Home | History | Annotate | Download | only in common
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "vpx_config.h"
     12 #include "vp9/common/vp9_common.h"
     13 #include "vp9/common/vp9_loopfilter.h"
     14 #include "vp9/common/vp9_onyxc_int.h"
     15 
     16 static INLINE int8_t signed_char_clamp(int t) {
     17   return (int8_t)clamp(t, -128, 127);
     18 }
     19 
     20 // should we apply any filter at all: 11111111 yes, 00000000 no
     21 static INLINE int8_t filter_mask(uint8_t limit, uint8_t blimit,
     22                                  uint8_t p3, uint8_t p2,
     23                                  uint8_t p1, uint8_t p0,
     24                                  uint8_t q0, uint8_t q1,
     25                                  uint8_t q2, uint8_t q3) {
     26   int8_t mask = 0;
     27   mask |= (abs(p3 - p2) > limit) * -1;
     28   mask |= (abs(p2 - p1) > limit) * -1;
     29   mask |= (abs(p1 - p0) > limit) * -1;
     30   mask |= (abs(q1 - q0) > limit) * -1;
     31   mask |= (abs(q2 - q1) > limit) * -1;
     32   mask |= (abs(q3 - q2) > limit) * -1;
     33   mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2  > blimit) * -1;
     34   return ~mask;
     35 }
     36 
     37 static INLINE int8_t flat_mask4(uint8_t thresh,
     38                                 uint8_t p3, uint8_t p2,
     39                                 uint8_t p1, uint8_t p0,
     40                                 uint8_t q0, uint8_t q1,
     41                                 uint8_t q2, uint8_t q3) {
     42   int8_t mask = 0;
     43   mask |= (abs(p1 - p0) > thresh) * -1;
     44   mask |= (abs(q1 - q0) > thresh) * -1;
     45   mask |= (abs(p2 - p0) > thresh) * -1;
     46   mask |= (abs(q2 - q0) > thresh) * -1;
     47   mask |= (abs(p3 - p0) > thresh) * -1;
     48   mask |= (abs(q3 - q0) > thresh) * -1;
     49   return ~mask;
     50 }
     51 
     52 static INLINE int8_t flat_mask5(uint8_t thresh,
     53                                 uint8_t p4, uint8_t p3,
     54                                 uint8_t p2, uint8_t p1,
     55                                 uint8_t p0, uint8_t q0,
     56                                 uint8_t q1, uint8_t q2,
     57                                 uint8_t q3, uint8_t q4) {
     58   int8_t mask = ~flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3);
     59   mask |= (abs(p4 - p0) > thresh) * -1;
     60   mask |= (abs(q4 - q0) > thresh) * -1;
     61   return ~mask;
     62 }
     63 
     64 // is there high edge variance internal edge: 11111111 yes, 00000000 no
     65 static INLINE int8_t hev_mask(uint8_t thresh, uint8_t p1, uint8_t p0,
     66                               uint8_t q0, uint8_t q1) {
     67   int8_t hev = 0;
     68   hev  |= (abs(p1 - p0) > thresh) * -1;
     69   hev  |= (abs(q1 - q0) > thresh) * -1;
     70   return hev;
     71 }
     72 
     73 static INLINE void filter4(int8_t mask, uint8_t hev, uint8_t *op1,
     74                            uint8_t *op0, uint8_t *oq0, uint8_t *oq1) {
     75   int8_t filter1, filter2;
     76 
     77   const int8_t ps1 = (int8_t) *op1 ^ 0x80;
     78   const int8_t ps0 = (int8_t) *op0 ^ 0x80;
     79   const int8_t qs0 = (int8_t) *oq0 ^ 0x80;
     80   const int8_t qs1 = (int8_t) *oq1 ^ 0x80;
     81 
     82   // add outer taps if we have high edge variance
     83   int8_t filter = signed_char_clamp(ps1 - qs1) & hev;
     84 
     85   // inner taps
     86   filter = signed_char_clamp(filter + 3 * (qs0 - ps0)) & mask;
     87 
     88   // save bottom 3 bits so that we round one side +4 and the other +3
     89   // if it equals 4 we'll set to adjust by -1 to account for the fact
     90   // we'd round 3 the other way
     91   filter1 = signed_char_clamp(filter + 4) >> 3;
     92   filter2 = signed_char_clamp(filter + 3) >> 3;
     93 
     94   *oq0 = signed_char_clamp(qs0 - filter1) ^ 0x80;
     95   *op0 = signed_char_clamp(ps0 + filter2) ^ 0x80;
     96 
     97   // outer tap adjustments
     98   filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev;
     99 
    100   *oq1 = signed_char_clamp(qs1 - filter) ^ 0x80;
    101   *op1 = signed_char_clamp(ps1 + filter) ^ 0x80;
    102 }
    103 
    104 void vp9_loop_filter_horizontal_edge_c(uint8_t *s, int p /* pitch */,
    105                                        const uint8_t *blimit,
    106                                        const uint8_t *limit,
    107                                        const uint8_t *thresh,
    108                                        int count) {
    109   int i;
    110 
    111   // loop filter designed to work using chars so that we can make maximum use
    112   // of 8 bit simd instructions.
    113   for (i = 0; i < 8 * count; ++i) {
    114     const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
    115     const uint8_t q0 = s[0 * p],  q1 = s[1 * p],  q2 = s[2 * p],  q3 = s[3 * p];
    116     const int8_t mask = filter_mask(*limit, *blimit,
    117                                     p3, p2, p1, p0, q0, q1, q2, q3);
    118     const int8_t hev = hev_mask(*thresh, p1, p0, q0, q1);
    119     filter4(mask, hev, s - 2 * p, s - 1 * p, s, s + 1 * p);
    120     ++s;
    121   }
    122 }
    123 
    124 void vp9_loop_filter_vertical_edge_c(uint8_t *s, int pitch,
    125                                      const uint8_t *blimit,
    126                                      const uint8_t *limit,
    127                                      const uint8_t *thresh,
    128                                      int count) {
    129   int i;
    130 
    131   // loop filter designed to work using chars so that we can make maximum use
    132   // of 8 bit simd instructions.
    133   for (i = 0; i < 8 * count; ++i) {
    134     const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
    135     const uint8_t q0 = s[0],  q1 = s[1],  q2 = s[2],  q3 = s[3];
    136     const int8_t mask = filter_mask(*limit, *blimit,
    137                                     p3, p2, p1, p0, q0, q1, q2, q3);
    138     const int8_t hev = hev_mask(*thresh, p1, p0, q0, q1);
    139     filter4(mask, hev, s - 2, s - 1, s, s + 1);
    140     s += pitch;
    141   }
    142 }
    143 
    144 static INLINE void filter8(int8_t mask, uint8_t hev, uint8_t flat,
    145                            uint8_t *op3, uint8_t *op2,
    146                            uint8_t *op1, uint8_t *op0,
    147                            uint8_t *oq0, uint8_t *oq1,
    148                            uint8_t *oq2, uint8_t *oq3) {
    149   if (flat && mask) {
    150     const uint8_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
    151     const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3;
    152 
    153     // 7-tap filter [1, 1, 1, 2, 1, 1, 1]
    154     *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3);
    155     *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3);
    156     *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3);
    157     *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3);
    158     *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3);
    159     *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3);
    160   } else {
    161     filter4(mask, hev, op1,  op0, oq0, oq1);
    162   }
    163 }
    164 
    165 void vp9_mbloop_filter_horizontal_edge_c(uint8_t *s, int p,
    166                                          const uint8_t *blimit,
    167                                          const uint8_t *limit,
    168                                          const uint8_t *thresh,
    169                                          int count) {
    170   int i;
    171 
    172   // loop filter designed to work using chars so that we can make maximum use
    173   // of 8 bit simd instructions.
    174   for (i = 0; i < 8 * count; ++i) {
    175     const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
    176     const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
    177 
    178     const int8_t mask = filter_mask(*limit, *blimit,
    179                                     p3, p2, p1, p0, q0, q1, q2, q3);
    180     const int8_t hev = hev_mask(*thresh, p1, p0, q0, q1);
    181     const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
    182     filter8(mask, hev, flat, s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
    183                              s,         s + 1 * p, s + 2 * p, s + 3 * p);
    184     ++s;
    185   }
    186 }
    187 
    188 void vp9_mbloop_filter_vertical_edge_c(uint8_t *s, int pitch,
    189                                        const uint8_t *blimit,
    190                                        const uint8_t *limit,
    191                                        const uint8_t *thresh,
    192                                        int count) {
    193   int i;
    194 
    195   for (i = 0; i < 8 * count; ++i) {
    196     const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
    197     const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
    198     const int8_t mask = filter_mask(*limit, *blimit,
    199                                     p3, p2, p1, p0, q0, q1, q2, q3);
    200     const int8_t hev = hev_mask(thresh[0], p1, p0, q0, q1);
    201     const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
    202     filter8(mask, hev, flat, s - 4, s - 3, s - 2, s - 1,
    203                              s,     s + 1, s + 2, s + 3);
    204     s += pitch;
    205   }
    206 }
    207 
    208 static INLINE void filter16(int8_t mask, uint8_t hev,
    209                             uint8_t flat, uint8_t flat2,
    210                             uint8_t *op7, uint8_t *op6,
    211                             uint8_t *op5, uint8_t *op4,
    212                             uint8_t *op3, uint8_t *op2,
    213                             uint8_t *op1, uint8_t *op0,
    214                             uint8_t *oq0, uint8_t *oq1,
    215                             uint8_t *oq2, uint8_t *oq3,
    216                             uint8_t *oq4, uint8_t *oq5,
    217                             uint8_t *oq6, uint8_t *oq7) {
    218   if (flat2 && flat && mask) {
    219     const uint8_t p7 = *op7, p6 = *op6, p5 = *op5, p4 = *op4,
    220                   p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
    221 
    222     const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3,
    223                   q4 = *oq4, q5 = *oq5, q6 = *oq6, q7 = *oq7;
    224 
    225     // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]
    226     *op6 = ROUND_POWER_OF_TWO(p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 +
    227                               q0, 4);
    228     *op5 = ROUND_POWER_OF_TWO(p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 +
    229                               q0 + q1, 4);
    230     *op4 = ROUND_POWER_OF_TWO(p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 +
    231                               q0 + q1 + q2, 4);
    232     *op3 = ROUND_POWER_OF_TWO(p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 +
    233                               q0 + q1 + q2 + q3, 4);
    234     *op2 = ROUND_POWER_OF_TWO(p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 +
    235                               q0 + q1 + q2 + q3 + q4, 4);
    236     *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 +
    237                               q0 + q1 + q2 + q3 + q4 + q5, 4);
    238     *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 +
    239                               q0 + q1 + q2 + q3 + q4 + q5 + q6, 4);
    240     *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 +
    241                               q0 * 2 + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4);
    242     *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 +
    243                               q0 + q1 * 2 + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4);
    244     *oq2 = ROUND_POWER_OF_TWO(p4 + p3 + p2 + p1 + p0 +
    245                               q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, 4);
    246     *oq3 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 +
    247                               q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4);
    248     *oq4 = ROUND_POWER_OF_TWO(p2 + p1 + p0 +
    249                               q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4);
    250     *oq5 = ROUND_POWER_OF_TWO(p1 + p0 +
    251                               q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4);
    252     *oq6 = ROUND_POWER_OF_TWO(p0 +
    253                               q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4);
    254   } else {
    255     filter8(mask, hev, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3);
    256   }
    257 }
    258 
    259 void vp9_mb_lpf_horizontal_edge_w_c(uint8_t *s, int p,
    260                                     const uint8_t *blimit,
    261                                     const uint8_t *limit,
    262                                     const uint8_t *thresh,
    263                                     int count) {
    264   int i;
    265 
    266   // loop filter designed to work using chars so that we can make maximum use
    267   // of 8 bit simd instructions.
    268   for (i = 0; i < 8 * count; ++i) {
    269     const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
    270     const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
    271     const int8_t mask = filter_mask(*limit, *blimit,
    272                                     p3, p2, p1, p0, q0, q1, q2, q3);
    273     const int8_t hev = hev_mask(*thresh, p1, p0, q0, q1);
    274     const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
    275     const int8_t flat2 = flat_mask5(1,
    276                              s[-8 * p], s[-7 * p], s[-6 * p], s[-5 * p], p0,
    277                              q0, s[4 * p], s[5 * p], s[6 * p], s[7 * p]);
    278 
    279     filter16(mask, hev, flat, flat2,
    280              s - 8 * p, s - 7 * p, s - 6 * p, s - 5 * p,
    281              s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
    282              s,         s + 1 * p, s + 2 * p, s + 3 * p,
    283              s + 4 * p, s + 5 * p, s + 6 * p, s + 7 * p);
    284     ++s;
    285   }
    286 }
    287 
    288 void vp9_mb_lpf_vertical_edge_w_c(uint8_t *s, int p,
    289                                   const uint8_t *blimit,
    290                                   const uint8_t *limit,
    291                                   const uint8_t *thresh) {
    292   int i;
    293 
    294   for (i = 0; i < 8; ++i) {
    295     const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
    296     const uint8_t q0 = s[0], q1 = s[1],  q2 = s[2], q3 = s[3];
    297     const int8_t mask = filter_mask(*limit, *blimit,
    298                                     p3, p2, p1, p0, q0, q1, q2, q3);
    299     const int8_t hev = hev_mask(*thresh, p1, p0, q0, q1);
    300     const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
    301     const int8_t flat2 = flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0,
    302                                     q0, s[4], s[5], s[6], s[7]);
    303 
    304     filter16(mask, hev, flat, flat2,
    305              s - 8, s - 7, s - 6, s - 5, s - 4, s - 3, s - 2, s - 1,
    306              s,     s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, s + 7);
    307     s += p;
    308   }
    309 }
    310