Home | History | Annotate | Download | only in internal
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.android.inputmethod.keyboard.internal;
     18 
     19 /**
     20  * Interpolates XY-coordinates using Cubic Hermite Curve.
     21  */
     22 public final class HermiteInterpolator {
     23     private int[] mXCoords;
     24     private int[] mYCoords;
     25     private int mMinPos;
     26     private int mMaxPos;
     27 
     28     // Working variable to calculate interpolated value.
     29     /** The coordinates of the start point of the interval. */
     30     public int mP1X, mP1Y;
     31     /** The coordinates of the end point of the interval. */
     32     public int mP2X, mP2Y;
     33     /** The slope of the tangent at the start point. */
     34     public float mSlope1X, mSlope1Y;
     35     /** The slope of the tangent at the end point. */
     36     public float mSlope2X, mSlope2Y;
     37     /** The interpolated coordinates.
     38      * The return variables of {@link #interpolate(float)} to avoid instantiations.
     39      */
     40     public float mInterpolatedX, mInterpolatedY;
     41 
     42     public HermiteInterpolator() {
     43         // Nothing to do with here.
     44     }
     45 
     46     /**
     47      * Reset this interpolator to point XY-coordinates data.
     48      * @param xCoords the array of x-coordinates. Valid data are in left-open interval
     49      *                <code>[minPos, maxPos)</code>.
     50      * @param yCoords the array of y-coordinates. Valid data are in left-open interval
     51      *                <code>[minPos, maxPos)</code>.
     52      * @param minPos the minimum index of left-open interval of valid data.
     53      * @param maxPos the maximum index of left-open interval of valid data.
     54      */
     55     public void reset(final int[] xCoords, final int[] yCoords, final int minPos,
     56             final int maxPos) {
     57         mXCoords = xCoords;
     58         mYCoords = yCoords;
     59         mMinPos = minPos;
     60         mMaxPos = maxPos;
     61     }
     62 
     63     /**
     64      * Set interpolation interval.
     65      * <p>
     66      * The start and end coordinates of the interval will be set in {@link #mP1X}, {@link #mP1Y},
     67      * {@link #mP2X}, and {@link #mP2Y}. The slope of the tangents at start and end points will be
     68      * set in {@link #mSlope1X}, {@link #mSlope1Y}, {@link #mSlope2X}, and {@link #mSlope2Y}.
     69      *
     70      * @param p0 the index just before interpolation interval. If <code>p1</code> points the start
     71      *           of valid points, <code>p0</code> must be less than <code>minPos</code> of
     72      *           {@link #reset(int[],int[],int,int)}.
     73      * @param p1 the start index of interpolation interval.
     74      * @param p2 the end index of interpolation interval.
     75      * @param p3 the index just after interpolation interval. If <code>p2</code> points the end of
     76      *           valid points, <code>p3</code> must be equal or greater than <code>maxPos</code> of
     77      *           {@link #reset(int[],int[],int,int)}.
     78      */
     79     public void setInterval(final int p0, final int p1, final int p2, final int p3) {
     80         mP1X = mXCoords[p1];
     81         mP1Y = mYCoords[p1];
     82         mP2X = mXCoords[p2];
     83         mP2Y = mYCoords[p2];
     84         // A(ax,ay) is the vector p1->p2.
     85         final int ax = mP2X - mP1X;
     86         final int ay = mP2Y - mP1Y;
     87 
     88         // Calculate the slope of the tangent at p1.
     89         if (p0 >= mMinPos) {
     90             // p1 has previous valid point p0.
     91             // The slope of the tangent is half of the vector p0->p2.
     92             mSlope1X = (mP2X - mXCoords[p0]) / 2.0f;
     93             mSlope1Y = (mP2Y - mYCoords[p0]) / 2.0f;
     94         } else if (p3 < mMaxPos) {
     95             // p1 has no previous valid point, but p2 has next valid point p3.
     96             // B(bx,by) is the slope vector of the tangent at p2.
     97             final float bx = (mXCoords[p3] - mP1X) / 2.0f;
     98             final float by = (mYCoords[p3] - mP1Y) / 2.0f;
     99             final float crossProdAB = ax * by - ay * bx;
    100             final float dotProdAB = ax * bx + ay * by;
    101             final float normASquare = ax * ax + ay * ay;
    102             final float invHalfNormASquare = 1.0f / normASquare / 2.0f;
    103             // The slope of the tangent is the mirror image of vector B to vector A.
    104             mSlope1X = invHalfNormASquare * (dotProdAB * ax + crossProdAB * ay);
    105             mSlope1Y = invHalfNormASquare * (dotProdAB * ay - crossProdAB * ax);
    106         } else {
    107             // p1 and p2 have no previous valid point. (Interval has only point p1 and p2)
    108             mSlope1X = ax;
    109             mSlope1Y = ay;
    110         }
    111 
    112         // Calculate the slope of the tangent at p2.
    113         if (p3 < mMaxPos) {
    114             // p2 has next valid point p3.
    115             // The slope of the tangent is half of the vector p1->p3.
    116             mSlope2X = (mXCoords[p3] - mP1X) / 2.0f;
    117             mSlope2Y = (mYCoords[p3] - mP1Y) / 2.0f;
    118         } else if (p0 >= mMinPos) {
    119             // p2 has no next valid point, but p1 has previous valid point p0.
    120             // B(bx,by) is the slope vector of the tangent at p1.
    121             final float bx = (mP2X - mXCoords[p0]) / 2.0f;
    122             final float by = (mP2Y - mYCoords[p0]) / 2.0f;
    123             final float crossProdAB = ax * by - ay * bx;
    124             final float dotProdAB = ax * bx + ay * by;
    125             final float normASquare = ax * ax + ay * ay;
    126             final float invHalfNormASquare = 1.0f / normASquare / 2.0f;
    127             // The slope of the tangent is the mirror image of vector B to vector A.
    128             mSlope2X = invHalfNormASquare * (dotProdAB * ax + crossProdAB * ay);
    129             mSlope2Y = invHalfNormASquare * (dotProdAB * ay - crossProdAB * ax);
    130         } else {
    131             // p1 and p2 has no previous valid point. (Interval has only point p1 and p2)
    132             mSlope2X = ax;
    133             mSlope2Y = ay;
    134         }
    135     }
    136 
    137     /**
    138      * Calculate interpolation value at <code>t</code> in unit interval <code>[0,1]</code>.
    139      * <p>
    140      * On the unit interval [0,1], given a starting point p1 at t=0 and an ending point p2 at t=1
    141      * with the slope of the tangent m1 at p1 and m2 at p2, the polynomial of cubic Hermite curve
    142      * can be defined by
    143      *   p(t) = (1+2t)(1-t)(1-t)*p1 + t(1-t)(1-t)*m1 + (3-2t)t^2*p2 + (t-1)t^2*m2
    144      * where t is an element of [0,1].
    145      * <p>
    146      * The interpolated XY-coordinates will be set in {@link #mInterpolatedX} and
    147      * {@link #mInterpolatedY}.
    148      *
    149      * @param t the interpolation parameter. The value must be in close interval <code>[0,1]</code>.
    150      */
    151     public void interpolate(final float t) {
    152         final float omt = 1.0f - t;
    153         final float tm2 = 2.0f * t;
    154         final float k1 = 1.0f + tm2;
    155         final float k2 = 3.0f - tm2;
    156         final float omt2 = omt * omt;
    157         final float t2 = t * t;
    158         mInterpolatedX = (k1 * mP1X + t * mSlope1X) * omt2 + (k2 * mP2X - omt * mSlope2X) * t2;
    159         mInterpolatedY = (k1 * mP1Y + t * mSlope1Y) * omt2 + (k2 * mP2Y - omt * mSlope2Y) * t2;
    160     }
    161 }
    162