1 /* 2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 /* 12 * The core AEC algorithm, SSE2 version of speed-critical functions. 13 */ 14 15 #include "typedefs.h" 16 17 #if defined(WEBRTC_USE_SSE2) 18 #include <emmintrin.h> 19 #include <math.h> 20 21 #include "aec_core.h" 22 #include "aec_rdft.h" 23 24 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) 25 { 26 return aRe * bRe - aIm * bIm; 27 } 28 29 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) 30 { 31 return aRe * bIm + aIm * bRe; 32 } 33 34 static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1]) 35 { 36 int i; 37 for (i = 0; i < NR_PART; i++) { 38 int j; 39 int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; 40 int pos = i * PART_LEN1; 41 // Check for wrap 42 if (i + aec->xfBufBlockPos >= NR_PART) { 43 xPos -= NR_PART*(PART_LEN1); 44 } 45 46 // vectorized code (four at once) 47 for (j = 0; j + 3 < PART_LEN1; j += 4) { 48 const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); 49 const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); 50 const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); 51 const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); 52 const __m128 yf_re = _mm_loadu_ps(&yf[0][j]); 53 const __m128 yf_im = _mm_loadu_ps(&yf[1][j]); 54 const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re); 55 const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im); 56 const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im); 57 const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re); 58 const __m128 e = _mm_sub_ps(a, b); 59 const __m128 f = _mm_add_ps(c, d); 60 const __m128 g = _mm_add_ps(yf_re, e); 61 const __m128 h = _mm_add_ps(yf_im, f); 62 _mm_storeu_ps(&yf[0][j], g); 63 _mm_storeu_ps(&yf[1][j], h); 64 } 65 // scalar code for the remaining items. 66 for (; j < PART_LEN1; j++) { 67 yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], 68 aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]); 69 yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], 70 aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]); 71 } 72 } 73 } 74 75 static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1]) 76 { 77 const __m128 k1e_10f = _mm_set1_ps(1e-10f); 78 const __m128 kThresh = _mm_set1_ps(aec->errThresh); 79 const __m128 kMu = _mm_set1_ps(aec->mu); 80 81 int i; 82 // vectorized code (four at once) 83 for (i = 0; i + 3 < PART_LEN1; i += 4) { 84 const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]); 85 const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]); 86 const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]); 87 88 const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f); 89 __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus); 90 __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus); 91 const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re); 92 const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im); 93 const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2); 94 const __m128 absEf = _mm_sqrt_ps(ef_sum2); 95 const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh); 96 __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f); 97 const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus); 98 __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv); 99 __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv); 100 ef_re_if = _mm_and_ps(bigger, ef_re_if); 101 ef_im_if = _mm_and_ps(bigger, ef_im_if); 102 ef_re = _mm_andnot_ps(bigger, ef_re); 103 ef_im = _mm_andnot_ps(bigger, ef_im); 104 ef_re = _mm_or_ps(ef_re, ef_re_if); 105 ef_im = _mm_or_ps(ef_im, ef_im_if); 106 ef_re = _mm_mul_ps(ef_re, kMu); 107 ef_im = _mm_mul_ps(ef_im, kMu); 108 109 _mm_storeu_ps(&ef[0][i], ef_re); 110 _mm_storeu_ps(&ef[1][i], ef_im); 111 } 112 // scalar code for the remaining items. 113 for (; i < (PART_LEN1); i++) { 114 float absEf; 115 ef[0][i] /= (aec->xPow[i] + 1e-10f); 116 ef[1][i] /= (aec->xPow[i] + 1e-10f); 117 absEf = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); 118 119 if (absEf > aec->errThresh) { 120 absEf = aec->errThresh / (absEf + 1e-10f); 121 ef[0][i] *= absEf; 122 ef[1][i] *= absEf; 123 } 124 125 // Stepsize factor 126 ef[0][i] *= aec->mu; 127 ef[1][i] *= aec->mu; 128 } 129 } 130 131 static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) { 132 int i, j; 133 for (i = 0; i < NR_PART; i++) { 134 int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); 135 int pos = i * PART_LEN1; 136 // Check for wrap 137 if (i + aec->xfBufBlockPos >= NR_PART) { 138 xPos -= NR_PART * PART_LEN1; 139 } 140 141 // Process the whole array... 142 for (j = 0; j < PART_LEN; j+= 4) { 143 // Load xfBuf and ef. 144 const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); 145 const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); 146 const __m128 ef_re = _mm_loadu_ps(&ef[0][j]); 147 const __m128 ef_im = _mm_loadu_ps(&ef[1][j]); 148 // Calculate the product of conjugate(xfBuf) by ef. 149 // re(conjugate(a) * b) = aRe * bRe + aIm * bIm 150 // im(conjugate(a) * b)= aRe * bIm - aIm * bRe 151 const __m128 a = _mm_mul_ps(xfBuf_re, ef_re); 152 const __m128 b = _mm_mul_ps(xfBuf_im, ef_im); 153 const __m128 c = _mm_mul_ps(xfBuf_re, ef_im); 154 const __m128 d = _mm_mul_ps(xfBuf_im, ef_re); 155 const __m128 e = _mm_add_ps(a, b); 156 const __m128 f = _mm_sub_ps(c, d); 157 // Interleave real and imaginary parts. 158 const __m128 g = _mm_unpacklo_ps(e, f); 159 const __m128 h = _mm_unpackhi_ps(e, f); 160 // Store 161 _mm_storeu_ps(&fft[2*j + 0], g); 162 _mm_storeu_ps(&fft[2*j + 4], h); 163 } 164 // ... and fixup the first imaginary entry. 165 fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], 166 -aec->xfBuf[1][xPos + PART_LEN], 167 ef[0][PART_LEN], ef[1][PART_LEN]); 168 169 aec_rdft_inverse_128(fft); 170 memset(fft + PART_LEN, 0, sizeof(float)*PART_LEN); 171 172 // fft scaling 173 { 174 float scale = 2.0f / PART_LEN2; 175 const __m128 scale_ps = _mm_load_ps1(&scale); 176 for (j = 0; j < PART_LEN; j+=4) { 177 const __m128 fft_ps = _mm_loadu_ps(&fft[j]); 178 const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); 179 _mm_storeu_ps(&fft[j], fft_scale); 180 } 181 } 182 aec_rdft_forward_128(fft); 183 184 { 185 float wt1 = aec->wfBuf[1][pos]; 186 aec->wfBuf[0][pos + PART_LEN] += fft[1]; 187 for (j = 0; j < PART_LEN; j+= 4) { 188 __m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); 189 __m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); 190 const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); 191 const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); 192 const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2 ,0)); 193 const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3 ,1)); 194 wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); 195 wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); 196 _mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re); 197 _mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im); 198 } 199 aec->wfBuf[1][pos] = wt1; 200 } 201 } 202 } 203 204 static __m128 mm_pow_ps(__m128 a, __m128 b) 205 { 206 // a^b = exp2(b * log2(a)) 207 // exp2(x) and log2(x) are calculated using polynomial approximations. 208 __m128 log2_a, b_log2_a, a_exp_b; 209 210 // Calculate log2(x), x = a. 211 { 212 // To calculate log2(x), we decompose x like this: 213 // x = y * 2^n 214 // n is an integer 215 // y is in the [1.0, 2.0) range 216 // 217 // log2(x) = log2(y) + n 218 // n can be evaluated by playing with float representation. 219 // log2(y) in a small range can be approximated, this code uses an order 220 // five polynomial approximation. The coefficients have been 221 // estimated with the Remez algorithm and the resulting 222 // polynomial has a maximum relative error of 0.00086%. 223 224 // Compute n. 225 // This is done by masking the exponent, shifting it into the top bit of 226 // the mantissa, putting eight into the biased exponent (to shift/ 227 // compensate the fact that the exponent has been shifted in the top/ 228 // fractional part and finally getting rid of the implicit leading one 229 // from the mantissa by substracting it out. 230 static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = 231 {0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000}; 232 static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = 233 {0x43800000, 0x43800000, 0x43800000, 0x43800000}; 234 static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = 235 {0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000}; 236 static const int shift_exponent_into_top_mantissa = 8; 237 const __m128 two_n = _mm_and_ps(a, *((__m128 *)float_exponent_mask)); 238 const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(_mm_castps_si128(two_n), 239 shift_exponent_into_top_mantissa)); 240 const __m128 n_0 = _mm_or_ps(n_1, *((__m128 *)eight_biased_exponent)); 241 const __m128 n = _mm_sub_ps(n_0, *((__m128 *)implicit_leading_one)); 242 243 // Compute y. 244 static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = 245 {0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF}; 246 static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = 247 {0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000}; 248 const __m128 mantissa = _mm_and_ps(a, *((__m128 *)mantissa_mask)); 249 const __m128 y = _mm_or_ps( 250 mantissa, *((__m128 *)zero_biased_exponent_is_one)); 251 252 // Approximate log2(y) ~= (y - 1) * pol5(y). 253 // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0 254 static const ALIGN16_BEG float ALIGN16_END C5[4] = 255 {-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f}; 256 static const ALIGN16_BEG float ALIGN16_END C4[4] = 257 {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f}; 258 static const ALIGN16_BEG float ALIGN16_END C3[4] = 259 {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f}; 260 static const ALIGN16_BEG float ALIGN16_END C2[4] = 261 {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f}; 262 static const ALIGN16_BEG float ALIGN16_END C1[4] = 263 {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f}; 264 static const ALIGN16_BEG float ALIGN16_END C0[4] = 265 {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f}; 266 const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128 *)C5)); 267 const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128 *)C4)); 268 const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y); 269 const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128 *)C3)); 270 const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y); 271 const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128 *)C2)); 272 const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y); 273 const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128 *)C1)); 274 const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y); 275 const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128 *)C0)); 276 const __m128 y_minus_one = _mm_sub_ps( 277 y, *((__m128 *)zero_biased_exponent_is_one)); 278 const __m128 log2_y = _mm_mul_ps(y_minus_one , pol5_y); 279 280 // Combine parts. 281 log2_a = _mm_add_ps(n, log2_y); 282 } 283 284 // b * log2(a) 285 b_log2_a = _mm_mul_ps(b, log2_a); 286 287 // Calculate exp2(x), x = b * log2(a). 288 { 289 // To calculate 2^x, we decompose x like this: 290 // x = n + y 291 // n is an integer, the value of x - 0.5 rounded down, therefore 292 // y is in the [0.5, 1.5) range 293 // 294 // 2^x = 2^n * 2^y 295 // 2^n can be evaluated by playing with float representation. 296 // 2^y in a small range can be approximated, this code uses an order two 297 // polynomial approximation. The coefficients have been estimated 298 // with the Remez algorithm and the resulting polynomial has a 299 // maximum relative error of 0.17%. 300 301 // To avoid over/underflow, we reduce the range of input to ]-127, 129]. 302 static const ALIGN16_BEG float max_input[4] ALIGN16_END = 303 {129.f, 129.f, 129.f, 129.f}; 304 static const ALIGN16_BEG float min_input[4] ALIGN16_END = 305 {-126.99999f, -126.99999f, -126.99999f, -126.99999f}; 306 const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128 *)max_input)); 307 const __m128 x_max = _mm_max_ps(x_min, *((__m128 *)min_input)); 308 // Compute n. 309 static const ALIGN16_BEG float half[4] ALIGN16_END = 310 {0.5f, 0.5f, 0.5f, 0.5f}; 311 const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128 *)half)); 312 const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half); 313 // Compute 2^n. 314 static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = 315 {127, 127, 127, 127}; 316 static const int float_exponent_shift = 23; 317 const __m128i two_n_exponent = _mm_add_epi32( 318 x_minus_half_floor, *((__m128i *)float_exponent_bias)); 319 const __m128 two_n = _mm_castsi128_ps(_mm_slli_epi32( 320 two_n_exponent, float_exponent_shift)); 321 // Compute y. 322 const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor)); 323 // Approximate 2^y ~= C2 * y^2 + C1 * y + C0. 324 static const ALIGN16_BEG float C2[4] ALIGN16_END = 325 {3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f}; 326 static const ALIGN16_BEG float C1[4] ALIGN16_END = 327 {6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f}; 328 static const ALIGN16_BEG float C0[4] ALIGN16_END = 329 {1.0017247f, 1.0017247f, 1.0017247f, 1.0017247f}; 330 const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128 *)C2)); 331 const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128 *)C1)); 332 const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y); 333 const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128 *)C0)); 334 335 // Combine parts. 336 a_exp_b = _mm_mul_ps(exp2_y, two_n); 337 } 338 return a_exp_b; 339 } 340 341 extern const float WebRtcAec_weightCurve[65]; 342 extern const float WebRtcAec_overDriveCurve[65]; 343 344 static void OverdriveAndSuppressSSE2(aec_t *aec, float hNl[PART_LEN1], 345 const float hNlFb, 346 float efw[2][PART_LEN1]) { 347 int i; 348 const __m128 vec_hNlFb = _mm_set1_ps(hNlFb); 349 const __m128 vec_one = _mm_set1_ps(1.0f); 350 const __m128 vec_minus_one = _mm_set1_ps(-1.0f); 351 const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm); 352 // vectorized code (four at once) 353 for (i = 0; i + 3 < PART_LEN1; i+=4) { 354 // Weight subbands 355 __m128 vec_hNl = _mm_loadu_ps(&hNl[i]); 356 const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]); 357 const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb); 358 const __m128 vec_weightCurve_hNlFb = _mm_mul_ps( 359 vec_weightCurve, vec_hNlFb); 360 const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve); 361 const __m128 vec_one_weightCurve_hNl = _mm_mul_ps( 362 vec_one_weightCurve, vec_hNl); 363 const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl); 364 const __m128 vec_if1 = _mm_and_ps( 365 bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl)); 366 vec_hNl = _mm_or_ps(vec_if0, vec_if1); 367 368 { 369 const __m128 vec_overDriveCurve = _mm_loadu_ps( 370 &WebRtcAec_overDriveCurve[i]); 371 const __m128 vec_overDriveSm_overDriveCurve = _mm_mul_ps( 372 vec_overDriveSm, vec_overDriveCurve); 373 vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve); 374 _mm_storeu_ps(&hNl[i], vec_hNl); 375 } 376 377 // Suppress error signal 378 { 379 __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]); 380 __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]); 381 vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl); 382 vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl); 383 384 // Ooura fft returns incorrect sign on imaginary component. It matters 385 // here because we are making an additive change with comfort noise. 386 vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one); 387 _mm_storeu_ps(&efw[0][i], vec_efw_re); 388 _mm_storeu_ps(&efw[1][i], vec_efw_im); 389 } 390 } 391 // scalar code for the remaining items. 392 for (; i < PART_LEN1; i++) { 393 // Weight subbands 394 if (hNl[i] > hNlFb) { 395 hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + 396 (1 - WebRtcAec_weightCurve[i]) * hNl[i]; 397 } 398 hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); 399 400 // Suppress error signal 401 efw[0][i] *= hNl[i]; 402 efw[1][i] *= hNl[i]; 403 404 // Ooura fft returns incorrect sign on imaginary component. It matters 405 // here because we are making an additive change with comfort noise. 406 efw[1][i] *= -1; 407 } 408 } 409 410 void WebRtcAec_InitAec_SSE2(void) { 411 WebRtcAec_FilterFar = FilterFarSSE2; 412 WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2; 413 WebRtcAec_FilterAdaptation = FilterAdaptationSSE2; 414 WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2; 415 } 416 417 #endif // WEBRTC_USE_SSE2 418