Home | History | Annotate | Download | only in src
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "hydrogen-bch.h"
     29 
     30 namespace v8 {
     31 namespace internal {
     32 
     33 /*
     34  * This class is a table with one element for eack basic block.
     35  *
     36  * It is used to check if, inside one loop, all execution paths contain
     37  * a bounds check for a particular [index, length] combination.
     38  * The reason is that if there is a path that stays in the loop without
     39  * executing a check then the check cannot be hoisted out of the loop (it
     40  * would likely fail and cause a deopt for no good reason).
     41  * We also check is there are paths that exit the loop early, and if yes we
     42  * perform the hoisting only if graph()->use_optimistic_licm() is true.
     43  * The reason is that such paths are realtively common and harmless (like in
     44  * a "search" method that scans an array until an element is found), but in
     45  * some cases they could cause a deopt if we hoist the check so this is a
     46  * situation we need to detect.
     47  */
     48 class InductionVariableBlocksTable BASE_EMBEDDED {
     49  public:
     50   class Element {
     51    public:
     52     static const int kNoBlock = -1;
     53 
     54     HBasicBlock* block() { return block_; }
     55     void set_block(HBasicBlock* block) { block_ = block; }
     56     bool is_start() { return is_start_; }
     57     bool is_proper_exit() { return is_proper_exit_; }
     58     bool is_in_loop() { return is_in_loop_; }
     59     bool has_check() { return has_check_; }
     60     void set_has_check() { has_check_ = true; }
     61     InductionVariableLimitUpdate* additional_limit() {
     62       return &additional_limit_;
     63     }
     64 
     65     /*
     66      * Initializes the table element for a given loop (identified by its
     67      * induction variable).
     68      */
     69     void InitializeLoop(InductionVariableData* data) {
     70       ASSERT(data->limit() != NULL);
     71       HLoopInformation* loop = data->phi()->block()->current_loop();
     72       is_start_ = (block() == loop->loop_header());
     73       is_proper_exit_ = (block() == data->induction_exit_target());
     74       is_in_loop_ = loop->IsNestedInThisLoop(block()->current_loop());
     75       has_check_ = false;
     76     }
     77 
     78     // Utility methods to iterate over dominated blocks.
     79     void ResetCurrentDominatedBlock() { current_dominated_block_ = kNoBlock; }
     80     HBasicBlock* CurrentDominatedBlock() {
     81       ASSERT(current_dominated_block_ != kNoBlock);
     82       return current_dominated_block_ < block()->dominated_blocks()->length() ?
     83           block()->dominated_blocks()->at(current_dominated_block_) : NULL;
     84     }
     85     HBasicBlock* NextDominatedBlock() {
     86       current_dominated_block_++;
     87       return CurrentDominatedBlock();
     88     }
     89 
     90     Element()
     91         : block_(NULL), is_start_(false), is_proper_exit_(false),
     92           has_check_(false), additional_limit_(),
     93           current_dominated_block_(kNoBlock) {}
     94 
     95    private:
     96     HBasicBlock* block_;
     97     bool is_start_;
     98     bool is_proper_exit_;
     99     bool is_in_loop_;
    100     bool has_check_;
    101     InductionVariableLimitUpdate additional_limit_;
    102     int current_dominated_block_;
    103   };
    104 
    105   HGraph* graph() { return graph_; }
    106   HBasicBlock* loop_header() { return loop_header_; }
    107   Element* at(int index) { return &(elements_.at(index)); }
    108   Element* at(HBasicBlock* block) { return at(block->block_id()); }
    109 
    110   void AddCheckAt(HBasicBlock* block) {
    111     at(block->block_id())->set_has_check();
    112   }
    113 
    114   /*
    115    * Initializes the table for a given loop (identified by its induction
    116    * variable).
    117    */
    118   void InitializeLoop(InductionVariableData* data) {
    119     for (int i = 0; i < graph()->blocks()->length(); i++) {
    120       at(i)->InitializeLoop(data);
    121     }
    122     loop_header_ = data->phi()->block()->current_loop()->loop_header();
    123   }
    124 
    125 
    126   enum Hoistability {
    127     HOISTABLE,
    128     OPTIMISTICALLY_HOISTABLE,
    129     NOT_HOISTABLE
    130   };
    131 
    132   /*
    133    * This method checks if it is appropriate to hoist the bounds checks on an
    134    * induction variable out of the loop.
    135    * The problem is that in the loop code graph there could be execution paths
    136    * where the check is not performed, but hoisting the check has the same
    137    * semantics as performing it at every loop iteration, which could cause
    138    * unnecessary check failures (which would mean unnecessary deoptimizations).
    139    * The method returns OK if there are no paths that perform an iteration
    140    * (loop back to the header) without meeting a check, or UNSAFE is set if
    141    * early exit paths are found.
    142    */
    143   Hoistability CheckHoistability() {
    144     for (int i = 0; i < elements_.length(); i++) {
    145       at(i)->ResetCurrentDominatedBlock();
    146     }
    147     bool unsafe = false;
    148 
    149     HBasicBlock* current = loop_header();
    150     while (current != NULL) {
    151       HBasicBlock* next;
    152 
    153       if (at(current)->has_check() || !at(current)->is_in_loop()) {
    154         // We found a check or we reached a dominated block out of the loop,
    155         // therefore this block is safe and we can backtrack.
    156         next = NULL;
    157       } else {
    158         for (int i = 0; i < current->end()->SuccessorCount(); i ++) {
    159           Element* successor = at(current->end()->SuccessorAt(i));
    160 
    161           if (!successor->is_in_loop()) {
    162             if (!successor->is_proper_exit()) {
    163               // We found a path that exits the loop early, and is not the exit
    164               // related to the induction limit, therefore hoisting checks is
    165               // an optimistic assumption.
    166               unsafe = true;
    167             }
    168           }
    169 
    170           if (successor->is_start()) {
    171             // We found a path that does one loop iteration without meeting any
    172             // check, therefore hoisting checks would be likely to cause
    173             // unnecessary deopts.
    174             return NOT_HOISTABLE;
    175           }
    176         }
    177 
    178         next = at(current)->NextDominatedBlock();
    179       }
    180 
    181       // If we have no next block we need to backtrack the tree traversal.
    182       while (next == NULL) {
    183         current = current->dominator();
    184         if (current != NULL) {
    185           next = at(current)->NextDominatedBlock();
    186         } else {
    187           // We reached the root: next stays NULL.
    188           next = NULL;
    189           break;
    190         }
    191       }
    192 
    193       current = next;
    194     }
    195 
    196     return unsafe ? OPTIMISTICALLY_HOISTABLE : HOISTABLE;
    197   }
    198 
    199   explicit InductionVariableBlocksTable(HGraph* graph)
    200     : graph_(graph), loop_header_(NULL),
    201       elements_(graph->blocks()->length(), graph->zone()) {
    202     for (int i = 0; i < graph->blocks()->length(); i++) {
    203       Element element;
    204       element.set_block(graph->blocks()->at(i));
    205       elements_.Add(element, graph->zone());
    206       ASSERT(at(i)->block()->block_id() == i);
    207     }
    208   }
    209 
    210   // Tries to hoist a check out of its induction loop.
    211   void ProcessRelatedChecks(
    212       InductionVariableData::InductionVariableCheck* check,
    213       InductionVariableData* data) {
    214     HValue* length = check->check()->length();
    215     check->set_processed();
    216     HBasicBlock* header =
    217         data->phi()->block()->current_loop()->loop_header();
    218     HBasicBlock* pre_header = header->predecessors()->at(0);
    219     // Check that the limit is defined in the loop preheader.
    220     if (!data->limit()->IsInteger32Constant()) {
    221       HBasicBlock* limit_block = data->limit()->block();
    222       if (limit_block != pre_header &&
    223           !limit_block->Dominates(pre_header)) {
    224         return;
    225       }
    226     }
    227     // Check that the length and limit have compatible representations.
    228     if (!(data->limit()->representation().Equals(
    229             length->representation()) ||
    230         data->limit()->IsInteger32Constant())) {
    231       return;
    232     }
    233     // Check that the length is defined in the loop preheader.
    234     if (check->check()->length()->block() != pre_header &&
    235         !check->check()->length()->block()->Dominates(pre_header)) {
    236       return;
    237     }
    238 
    239     // Add checks to the table.
    240     for (InductionVariableData::InductionVariableCheck* current_check = check;
    241          current_check != NULL;
    242          current_check = current_check->next()) {
    243       if (current_check->check()->length() != length) continue;
    244 
    245       AddCheckAt(current_check->check()->block());
    246       current_check->set_processed();
    247     }
    248 
    249     // Check that we will not cause unwanted deoptimizations.
    250     Hoistability hoistability = CheckHoistability();
    251     if (hoistability == NOT_HOISTABLE ||
    252         (hoistability == OPTIMISTICALLY_HOISTABLE &&
    253          !graph()->use_optimistic_licm())) {
    254       return;
    255     }
    256 
    257     // We will do the hoisting, but we must see if the limit is "limit" or if
    258     // all checks are done on constants: if all check are done against the same
    259     // constant limit we will use that instead of the induction limit.
    260     bool has_upper_constant_limit = true;
    261     InductionVariableData::InductionVariableCheck* current_check = check;
    262     int32_t upper_constant_limit =
    263         current_check != NULL && current_check->HasUpperLimit() ?
    264         current_check->upper_limit() : 0;
    265     while (current_check != NULL) {
    266       if (check->HasUpperLimit()) {
    267         if (check->upper_limit() != upper_constant_limit) {
    268           has_upper_constant_limit = false;
    269         }
    270       } else {
    271         has_upper_constant_limit = false;
    272       }
    273 
    274       current_check->check()->block()->graph()->isolate()->counters()->
    275           bounds_checks_eliminated()->Increment();
    276       current_check->check()->set_skip_check();
    277       current_check = current_check->next();
    278     }
    279 
    280     // Choose the appropriate limit.
    281     Zone* zone = graph()->zone();
    282     HValue* context = graph()->GetInvalidContext();
    283     HValue* limit = data->limit();
    284     if (has_upper_constant_limit) {
    285       HConstant* new_limit = HConstant::New(zone, context,
    286                                             upper_constant_limit);
    287       new_limit->InsertBefore(pre_header->end());
    288       limit = new_limit;
    289     }
    290 
    291     // If necessary, redefine the limit in the preheader.
    292     if (limit->IsInteger32Constant() &&
    293         limit->block() != pre_header &&
    294         !limit->block()->Dominates(pre_header)) {
    295       HConstant* new_limit = HConstant::New(zone, context,
    296                                             limit->GetInteger32Constant());
    297       new_limit->InsertBefore(pre_header->end());
    298       limit = new_limit;
    299     }
    300 
    301     // Do the hoisting.
    302     HBoundsCheck* hoisted_check = HBoundsCheck::New(
    303         zone, context, limit, check->check()->length());
    304     hoisted_check->InsertBefore(pre_header->end());
    305     hoisted_check->set_allow_equality(true);
    306     hoisted_check->block()->graph()->isolate()->counters()->
    307         bounds_checks_hoisted()->Increment();
    308   }
    309 
    310   void CollectInductionVariableData(HBasicBlock* bb) {
    311     bool additional_limit = false;
    312 
    313     for (int i = 0; i < bb->phis()->length(); i++) {
    314       HPhi* phi = bb->phis()->at(i);
    315       phi->DetectInductionVariable();
    316     }
    317 
    318     additional_limit = InductionVariableData::ComputeInductionVariableLimit(
    319         bb, at(bb)->additional_limit());
    320 
    321     if (additional_limit) {
    322       at(bb)->additional_limit()->updated_variable->
    323           UpdateAdditionalLimit(at(bb)->additional_limit());
    324     }
    325 
    326     for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
    327       if (!i->IsBoundsCheck()) continue;
    328       HBoundsCheck* check = HBoundsCheck::cast(i);
    329       InductionVariableData::BitwiseDecompositionResult decomposition;
    330       InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
    331       if (!decomposition.base->IsPhi()) continue;
    332       HPhi* phi = HPhi::cast(decomposition.base);
    333 
    334       if (!phi->IsInductionVariable()) continue;
    335       InductionVariableData* data = phi->induction_variable_data();
    336 
    337       // For now ignore loops decrementing the index.
    338       if (data->increment() <= 0) continue;
    339       if (!data->LowerLimitIsNonNegativeConstant()) continue;
    340 
    341       // TODO(mmassi): skip OSR values for check->length().
    342       if (check->length() == data->limit() ||
    343           check->length() == data->additional_upper_limit()) {
    344         check->block()->graph()->isolate()->counters()->
    345             bounds_checks_eliminated()->Increment();
    346         check->set_skip_check();
    347         continue;
    348       }
    349 
    350       if (!phi->IsLimitedInductionVariable()) continue;
    351 
    352       int32_t limit = data->ComputeUpperLimit(decomposition.and_mask,
    353                                               decomposition.or_mask);
    354       phi->induction_variable_data()->AddCheck(check, limit);
    355     }
    356 
    357     for (int i = 0; i < bb->dominated_blocks()->length(); i++) {
    358       CollectInductionVariableData(bb->dominated_blocks()->at(i));
    359     }
    360 
    361     if (additional_limit) {
    362       at(bb->block_id())->additional_limit()->updated_variable->
    363           UpdateAdditionalLimit(at(bb->block_id())->additional_limit());
    364     }
    365   }
    366 
    367   void EliminateRedundantBoundsChecks(HBasicBlock* bb) {
    368     for (int i = 0; i < bb->phis()->length(); i++) {
    369       HPhi* phi = bb->phis()->at(i);
    370       if (!phi->IsLimitedInductionVariable()) continue;
    371 
    372       InductionVariableData* induction_data = phi->induction_variable_data();
    373       InductionVariableData::ChecksRelatedToLength* current_length_group =
    374           induction_data->checks();
    375       while (current_length_group != NULL) {
    376         current_length_group->CloseCurrentBlock();
    377         InductionVariableData::InductionVariableCheck* current_base_check =
    378             current_length_group->checks();
    379         InitializeLoop(induction_data);
    380 
    381         while (current_base_check != NULL) {
    382           ProcessRelatedChecks(current_base_check, induction_data);
    383           while (current_base_check != NULL &&
    384                  current_base_check->processed()) {
    385             current_base_check = current_base_check->next();
    386           }
    387         }
    388 
    389         current_length_group = current_length_group->next();
    390       }
    391     }
    392   }
    393 
    394  private:
    395   HGraph* graph_;
    396   HBasicBlock* loop_header_;
    397   ZoneList<Element> elements_;
    398 };
    399 
    400 
    401 void HBoundsCheckHoistingPhase::HoistRedundantBoundsChecks() {
    402   InductionVariableBlocksTable table(graph());
    403   table.CollectInductionVariableData(graph()->entry_block());
    404   for (int i = 0; i < graph()->blocks()->length(); i++) {
    405     table.EliminateRedundantBoundsChecks(graph()->blocks()->at(i));
    406   }
    407 }
    408 
    409 } }  // namespace v8::internal
    410 
    411