1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw.h" 25 #include "sysemu.h" 26 #include "isa.h" 27 #include "fw_cfg.h" 28 29 /* debug firmware config */ 30 //#define DEBUG_FW_CFG 31 32 #ifdef DEBUG_FW_CFG 33 #define FW_CFG_DPRINTF(fmt, ...) \ 34 do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0) 35 #else 36 #define FW_CFG_DPRINTF(fmt, ...) 37 #endif 38 39 #define FW_CFG_SIZE 2 40 41 typedef struct _FWCfgEntry { 42 uint16_t len; 43 uint8_t *data; 44 void *callback_opaque; 45 FWCfgCallback callback; 46 } FWCfgEntry; 47 48 typedef struct _FWCfgState { 49 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY]; 50 uint16_t cur_entry; 51 uint16_t cur_offset; 52 } FWCfgState; 53 54 static void fw_cfg_write(FWCfgState *s, uint8_t value) 55 { 56 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 57 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 58 59 FW_CFG_DPRINTF("write %d\n", value); 60 61 if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) { 62 e->data[s->cur_offset++] = value; 63 if (s->cur_offset == e->len) { 64 e->callback(e->callback_opaque, e->data); 65 s->cur_offset = 0; 66 } 67 } 68 } 69 70 static int fw_cfg_select(FWCfgState *s, uint16_t key) 71 { 72 int ret; 73 74 s->cur_offset = 0; 75 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) { 76 s->cur_entry = FW_CFG_INVALID; 77 ret = 0; 78 } else { 79 s->cur_entry = key; 80 ret = 1; 81 } 82 83 FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not "); 84 85 return ret; 86 } 87 88 static uint8_t fw_cfg_read(FWCfgState *s) 89 { 90 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 91 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 92 uint8_t ret; 93 94 if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len) 95 ret = 0; 96 else 97 ret = e->data[s->cur_offset++]; 98 99 FW_CFG_DPRINTF("read %d\n", ret); 100 101 return ret; 102 } 103 104 static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr) 105 { 106 return fw_cfg_read(opaque); 107 } 108 109 static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value) 110 { 111 fw_cfg_write(opaque, (uint8_t)value); 112 } 113 114 static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value) 115 { 116 fw_cfg_select(opaque, (uint16_t)value); 117 } 118 119 static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr) 120 { 121 return fw_cfg_read(opaque); 122 } 123 124 static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr, 125 uint32_t value) 126 { 127 fw_cfg_write(opaque, (uint8_t)value); 128 } 129 130 static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr, 131 uint32_t value) 132 { 133 fw_cfg_select(opaque, (uint16_t)value); 134 } 135 136 static CPUReadMemoryFunc *fw_cfg_ctl_mem_read[3] = { 137 NULL, 138 NULL, 139 NULL, 140 }; 141 142 static CPUWriteMemoryFunc *fw_cfg_ctl_mem_write[3] = { 143 NULL, 144 fw_cfg_mem_writew, 145 NULL, 146 }; 147 148 static CPUReadMemoryFunc *fw_cfg_data_mem_read[3] = { 149 fw_cfg_mem_readb, 150 NULL, 151 NULL, 152 }; 153 154 static CPUWriteMemoryFunc *fw_cfg_data_mem_write[3] = { 155 fw_cfg_mem_writeb, 156 NULL, 157 NULL, 158 }; 159 160 static void fw_cfg_reset(void *opaque) 161 { 162 FWCfgState *s = opaque; 163 164 fw_cfg_select(s, 0); 165 } 166 167 static void fw_cfg_save(QEMUFile *f, void *opaque) 168 { 169 FWCfgState *s = opaque; 170 171 qemu_put_be16s(f, &s->cur_entry); 172 qemu_put_be16s(f, &s->cur_offset); 173 } 174 175 static int fw_cfg_load(QEMUFile *f, void *opaque, int version_id) 176 { 177 FWCfgState *s = opaque; 178 179 if (version_id > 1) 180 return -EINVAL; 181 182 qemu_get_be16s(f, &s->cur_entry); 183 qemu_get_be16s(f, &s->cur_offset); 184 185 return 0; 186 } 187 188 int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint16_t len) 189 { 190 FWCfgState *s = opaque; 191 int arch = !!(key & FW_CFG_ARCH_LOCAL); 192 193 key &= FW_CFG_ENTRY_MASK; 194 195 if (key >= FW_CFG_MAX_ENTRY) 196 return 0; 197 198 s->entries[arch][key].data = data; 199 s->entries[arch][key].len = len; 200 201 return 1; 202 } 203 204 int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value) 205 { 206 uint16_t *copy; 207 208 copy = qemu_malloc(sizeof(value)); 209 *copy = cpu_to_le16(value); 210 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); 211 } 212 213 int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value) 214 { 215 uint32_t *copy; 216 217 copy = qemu_malloc(sizeof(value)); 218 *copy = cpu_to_le32(value); 219 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); 220 } 221 222 int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value) 223 { 224 uint64_t *copy; 225 226 copy = qemu_malloc(sizeof(value)); 227 *copy = cpu_to_le64(value); 228 return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); 229 } 230 231 int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback, 232 void *callback_opaque, uint8_t *data, size_t len) 233 { 234 FWCfgState *s = opaque; 235 int arch = !!(key & FW_CFG_ARCH_LOCAL); 236 237 if (!(key & FW_CFG_WRITE_CHANNEL)) 238 return 0; 239 240 key &= FW_CFG_ENTRY_MASK; 241 242 if (key >= FW_CFG_MAX_ENTRY || len > 65535) 243 return 0; 244 245 s->entries[arch][key].data = data; 246 s->entries[arch][key].len = len; 247 s->entries[arch][key].callback_opaque = callback_opaque; 248 s->entries[arch][key].callback = callback; 249 250 return 1; 251 } 252 253 void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port, 254 target_phys_addr_t ctl_addr, target_phys_addr_t data_addr) 255 { 256 FWCfgState *s; 257 int io_ctl_memory, io_data_memory; 258 259 s = qemu_mallocz(sizeof(FWCfgState)); 260 261 if (ctl_port) { 262 register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s); 263 } 264 if (data_port) { 265 register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s); 266 register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s); 267 } 268 if (ctl_addr) { 269 io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read, 270 fw_cfg_ctl_mem_write, s); 271 cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory); 272 } 273 if (data_addr) { 274 io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read, 275 fw_cfg_data_mem_write, s); 276 cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory); 277 } 278 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4); 279 fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16); 280 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC)); 281 fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 282 283 register_savevm("fw_cfg", -1, 1, fw_cfg_save, fw_cfg_load, s); 284 qemu_register_reset(fw_cfg_reset, 0, s); 285 fw_cfg_reset(s); 286 287 return s; 288 } 289