + 1, msg, msglen);
   1669 			tmp[msglen + 1] = ']';
   1670 			tmp[msglen + 2] = '\0';
   1671 			txt = tmp;
   1672 			os_free(config->pending_req_otp);
   1673 			config->pending_req_otp = tmp;
   1674 			config->pending_req_otp_len = msglen + 3;
   1675 		} else {
   1676 			if (config->pending_req_otp == NULL)
   1677 				return;
   1678 			txt = config->pending_req_otp;
   1679 		}
   1680 		break;
   1681 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
   1682 		config->pending_req_passphrase++;
   1683 		break;
   1684 	default:
   1685 		return;
   1686 	}
   1687 
   1688 	if (sm->eapol_cb->eap_param_needed)
   1689 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
   1690 }
   1691 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1692 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
   1693 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1694 
   1695 const char * eap_sm_get_method_name(struct eap_sm *sm)
   1696 {
   1697 	if (sm->m == NULL)
   1698 		return "UNKNOWN";
   1699 	return sm->m->name;
   1700 }
   1701 
   1702 
   1703 /**
   1704  * eap_sm_request_identity - Request identity from user (ctrl_iface)
   1705  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1706  *
   1707  * EAP methods can call this function to request identity information for the
   1708  * current network. This is normally called when the identity is not included
   1709  * in the network configuration. The request will be sent to monitor programs
   1710  * through the control interface.
   1711  */
   1712 void eap_sm_request_identity(struct eap_sm *sm)
   1713 {
   1714 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
   1715 }
   1716 
   1717 
   1718 /**
   1719  * eap_sm_request_password - Request password from user (ctrl_iface)
   1720  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1721  *
   1722  * EAP methods can call this function to request password information for the
   1723  * current network. This is normally called when the password is not included
   1724  * in the network configuration. The request will be sent to monitor programs
   1725  * through the control interface.
   1726  */
   1727 void eap_sm_request_password(struct eap_sm *sm)
   1728 {
   1729 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
   1730 }
   1731 
   1732 
   1733 /**
   1734  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
   1735  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1736  *
   1737  * EAP methods can call this function to request new password information for
   1738  * the current network. This is normally called when the EAP method indicates
   1739  * that the current password has expired and password change is required. The
   1740  * request will be sent to monitor programs through the control interface.
   1741  */
   1742 void eap_sm_request_new_password(struct eap_sm *sm)
   1743 {
   1744 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
   1745 }
   1746 
   1747 
   1748 /**
   1749  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
   1750  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1751  *
   1752  * EAP methods can call this function to request SIM or smart card PIN
   1753  * information for the current network. This is normally called when the PIN is
   1754  * not included in the network configuration. The request will be sent to
   1755  * monitor programs through the control interface.
   1756  */
   1757 void eap_sm_request_pin(struct eap_sm *sm)
   1758 {
   1759 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
   1760 }
   1761 
   1762 
   1763 /**
   1764  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
   1765  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1766  * @msg: Message to be displayed to the user when asking for OTP
   1767  * @msg_len: Length of the user displayable message
   1768  *
   1769  * EAP methods can call this function to request open time password (OTP) for
   1770  * the current network. The request will be sent to monitor programs through
   1771  * the control interface.
   1772  */
   1773 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
   1774 {
   1775 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
   1776 }
   1777 
   1778 
   1779 /**
   1780  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
   1781  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1782  *
   1783  * EAP methods can call this function to request passphrase for a private key
   1784  * for the current network. This is normally called when the passphrase is not
   1785  * included in the network configuration. The request will be sent to monitor
   1786  * programs through the control interface.
   1787  */
   1788 void eap_sm_request_passphrase(struct eap_sm *sm)
   1789 {
   1790 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
   1791 }
   1792 
   1793 
   1794 /**
   1795  * eap_sm_notify_ctrl_attached - Notification of attached monitor
   1796  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1797  *
   1798  * Notify EAP state machines that a monitor was attached to the control
   1799  * interface to trigger re-sending of pending requests for user input.
   1800  */
   1801 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
   1802 {
   1803 	struct eap_peer_config *config = eap_get_config(sm);
   1804 
   1805 	if (config == NULL)
   1806 		return;
   1807 
   1808 	/* Re-send any pending requests for user data since a new control
   1809 	 * interface was added. This handles cases where the EAP authentication
   1810 	 * starts immediately after system startup when the user interface is
   1811 	 * not yet running. */
   1812 	if (config->pending_req_identity)
   1813 		eap_sm_request_identity(sm);
   1814 	if (config->pending_req_password)
   1815 		eap_sm_request_password(sm);
   1816 	if (config->pending_req_new_password)
   1817 		eap_sm_request_new_password(sm);
   1818 	if (config->pending_req_otp)
   1819 		eap_sm_request_otp(sm, NULL, 0);
   1820 	if (config->pending_req_pin)
   1821 		eap_sm_request_pin(sm);
   1822 	if (config->pending_req_passphrase)
   1823 		eap_sm_request_passphrase(sm);
   1824 }
   1825 
   1826 
   1827 static int eap_allowed_phase2_type(int vendor, int type)
   1828 {
   1829 	if (vendor != EAP_VENDOR_IETF)
   1830 		return 0;
   1831 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
   1832 		type != EAP_TYPE_FAST;
   1833 }
   1834 
   1835 
   1836 /**
   1837  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
   1838  * @name: EAP method name, e.g., MD5
   1839  * @vendor: Buffer for returning EAP Vendor-Id
   1840  * Returns: EAP method type or %EAP_TYPE_NONE if not found
   1841  *
   1842  * This function maps EAP type names into EAP type numbers that are allowed for
   1843  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
   1844  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
   1845  */
   1846 u32 eap_get_phase2_type(const char *name, int *vendor)
   1847 {
   1848 	int v;
   1849 	u8 type = eap_peer_get_type(name, &v);
   1850 	if (eap_allowed_phase2_type(v, type)) {
   1851 		*vendor = v;
   1852 		return type;
   1853 	}
   1854 	*vendor = EAP_VENDOR_IETF;
   1855 	return EAP_TYPE_NONE;
   1856 }
   1857 
   1858 
   1859 /**
   1860  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
   1861  * @config: Pointer to a network configuration
   1862  * @count: Pointer to a variable to be filled with number of returned EAP types
   1863  * Returns: Pointer to allocated type list or %NULL on failure
   1864  *
   1865  * This function generates an array of allowed EAP phase 2 (tunneled) types for
   1866  * the given network configuration.
   1867  */
   1868 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
   1869 					      size_t *count)
   1870 {
   1871 	struct eap_method_type *buf;
   1872 	u32 method;
   1873 	int vendor;
   1874 	size_t mcount;
   1875 	const struct eap_method *methods, *m;
   1876 
   1877 	methods = eap_peer_get_methods(&mcount);
   1878 	if (methods == NULL)
   1879 		return NULL;
   1880 	*count = 0;
   1881 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
   1882 	if (buf == NULL)
   1883 		return NULL;
   1884 
   1885 	for (m = methods; m; m = m->next) {
   1886 		vendor = m->vendor;
   1887 		method = m->method;
   1888 		if (eap_allowed_phase2_type(vendor, method)) {
   1889 			if (vendor == EAP_VENDOR_IETF &&
   1890 			    method == EAP_TYPE_TLS && config &&
   1891 			    config->private_key2 == NULL)
   1892 				continue;
   1893 			buf[*count].vendor = vendor;
   1894 			buf[*count].method = method;
   1895 			(*count)++;
   1896 		}
   1897 	}
   1898 
   1899 	return buf;
   1900 }
   1901 
   1902 
   1903 /**
   1904  * eap_set_fast_reauth - Update fast_reauth setting
   1905  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1906  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
   1907  */
   1908 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
   1909 {
   1910 	sm->fast_reauth = enabled;
   1911 }
   1912 
   1913 
   1914 /**
   1915  * eap_set_workaround - Update EAP workarounds setting
   1916  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1917  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
   1918  */
   1919 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
   1920 {
   1921 	sm->workaround = workaround;
   1922 }
   1923 
   1924 
   1925 /**
   1926  * eap_get_config - Get current network configuration
   1927  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1928  * Returns: Pointer to the current network configuration or %NULL if not found
   1929  *
   1930  * EAP peer methods should avoid using this function if they can use other
   1931  * access functions, like eap_get_config_identity() and
   1932  * eap_get_config_password(), that do not require direct access to
   1933  * struct eap_peer_config.
   1934  */
   1935 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
   1936 {
   1937 	return sm->eapol_cb->get_config(sm->eapol_ctx);
   1938 }
   1939 
   1940 
   1941 /**
   1942  * eap_get_config_identity - Get identity from the network configuration
   1943  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1944  * @len: Buffer for the length of the identity
   1945  * Returns: Pointer to the identity or %NULL if not found
   1946  */
   1947 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
   1948 {
   1949 	struct eap_peer_config *config = eap_get_config(sm);
   1950 	if (config == NULL)
   1951 		return NULL;
   1952 	*len = config->identity_len;
   1953 	return config->identity;
   1954 }
   1955 
   1956 
   1957 static int eap_get_ext_password(struct eap_sm *sm,
   1958 				struct eap_peer_config *config)
   1959 {
   1960 	char *name;
   1961 
   1962 	if (config->password == NULL)
   1963 		return -1;
   1964 
   1965 	name = os_zalloc(config->password_len + 1);
   1966 	if (name == NULL)
   1967 		return -1;
   1968 	os_memcpy(name, config->password, config->password_len);
   1969 
   1970 	ext_password_free(sm->ext_pw_buf);
   1971 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
   1972 	os_free(name);
   1973 
   1974 	return sm->ext_pw_buf == NULL ? -1 : 0;
   1975 }
   1976 
   1977 
   1978 /**
   1979  * eap_get_config_password - Get password from the network configuration
   1980  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1981  * @len: Buffer for the length of the password
   1982  * Returns: Pointer to the password or %NULL if not found
   1983  */
   1984 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
   1985 {
   1986 	struct eap_peer_config *config = eap_get_config(sm);
   1987 	if (config == NULL)
   1988 		return NULL;
   1989 
   1990 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
   1991 		if (eap_get_ext_password(sm, config) < 0)
   1992 			return NULL;
   1993 		*len = wpabuf_len(sm->ext_pw_buf);
   1994 		return wpabuf_head(sm->ext_pw_buf);
   1995 	}
   1996 
   1997 	*len = config->password_len;
   1998 	return config->password;
   1999 }
   2000 
   2001 
   2002 /**
   2003  * eap_get_config_password2 - Get password from the network configuration
   2004  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2005  * @len: Buffer for the length of the password
   2006  * @hash: Buffer for returning whether the password is stored as a
   2007  * NtPasswordHash instead of plaintext password; can be %NULL if this
   2008  * information is not needed
   2009  * Returns: Pointer to the password or %NULL if not found
   2010  */
   2011 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
   2012 {
   2013 	struct eap_peer_config *config = eap_get_config(sm);
   2014 	if (config == NULL)
   2015 		return NULL;
   2016 
   2017 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
   2018 		if (eap_get_ext_password(sm, config) < 0)
   2019 			return NULL;
   2020 		*len = wpabuf_len(sm->ext_pw_buf);
   2021 		return wpabuf_head(sm->ext_pw_buf);
   2022 	}
   2023 
   2024 	*len = config->password_len;
   2025 	if (hash)
   2026 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
   2027 	return config->password;
   2028 }
   2029 
   2030 
   2031 /**
   2032  * eap_get_config_new_password - Get new password from network configuration
   2033  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2034  * @len: Buffer for the length of the new password
   2035  * Returns: Pointer to the new password or %NULL if not found
   2036  */
   2037 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
   2038 {
   2039 	struct eap_peer_config *config = eap_get_config(sm);
   2040 	if (config == NULL)
   2041 		return NULL;
   2042 	*len = config->new_password_len;
   2043 	return config->new_password;
   2044 }
   2045 
   2046 
   2047 /**
   2048  * eap_get_config_otp - Get one-time password from the network configuration
   2049  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2050  * @len: Buffer for the length of the one-time password
   2051  * Returns: Pointer to the one-time password or %NULL if not found
   2052  */
   2053 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
   2054 {
   2055 	struct eap_peer_config *config = eap_get_config(sm);
   2056 	if (config == NULL)
   2057 		return NULL;
   2058 	*len = config->otp_len;
   2059 	return config->otp;
   2060 }
   2061 
   2062 
   2063 /**
   2064  * eap_clear_config_otp - Clear used one-time password
   2065  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2066  *
   2067  * This function clears a used one-time password (OTP) from the current network
   2068  * configuration. This should be called when the OTP has been used and is not
   2069  * needed anymore.
   2070  */
   2071 void eap_clear_config_otp(struct eap_sm *sm)
   2072 {
   2073 	struct eap_peer_config *config = eap_get_config(sm);
   2074 	if (config == NULL)
   2075 		return;
   2076 	os_memset(config->otp, 0, config->otp_len);
   2077 	os_free(config->otp);
   2078 	config->otp = NULL;
   2079 	config->otp_len = 0;
   2080 }
   2081 
   2082 
   2083 /**
   2084  * eap_get_config_phase1 - Get phase1 data from the network configuration
   2085  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2086  * Returns: Pointer to the phase1 data or %NULL if not found
   2087  */
   2088 const char * eap_get_config_phase1(struct eap_sm *sm)
   2089 {
   2090 	struct eap_peer_config *config = eap_get_config(sm);
   2091 	if (config == NULL)
   2092 		return NULL;
   2093 	return config->phase1;
   2094 }
   2095 
   2096 
   2097 /**
   2098  * eap_get_config_phase2 - Get phase2 data from the network configuration
   2099  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2100  * Returns: Pointer to the phase1 data or %NULL if not found
   2101  */
   2102 const char * eap_get_config_phase2(struct eap_sm *sm)
   2103 {
   2104 	struct eap_peer_config *config = eap_get_config(sm);
   2105 	if (config == NULL)
   2106 		return NULL;
   2107 	return config->phase2;
   2108 }
   2109 
   2110 
   2111 int eap_get_config_fragment_size(struct eap_sm *sm)
   2112 {
   2113 	struct eap_peer_config *config = eap_get_config(sm);
   2114 	if (config == NULL)
   2115 		return -1;
   2116 	return config->fragment_size;
   2117 }
   2118 
   2119 
   2120 /**
   2121  * eap_key_available - Get key availability (eapKeyAvailable variable)
   2122  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2123  * Returns: 1 if EAP keying material is available, 0 if not
   2124  */
   2125 int eap_key_available(struct eap_sm *sm)
   2126 {
   2127 	return sm ? sm->eapKeyAvailable : 0;
   2128 }
   2129 
   2130 
   2131 /**
   2132  * eap_notify_success - Notify EAP state machine about external success trigger
   2133  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2134  *
   2135  * This function is called when external event, e.g., successful completion of
   2136  * WPA-PSK key handshake, is indicating that EAP state machine should move to
   2137  * success state. This is mainly used with security modes that do not use EAP
   2138  * state machine (e.g., WPA-PSK).
   2139  */
   2140 void eap_notify_success(struct eap_sm *sm)
   2141 {
   2142 	if (sm) {
   2143 		sm->decision = DECISION_COND_SUCC;
   2144 		sm->EAP_state = EAP_SUCCESS;
   2145 	}
   2146 }
   2147 
   2148 
   2149 /**
   2150  * eap_notify_lower_layer_success - Notification of lower layer success
   2151  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2152  *
   2153  * Notify EAP state machines that a lower layer has detected a successful
   2154  * authentication. This is used to recover from dropped EAP-Success messages.
   2155  */
   2156 void eap_notify_lower_layer_success(struct eap_sm *sm)
   2157 {
   2158 	if (sm == NULL)
   2159 		return;
   2160 
   2161 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
   2162 	    sm->decision == DECISION_FAIL ||
   2163 	    (sm->methodState != METHOD_MAY_CONT &&
   2164 	     sm->methodState != METHOD_DONE))
   2165 		return;
   2166 
   2167 	if (sm->eapKeyData != NULL)
   2168 		sm->eapKeyAvailable = TRUE;
   2169 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
   2170 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
   2171 		"EAP authentication completed successfully (based on lower "
   2172 		"layer success)");
   2173 }
   2174 
   2175 
   2176 /**
   2177  * eap_get_eapSessionId - Get Session-Id from EAP state machine
   2178  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2179  * @len: Pointer to variable that will be set to number of bytes in the session
   2180  * Returns: Pointer to the EAP Session-Id or %NULL on failure
   2181  *
   2182  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
   2183  * only after a successful authentication. EAP state machine continues to manage
   2184  * the Session-Id and the caller must not change or free the returned data.
   2185  */
   2186 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
   2187 {
   2188 	if (sm == NULL || sm->eapSessionId == NULL) {
   2189 		*len = 0;
   2190 		return NULL;
   2191 	}
   2192 
   2193 	*len = sm->eapSessionIdLen;
   2194 	return sm->eapSessionId;
   2195 }
   2196 
   2197 
   2198 /**
   2199  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
   2200  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2201  * @len: Pointer to variable that will be set to number of bytes in the key
   2202  * Returns: Pointer to the EAP keying data or %NULL on failure
   2203  *
   2204  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
   2205  * key is available only after a successful authentication. EAP state machine
   2206  * continues to manage the key data and the caller must not change or free the
   2207  * returned data.
   2208  */
   2209 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
   2210 {
   2211 	if (sm == NULL || sm->eapKeyData == NULL) {
   2212 		*len = 0;
   2213 		return NULL;
   2214 	}
   2215 
   2216 	*len = sm->eapKeyDataLen;
   2217 	return sm->eapKeyData;
   2218 }
   2219 
   2220 
   2221 /**
   2222  * eap_get_eapKeyData - Get EAP response data
   2223  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2224  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
   2225  *
   2226  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
   2227  * available when EAP state machine has processed an incoming EAP request. The
   2228  * EAP state machine does not maintain a reference to the response after this
   2229  * function is called and the caller is responsible for freeing the data.
   2230  */
   2231 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
   2232 {
   2233 	struct wpabuf *resp;
   2234 
   2235 	if (sm == NULL || sm->eapRespData == NULL)
   2236 		return NULL;
   2237 
   2238 	resp = sm->eapRespData;
   2239 	sm->eapRespData = NULL;
   2240 
   2241 	return resp;
   2242 }
   2243 
   2244 
   2245 /**
   2246  * eap_sm_register_scard_ctx - Notification of smart card context
   2247  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2248  * @ctx: Context data for smart card operations
   2249  *
   2250  * Notify EAP state machines of context data for smart card operations. This
   2251  * context data will be used as a parameter for scard_*() functions.
   2252  */
   2253 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
   2254 {
   2255 	if (sm)
   2256 		sm->scard_ctx = ctx;
   2257 }
   2258 
   2259 
   2260 /**
   2261  * eap_set_config_blob - Set or add a named configuration blob
   2262  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2263  * @blob: New value for the blob
   2264  *
   2265  * Adds a new configuration blob or replaces the current value of an existing
   2266  * blob.
   2267  */
   2268 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
   2269 {
   2270 #ifndef CONFIG_NO_CONFIG_BLOBS
   2271 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
   2272 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2273 }
   2274 
   2275 
   2276 /**
   2277  * eap_get_config_blob - Get a named configuration blob
   2278  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2279  * @name: Name of the blob
   2280  * Returns: Pointer to blob data or %NULL if not found
   2281  */
   2282 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
   2283 						   const char *name)
   2284 {
   2285 #ifndef CONFIG_NO_CONFIG_BLOBS
   2286 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
   2287 #else /* CONFIG_NO_CONFIG_BLOBS */
   2288 	return NULL;
   2289 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2290 }
   2291 
   2292 
   2293 /**
   2294  * eap_set_force_disabled - Set force_disabled flag
   2295  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2296  * @disabled: 1 = EAP disabled, 0 = EAP enabled
   2297  *
   2298  * This function is used to force EAP state machine to be disabled when it is
   2299  * not in use (e.g., with WPA-PSK or plaintext connections).
   2300  */
   2301 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
   2302 {
   2303 	sm->force_disabled = disabled;
   2304 }
   2305 
   2306 
   2307  /**
   2308  * eap_notify_pending - Notify that EAP method is ready to re-process a request
   2309  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2310  *
   2311  * An EAP method can perform a pending operation (e.g., to get a response from
   2312  * an external process). Once the response is available, this function can be
   2313  * used to request EAPOL state machine to retry delivering the previously
   2314  * received (and still unanswered) EAP request to EAP state machine.
   2315  */
   2316 void eap_notify_pending(struct eap_sm *sm)
   2317 {
   2318 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
   2319 }
   2320 
   2321 
   2322 /**
   2323  * eap_invalidate_cached_session - Mark cached session data invalid
   2324  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2325  */
   2326 void eap_invalidate_cached_session(struct eap_sm *sm)
   2327 {
   2328 	if (sm)
   2329 		eap_deinit_prev_method(sm, "invalidate");
   2330 }
   2331 
   2332 
   2333 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
   2334 {
   2335 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2336 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2337 		return 0; /* Not a WPS Enrollee */
   2338 
   2339 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
   2340 		return 0; /* Not using PBC */
   2341 
   2342 	return 1;
   2343 }
   2344 
   2345 
   2346 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
   2347 {
   2348 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2349 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2350 		return 0; /* Not a WPS Enrollee */
   2351 
   2352 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
   2353 		return 0; /* Not using PIN */
   2354 
   2355 	return 1;
   2356 }
   2357 
   2358 
   2359 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
   2360 {
   2361 	ext_password_free(sm->ext_pw_buf);
   2362 	sm->ext_pw_buf = NULL;
   2363 	sm->ext_pw = ext;
   2364 }
   2365 
   2366 
   2367 /**
   2368  * eap_set_anon_id - Set or add anonymous identity
   2369  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2370  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
   2371  * @len: Length of anonymous identity in octets
   2372  */
   2373 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
   2374 {
   2375 	if (sm->eapol_cb->set_anon_id)
   2376 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
   2377 }
   2378