1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H 11 #define EIGEN_SELFADJOINT_MATRIX_MATRIX_H 12 13 namespace Eigen { 14 15 namespace internal { 16 17 // pack a selfadjoint block diagonal for use with the gebp_kernel 18 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder> 19 struct symm_pack_lhs 20 { 21 template<int BlockRows> inline 22 void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count) 23 { 24 // normal copy 25 for(Index k=0; k<i; k++) 26 for(Index w=0; w<BlockRows; w++) 27 blockA[count++] = lhs(i+w,k); // normal 28 // symmetric copy 29 Index h = 0; 30 for(Index k=i; k<i+BlockRows; k++) 31 { 32 for(Index w=0; w<h; w++) 33 blockA[count++] = conj(lhs(k, i+w)); // transposed 34 35 blockA[count++] = real(lhs(k,k)); // real (diagonal) 36 37 for(Index w=h+1; w<BlockRows; w++) 38 blockA[count++] = lhs(i+w, k); // normal 39 ++h; 40 } 41 // transposed copy 42 for(Index k=i+BlockRows; k<cols; k++) 43 for(Index w=0; w<BlockRows; w++) 44 blockA[count++] = conj(lhs(k, i+w)); // transposed 45 } 46 void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows) 47 { 48 const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride); 49 Index count = 0; 50 Index peeled_mc = (rows/Pack1)*Pack1; 51 for(Index i=0; i<peeled_mc; i+=Pack1) 52 { 53 pack<Pack1>(blockA, lhs, cols, i, count); 54 } 55 56 if(rows-peeled_mc>=Pack2) 57 { 58 pack<Pack2>(blockA, lhs, cols, peeled_mc, count); 59 peeled_mc += Pack2; 60 } 61 62 // do the same with mr==1 63 for(Index i=peeled_mc; i<rows; i++) 64 { 65 for(Index k=0; k<i; k++) 66 blockA[count++] = lhs(i, k); // normal 67 68 blockA[count++] = real(lhs(i, i)); // real (diagonal) 69 70 for(Index k=i+1; k<cols; k++) 71 blockA[count++] = conj(lhs(k, i)); // transposed 72 } 73 } 74 }; 75 76 template<typename Scalar, typename Index, int nr, int StorageOrder> 77 struct symm_pack_rhs 78 { 79 enum { PacketSize = packet_traits<Scalar>::size }; 80 void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2) 81 { 82 Index end_k = k2 + rows; 83 Index count = 0; 84 const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride); 85 Index packet_cols = (cols/nr)*nr; 86 87 // first part: normal case 88 for(Index j2=0; j2<k2; j2+=nr) 89 { 90 for(Index k=k2; k<end_k; k++) 91 { 92 blockB[count+0] = rhs(k,j2+0); 93 blockB[count+1] = rhs(k,j2+1); 94 if (nr==4) 95 { 96 blockB[count+2] = rhs(k,j2+2); 97 blockB[count+3] = rhs(k,j2+3); 98 } 99 count += nr; 100 } 101 } 102 103 // second part: diagonal block 104 for(Index j2=k2; j2<(std::min)(k2+rows,packet_cols); j2+=nr) 105 { 106 // again we can split vertically in three different parts (transpose, symmetric, normal) 107 // transpose 108 for(Index k=k2; k<j2; k++) 109 { 110 blockB[count+0] = conj(rhs(j2+0,k)); 111 blockB[count+1] = conj(rhs(j2+1,k)); 112 if (nr==4) 113 { 114 blockB[count+2] = conj(rhs(j2+2,k)); 115 blockB[count+3] = conj(rhs(j2+3,k)); 116 } 117 count += nr; 118 } 119 // symmetric 120 Index h = 0; 121 for(Index k=j2; k<j2+nr; k++) 122 { 123 // normal 124 for (Index w=0 ; w<h; ++w) 125 blockB[count+w] = rhs(k,j2+w); 126 127 blockB[count+h] = real(rhs(k,k)); 128 129 // transpose 130 for (Index w=h+1 ; w<nr; ++w) 131 blockB[count+w] = conj(rhs(j2+w,k)); 132 count += nr; 133 ++h; 134 } 135 // normal 136 for(Index k=j2+nr; k<end_k; k++) 137 { 138 blockB[count+0] = rhs(k,j2+0); 139 blockB[count+1] = rhs(k,j2+1); 140 if (nr==4) 141 { 142 blockB[count+2] = rhs(k,j2+2); 143 blockB[count+3] = rhs(k,j2+3); 144 } 145 count += nr; 146 } 147 } 148 149 // third part: transposed 150 for(Index j2=k2+rows; j2<packet_cols; j2+=nr) 151 { 152 for(Index k=k2; k<end_k; k++) 153 { 154 blockB[count+0] = conj(rhs(j2+0,k)); 155 blockB[count+1] = conj(rhs(j2+1,k)); 156 if (nr==4) 157 { 158 blockB[count+2] = conj(rhs(j2+2,k)); 159 blockB[count+3] = conj(rhs(j2+3,k)); 160 } 161 count += nr; 162 } 163 } 164 165 // copy the remaining columns one at a time (=> the same with nr==1) 166 for(Index j2=packet_cols; j2<cols; ++j2) 167 { 168 // transpose 169 Index half = (std::min)(end_k,j2); 170 for(Index k=k2; k<half; k++) 171 { 172 blockB[count] = conj(rhs(j2,k)); 173 count += 1; 174 } 175 176 if(half==j2 && half<k2+rows) 177 { 178 blockB[count] = real(rhs(j2,j2)); 179 count += 1; 180 } 181 else 182 half--; 183 184 // normal 185 for(Index k=half+1; k<k2+rows; k++) 186 { 187 blockB[count] = rhs(k,j2); 188 count += 1; 189 } 190 } 191 } 192 }; 193 194 /* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of 195 * the general matrix matrix product. 196 */ 197 template <typename Scalar, typename Index, 198 int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs, 199 int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs, 200 int ResStorageOrder> 201 struct product_selfadjoint_matrix; 202 203 template <typename Scalar, typename Index, 204 int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs, 205 int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs> 206 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor> 207 { 208 209 static EIGEN_STRONG_INLINE void run( 210 Index rows, Index cols, 211 const Scalar* lhs, Index lhsStride, 212 const Scalar* rhs, Index rhsStride, 213 Scalar* res, Index resStride, 214 Scalar alpha) 215 { 216 product_selfadjoint_matrix<Scalar, Index, 217 EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor, 218 RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs), 219 EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor, 220 LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs), 221 ColMajor> 222 ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha); 223 } 224 }; 225 226 template <typename Scalar, typename Index, 227 int LhsStorageOrder, bool ConjugateLhs, 228 int RhsStorageOrder, bool ConjugateRhs> 229 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor> 230 { 231 232 static EIGEN_DONT_INLINE void run( 233 Index rows, Index cols, 234 const Scalar* _lhs, Index lhsStride, 235 const Scalar* _rhs, Index rhsStride, 236 Scalar* res, Index resStride, 237 Scalar alpha) 238 { 239 Index size = rows; 240 241 const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride); 242 const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride); 243 244 typedef gebp_traits<Scalar,Scalar> Traits; 245 246 Index kc = size; // cache block size along the K direction 247 Index mc = rows; // cache block size along the M direction 248 Index nc = cols; // cache block size along the N direction 249 computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); 250 // kc must smaller than mc 251 kc = (std::min)(kc,mc); 252 253 std::size_t sizeW = kc*Traits::WorkSpaceFactor; 254 std::size_t sizeB = sizeW + kc*cols; 255 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0); 256 ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0); 257 Scalar* blockB = allocatedBlockB + sizeW; 258 259 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel; 260 symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs; 261 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs; 262 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed; 263 264 for(Index k2=0; k2<size; k2+=kc) 265 { 266 const Index actual_kc = (std::min)(k2+kc,size)-k2; 267 268 // we have selected one row panel of rhs and one column panel of lhs 269 // pack rhs's panel into a sequential chunk of memory 270 // and expand each coeff to a constant packet for further reuse 271 pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols); 272 273 // the select lhs's panel has to be split in three different parts: 274 // 1 - the transposed panel above the diagonal block => transposed packed copy 275 // 2 - the diagonal block => special packed copy 276 // 3 - the panel below the diagonal block => generic packed copy 277 for(Index i2=0; i2<k2; i2+=mc) 278 { 279 const Index actual_mc = (std::min)(i2+mc,k2)-i2; 280 // transposed packed copy 281 pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc); 282 283 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 284 } 285 // the block diagonal 286 { 287 const Index actual_mc = (std::min)(k2+kc,size)-k2; 288 // symmetric packed copy 289 pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc); 290 291 gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 292 } 293 294 for(Index i2=k2+kc; i2<size; i2+=mc) 295 { 296 const Index actual_mc = (std::min)(i2+mc,size)-i2; 297 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>() 298 (blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc); 299 300 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 301 } 302 } 303 } 304 }; 305 306 // matrix * selfadjoint product 307 template <typename Scalar, typename Index, 308 int LhsStorageOrder, bool ConjugateLhs, 309 int RhsStorageOrder, bool ConjugateRhs> 310 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor> 311 { 312 313 static EIGEN_DONT_INLINE void run( 314 Index rows, Index cols, 315 const Scalar* _lhs, Index lhsStride, 316 const Scalar* _rhs, Index rhsStride, 317 Scalar* res, Index resStride, 318 Scalar alpha) 319 { 320 Index size = cols; 321 322 const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride); 323 324 typedef gebp_traits<Scalar,Scalar> Traits; 325 326 Index kc = size; // cache block size along the K direction 327 Index mc = rows; // cache block size along the M direction 328 Index nc = cols; // cache block size along the N direction 329 computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); 330 std::size_t sizeW = kc*Traits::WorkSpaceFactor; 331 std::size_t sizeB = sizeW + kc*cols; 332 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0); 333 ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0); 334 Scalar* blockB = allocatedBlockB + sizeW; 335 336 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel; 337 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs; 338 symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs; 339 340 for(Index k2=0; k2<size; k2+=kc) 341 { 342 const Index actual_kc = (std::min)(k2+kc,size)-k2; 343 344 pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2); 345 346 // => GEPP 347 for(Index i2=0; i2<rows; i2+=mc) 348 { 349 const Index actual_mc = (std::min)(i2+mc,rows)-i2; 350 pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc); 351 352 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 353 } 354 } 355 } 356 }; 357 358 } // end namespace internal 359 360 /*************************************************************************** 361 * Wrapper to product_selfadjoint_matrix 362 ***************************************************************************/ 363 364 namespace internal { 365 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode> 366 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> > 367 : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> > 368 {}; 369 } 370 371 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode> 372 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> 373 : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs > 374 { 375 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix) 376 377 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {} 378 379 enum { 380 LhsIsUpper = (LhsMode&(Upper|Lower))==Upper, 381 LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint, 382 RhsIsUpper = (RhsMode&(Upper|Lower))==Upper, 383 RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint 384 }; 385 386 template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const 387 { 388 eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols()); 389 390 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs); 391 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs); 392 393 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs) 394 * RhsBlasTraits::extractScalarFactor(m_rhs); 395 396 internal::product_selfadjoint_matrix<Scalar, Index, 397 EIGEN_LOGICAL_XOR(LhsIsUpper, 398 internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint, 399 NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)), 400 EIGEN_LOGICAL_XOR(RhsIsUpper, 401 internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint, 402 NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)), 403 internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor> 404 ::run( 405 lhs.rows(), rhs.cols(), // sizes 406 &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info 407 &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info 408 &dst.coeffRef(0,0), dst.outerStride(), // result info 409 actualAlpha // alpha 410 ); 411 } 412 }; 413 414 } // end namespace Eigen 415 416 #endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H 417