1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. See the AUTHORS file for names of contributors. 4 5 #include "db/version_set.h" 6 7 #include <algorithm> 8 #include <stdio.h> 9 #include "db/filename.h" 10 #include "db/log_reader.h" 11 #include "db/log_writer.h" 12 #include "db/memtable.h" 13 #include "db/table_cache.h" 14 #include "leveldb/env.h" 15 #include "leveldb/table_builder.h" 16 #include "table/merger.h" 17 #include "table/two_level_iterator.h" 18 #include "util/coding.h" 19 #include "util/logging.h" 20 21 namespace leveldb { 22 23 static const int kTargetFileSize = 2 * 1048576; 24 25 // Maximum bytes of overlaps in grandparent (i.e., level+2) before we 26 // stop building a single file in a level->level+1 compaction. 27 static const int64_t kMaxGrandParentOverlapBytes = 10 * kTargetFileSize; 28 29 // Maximum number of bytes in all compacted files. We avoid expanding 30 // the lower level file set of a compaction if it would make the 31 // total compaction cover more than this many bytes. 32 static const int64_t kExpandedCompactionByteSizeLimit = 25 * kTargetFileSize; 33 34 static double MaxBytesForLevel(int level) { 35 // Note: the result for level zero is not really used since we set 36 // the level-0 compaction threshold based on number of files. 37 double result = 10 * 1048576.0; // Result for both level-0 and level-1 38 while (level > 1) { 39 result *= 10; 40 level--; 41 } 42 return result; 43 } 44 45 static uint64_t MaxFileSizeForLevel(int level) { 46 return kTargetFileSize; // We could vary per level to reduce number of files? 47 } 48 49 static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) { 50 int64_t sum = 0; 51 for (size_t i = 0; i < files.size(); i++) { 52 sum += files[i]->file_size; 53 } 54 return sum; 55 } 56 57 namespace { 58 std::string IntSetToString(const std::set<uint64_t>& s) { 59 std::string result = "{"; 60 for (std::set<uint64_t>::const_iterator it = s.begin(); 61 it != s.end(); 62 ++it) { 63 result += (result.size() > 1) ? "," : ""; 64 result += NumberToString(*it); 65 } 66 result += "}"; 67 return result; 68 } 69 } // namespace 70 71 Version::~Version() { 72 assert(refs_ == 0); 73 74 // Remove from linked list 75 prev_->next_ = next_; 76 next_->prev_ = prev_; 77 78 // Drop references to files 79 for (int level = 0; level < config::kNumLevels; level++) { 80 for (size_t i = 0; i < files_[level].size(); i++) { 81 FileMetaData* f = files_[level][i]; 82 assert(f->refs > 0); 83 f->refs--; 84 if (f->refs <= 0) { 85 delete f; 86 } 87 } 88 } 89 } 90 91 int FindFile(const InternalKeyComparator& icmp, 92 const std::vector<FileMetaData*>& files, 93 const Slice& key) { 94 uint32_t left = 0; 95 uint32_t right = files.size(); 96 while (left < right) { 97 uint32_t mid = (left + right) / 2; 98 const FileMetaData* f = files[mid]; 99 if (icmp.InternalKeyComparator::Compare(f->largest.Encode(), key) < 0) { 100 // Key at "mid.largest" is < "target". Therefore all 101 // files at or before "mid" are uninteresting. 102 left = mid + 1; 103 } else { 104 // Key at "mid.largest" is >= "target". Therefore all files 105 // after "mid" are uninteresting. 106 right = mid; 107 } 108 } 109 return right; 110 } 111 112 static bool AfterFile(const Comparator* ucmp, 113 const Slice* user_key, const FileMetaData* f) { 114 // NULL user_key occurs before all keys and is therefore never after *f 115 return (user_key != NULL && 116 ucmp->Compare(*user_key, f->largest.user_key()) > 0); 117 } 118 119 static bool BeforeFile(const Comparator* ucmp, 120 const Slice* user_key, const FileMetaData* f) { 121 // NULL user_key occurs after all keys and is therefore never before *f 122 return (user_key != NULL && 123 ucmp->Compare(*user_key, f->smallest.user_key()) < 0); 124 } 125 126 bool SomeFileOverlapsRange( 127 const InternalKeyComparator& icmp, 128 bool disjoint_sorted_files, 129 const std::vector<FileMetaData*>& files, 130 const Slice* smallest_user_key, 131 const Slice* largest_user_key) { 132 const Comparator* ucmp = icmp.user_comparator(); 133 if (!disjoint_sorted_files) { 134 // Need to check against all files 135 for (size_t i = 0; i < files.size(); i++) { 136 const FileMetaData* f = files[i]; 137 if (AfterFile(ucmp, smallest_user_key, f) || 138 BeforeFile(ucmp, largest_user_key, f)) { 139 // No overlap 140 } else { 141 return true; // Overlap 142 } 143 } 144 return false; 145 } 146 147 // Binary search over file list 148 uint32_t index = 0; 149 if (smallest_user_key != NULL) { 150 // Find the earliest possible internal key for smallest_user_key 151 InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek); 152 index = FindFile(icmp, files, small.Encode()); 153 } 154 155 if (index >= files.size()) { 156 // beginning of range is after all files, so no overlap. 157 return false; 158 } 159 160 return !BeforeFile(ucmp, largest_user_key, files[index]); 161 } 162 163 // An internal iterator. For a given version/level pair, yields 164 // information about the files in the level. For a given entry, key() 165 // is the largest key that occurs in the file, and value() is an 166 // 16-byte value containing the file number and file size, both 167 // encoded using EncodeFixed64. 168 class Version::LevelFileNumIterator : public Iterator { 169 public: 170 LevelFileNumIterator(const InternalKeyComparator& icmp, 171 const std::vector<FileMetaData*>* flist) 172 : icmp_(icmp), 173 flist_(flist), 174 index_(flist->size()) { // Marks as invalid 175 } 176 virtual bool Valid() const { 177 return index_ < flist_->size(); 178 } 179 virtual void Seek(const Slice& target) { 180 index_ = FindFile(icmp_, *flist_, target); 181 } 182 virtual void SeekToFirst() { index_ = 0; } 183 virtual void SeekToLast() { 184 index_ = flist_->empty() ? 0 : flist_->size() - 1; 185 } 186 virtual void Next() { 187 assert(Valid()); 188 index_++; 189 } 190 virtual void Prev() { 191 assert(Valid()); 192 if (index_ == 0) { 193 index_ = flist_->size(); // Marks as invalid 194 } else { 195 index_--; 196 } 197 } 198 Slice key() const { 199 assert(Valid()); 200 return (*flist_)[index_]->largest.Encode(); 201 } 202 Slice value() const { 203 assert(Valid()); 204 EncodeFixed64(value_buf_, (*flist_)[index_]->number); 205 EncodeFixed64(value_buf_+8, (*flist_)[index_]->file_size); 206 return Slice(value_buf_, sizeof(value_buf_)); 207 } 208 virtual Status status() const { return Status::OK(); } 209 private: 210 const InternalKeyComparator icmp_; 211 const std::vector<FileMetaData*>* const flist_; 212 uint32_t index_; 213 214 // Backing store for value(). Holds the file number and size. 215 mutable char value_buf_[16]; 216 }; 217 218 static Iterator* GetFileIterator(void* arg, 219 const ReadOptions& options, 220 const Slice& file_value) { 221 TableCache* cache = reinterpret_cast<TableCache*>(arg); 222 if (file_value.size() != 16) { 223 return NewErrorIterator( 224 Status::Corruption("FileReader invoked with unexpected value")); 225 } else { 226 return cache->NewIterator(options, 227 DecodeFixed64(file_value.data()), 228 DecodeFixed64(file_value.data() + 8)); 229 } 230 } 231 232 Iterator* Version::NewConcatenatingIterator(const ReadOptions& options, 233 int level) const { 234 return NewTwoLevelIterator( 235 new LevelFileNumIterator(vset_->icmp_, &files_[level]), 236 &GetFileIterator, vset_->table_cache_, options); 237 } 238 239 void Version::AddIterators(const ReadOptions& options, 240 std::vector<Iterator*>* iters) { 241 // Merge all level zero files together since they may overlap 242 for (size_t i = 0; i < files_[0].size(); i++) { 243 iters->push_back( 244 vset_->table_cache_->NewIterator( 245 options, files_[0][i]->number, files_[0][i]->file_size)); 246 } 247 248 // For levels > 0, we can use a concatenating iterator that sequentially 249 // walks through the non-overlapping files in the level, opening them 250 // lazily. 251 for (int level = 1; level < config::kNumLevels; level++) { 252 if (!files_[level].empty()) { 253 iters->push_back(NewConcatenatingIterator(options, level)); 254 } 255 } 256 } 257 258 // Callback from TableCache::Get() 259 namespace { 260 enum SaverState { 261 kNotFound, 262 kFound, 263 kDeleted, 264 kCorrupt, 265 }; 266 struct Saver { 267 SaverState state; 268 const Comparator* ucmp; 269 Slice user_key; 270 std::string* value; 271 }; 272 } 273 static void SaveValue(void* arg, const Slice& ikey, const Slice& v) { 274 Saver* s = reinterpret_cast<Saver*>(arg); 275 ParsedInternalKey parsed_key; 276 if (!ParseInternalKey(ikey, &parsed_key)) { 277 s->state = kCorrupt; 278 } else { 279 if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) { 280 s->state = (parsed_key.type == kTypeValue) ? kFound : kDeleted; 281 if (s->state == kFound) { 282 s->value->assign(v.data(), v.size()); 283 } 284 } 285 } 286 } 287 288 static bool NewestFirst(FileMetaData* a, FileMetaData* b) { 289 return a->number > b->number; 290 } 291 292 Status Version::Get(const ReadOptions& options, 293 const LookupKey& k, 294 std::string* value, 295 GetStats* stats) { 296 Slice ikey = k.internal_key(); 297 Slice user_key = k.user_key(); 298 const Comparator* ucmp = vset_->icmp_.user_comparator(); 299 Status s; 300 301 stats->seek_file = NULL; 302 stats->seek_file_level = -1; 303 FileMetaData* last_file_read = NULL; 304 int last_file_read_level = -1; 305 306 // We can search level-by-level since entries never hop across 307 // levels. Therefore we are guaranteed that if we find data 308 // in an smaller level, later levels are irrelevant. 309 std::vector<FileMetaData*> tmp; 310 FileMetaData* tmp2; 311 for (int level = 0; level < config::kNumLevels; level++) { 312 size_t num_files = files_[level].size(); 313 if (num_files == 0) continue; 314 315 // Get the list of files to search in this level 316 FileMetaData* const* files = &files_[level][0]; 317 if (level == 0) { 318 // Level-0 files may overlap each other. Find all files that 319 // overlap user_key and process them in order from newest to oldest. 320 tmp.reserve(num_files); 321 for (uint32_t i = 0; i < num_files; i++) { 322 FileMetaData* f = files[i]; 323 if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 && 324 ucmp->Compare(user_key, f->largest.user_key()) <= 0) { 325 tmp.push_back(f); 326 } 327 } 328 if (tmp.empty()) continue; 329 330 std::sort(tmp.begin(), tmp.end(), NewestFirst); 331 files = &tmp[0]; 332 num_files = tmp.size(); 333 } else { 334 // Binary search to find earliest index whose largest key >= ikey. 335 uint32_t index = FindFile(vset_->icmp_, files_[level], ikey); 336 if (index >= num_files) { 337 files = NULL; 338 num_files = 0; 339 } else { 340 tmp2 = files[index]; 341 if (ucmp->Compare(user_key, tmp2->smallest.user_key()) < 0) { 342 // All of "tmp2" is past any data for user_key 343 files = NULL; 344 num_files = 0; 345 } else { 346 files = &tmp2; 347 num_files = 1; 348 } 349 } 350 } 351 352 for (uint32_t i = 0; i < num_files; ++i) { 353 if (last_file_read != NULL && stats->seek_file == NULL) { 354 // We have had more than one seek for this read. Charge the 1st file. 355 stats->seek_file = last_file_read; 356 stats->seek_file_level = last_file_read_level; 357 } 358 359 FileMetaData* f = files[i]; 360 last_file_read = f; 361 last_file_read_level = level; 362 363 Saver saver; 364 saver.state = kNotFound; 365 saver.ucmp = ucmp; 366 saver.user_key = user_key; 367 saver.value = value; 368 s = vset_->table_cache_->Get(options, f->number, f->file_size, 369 ikey, &saver, SaveValue); 370 if (!s.ok()) { 371 return s; 372 } 373 switch (saver.state) { 374 case kNotFound: 375 break; // Keep searching in other files 376 case kFound: 377 return s; 378 case kDeleted: 379 s = Status::NotFound(Slice()); // Use empty error message for speed 380 return s; 381 case kCorrupt: 382 s = Status::Corruption("corrupted key for ", user_key); 383 return s; 384 } 385 } 386 } 387 388 return Status::NotFound(Slice()); // Use an empty error message for speed 389 } 390 391 bool Version::UpdateStats(const GetStats& stats) { 392 FileMetaData* f = stats.seek_file; 393 if (f != NULL) { 394 f->allowed_seeks--; 395 if (f->allowed_seeks <= 0 && file_to_compact_ == NULL) { 396 file_to_compact_ = f; 397 file_to_compact_level_ = stats.seek_file_level; 398 return true; 399 } 400 } 401 return false; 402 } 403 404 void Version::Ref() { 405 ++refs_; 406 } 407 408 void Version::Unref() { 409 assert(this != &vset_->dummy_versions_); 410 assert(refs_ >= 1); 411 --refs_; 412 if (refs_ == 0) { 413 delete this; 414 } 415 } 416 417 bool Version::OverlapInLevel(int level, 418 const Slice* smallest_user_key, 419 const Slice* largest_user_key) { 420 return SomeFileOverlapsRange(vset_->icmp_, (level > 0), files_[level], 421 smallest_user_key, largest_user_key); 422 } 423 424 int Version::PickLevelForMemTableOutput( 425 const Slice& smallest_user_key, 426 const Slice& largest_user_key) { 427 int level = 0; 428 if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) { 429 // Push to next level if there is no overlap in next level, 430 // and the #bytes overlapping in the level after that are limited. 431 InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek); 432 InternalKey limit(largest_user_key, 0, static_cast<ValueType>(0)); 433 std::vector<FileMetaData*> overlaps; 434 while (level < config::kMaxMemCompactLevel) { 435 if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) { 436 break; 437 } 438 GetOverlappingInputs(level + 2, &start, &limit, &overlaps); 439 const int64_t sum = TotalFileSize(overlaps); 440 if (sum > kMaxGrandParentOverlapBytes) { 441 break; 442 } 443 level++; 444 } 445 } 446 return level; 447 } 448 449 // Store in "*inputs" all files in "level" that overlap [begin,end] 450 void Version::GetOverlappingInputs( 451 int level, 452 const InternalKey* begin, 453 const InternalKey* end, 454 std::vector<FileMetaData*>* inputs) { 455 inputs->clear(); 456 Slice user_begin, user_end; 457 if (begin != NULL) { 458 user_begin = begin->user_key(); 459 } 460 if (end != NULL) { 461 user_end = end->user_key(); 462 } 463 const Comparator* user_cmp = vset_->icmp_.user_comparator(); 464 for (size_t i = 0; i < files_[level].size(); ) { 465 FileMetaData* f = files_[level][i++]; 466 const Slice file_start = f->smallest.user_key(); 467 const Slice file_limit = f->largest.user_key(); 468 if (begin != NULL && user_cmp->Compare(file_limit, user_begin) < 0) { 469 // "f" is completely before specified range; skip it 470 } else if (end != NULL && user_cmp->Compare(file_start, user_end) > 0) { 471 // "f" is completely after specified range; skip it 472 } else { 473 inputs->push_back(f); 474 if (level == 0) { 475 // Level-0 files may overlap each other. So check if the newly 476 // added file has expanded the range. If so, restart search. 477 if (begin != NULL && user_cmp->Compare(file_start, user_begin) < 0) { 478 user_begin = file_start; 479 inputs->clear(); 480 i = 0; 481 } else if (end != NULL && user_cmp->Compare(file_limit, user_end) > 0) { 482 user_end = file_limit; 483 inputs->clear(); 484 i = 0; 485 } 486 } 487 } 488 } 489 } 490 491 std::string Version::DebugString() const { 492 std::string r; 493 for (int level = 0; level < config::kNumLevels; level++) { 494 // E.g., 495 // --- level 1 --- 496 // 17:123['a' .. 'd'] 497 // 20:43['e' .. 'g'] 498 r.append("--- level "); 499 AppendNumberTo(&r, level); 500 r.append(" ---\n"); 501 const std::vector<FileMetaData*>& files = files_[level]; 502 for (size_t i = 0; i < files.size(); i++) { 503 r.push_back(' '); 504 AppendNumberTo(&r, files[i]->number); 505 r.push_back(':'); 506 AppendNumberTo(&r, files[i]->file_size); 507 r.append("["); 508 r.append(files[i]->smallest.DebugString()); 509 r.append(" .. "); 510 r.append(files[i]->largest.DebugString()); 511 r.append("]\n"); 512 } 513 } 514 return r; 515 } 516 517 // A helper class so we can efficiently apply a whole sequence 518 // of edits to a particular state without creating intermediate 519 // Versions that contain full copies of the intermediate state. 520 class VersionSet::Builder { 521 private: 522 // Helper to sort by v->files_[file_number].smallest 523 struct BySmallestKey { 524 const InternalKeyComparator* internal_comparator; 525 526 bool operator()(FileMetaData* f1, FileMetaData* f2) const { 527 int r = internal_comparator->Compare(f1->smallest, f2->smallest); 528 if (r != 0) { 529 return (r < 0); 530 } else { 531 // Break ties by file number 532 return (f1->number < f2->number); 533 } 534 } 535 }; 536 537 typedef std::set<FileMetaData*, BySmallestKey> FileSet; 538 struct LevelState { 539 std::set<uint64_t> deleted_files; 540 FileSet* added_files; 541 }; 542 543 VersionSet* vset_; 544 Version* base_; 545 LevelState levels_[config::kNumLevels]; 546 547 public: 548 // Initialize a builder with the files from *base and other info from *vset 549 Builder(VersionSet* vset, Version* base) 550 : vset_(vset), 551 base_(base) { 552 base_->Ref(); 553 BySmallestKey cmp; 554 cmp.internal_comparator = &vset_->icmp_; 555 for (int level = 0; level < config::kNumLevels; level++) { 556 levels_[level].added_files = new FileSet(cmp); 557 } 558 } 559 560 ~Builder() { 561 for (int level = 0; level < config::kNumLevels; level++) { 562 const FileSet* added = levels_[level].added_files; 563 std::vector<FileMetaData*> to_unref; 564 to_unref.reserve(added->size()); 565 for (FileSet::const_iterator it = added->begin(); 566 it != added->end(); ++it) { 567 to_unref.push_back(*it); 568 } 569 delete added; 570 for (uint32_t i = 0; i < to_unref.size(); i++) { 571 FileMetaData* f = to_unref[i]; 572 f->refs--; 573 if (f->refs <= 0) { 574 delete f; 575 } 576 } 577 } 578 base_->Unref(); 579 } 580 581 // Apply all of the edits in *edit to the current state. 582 void Apply(VersionEdit* edit) { 583 // Update compaction pointers 584 for (size_t i = 0; i < edit->compact_pointers_.size(); i++) { 585 const int level = edit->compact_pointers_[i].first; 586 vset_->compact_pointer_[level] = 587 edit->compact_pointers_[i].second.Encode().ToString(); 588 } 589 590 // Delete files 591 const VersionEdit::DeletedFileSet& del = edit->deleted_files_; 592 for (VersionEdit::DeletedFileSet::const_iterator iter = del.begin(); 593 iter != del.end(); 594 ++iter) { 595 const int level = iter->first; 596 const uint64_t number = iter->second; 597 levels_[level].deleted_files.insert(number); 598 } 599 600 // Add new files 601 for (size_t i = 0; i < edit->new_files_.size(); i++) { 602 const int level = edit->new_files_[i].first; 603 FileMetaData* f = new FileMetaData(edit->new_files_[i].second); 604 f->refs = 1; 605 606 // We arrange to automatically compact this file after 607 // a certain number of seeks. Let's assume: 608 // (1) One seek costs 10ms 609 // (2) Writing or reading 1MB costs 10ms (100MB/s) 610 // (3) A compaction of 1MB does 25MB of IO: 611 // 1MB read from this level 612 // 10-12MB read from next level (boundaries may be misaligned) 613 // 10-12MB written to next level 614 // This implies that 25 seeks cost the same as the compaction 615 // of 1MB of data. I.e., one seek costs approximately the 616 // same as the compaction of 40KB of data. We are a little 617 // conservative and allow approximately one seek for every 16KB 618 // of data before triggering a compaction. 619 f->allowed_seeks = (f->file_size / 16384); 620 if (f->allowed_seeks < 100) f->allowed_seeks = 100; 621 622 levels_[level].deleted_files.erase(f->number); 623 levels_[level].added_files->insert(f); 624 } 625 } 626 627 // Save the current state in *v. 628 void SaveTo(Version* v) { 629 BySmallestKey cmp; 630 cmp.internal_comparator = &vset_->icmp_; 631 for (int level = 0; level < config::kNumLevels; level++) { 632 // Merge the set of added files with the set of pre-existing files. 633 // Drop any deleted files. Store the result in *v. 634 const std::vector<FileMetaData*>& base_files = base_->files_[level]; 635 std::vector<FileMetaData*>::const_iterator base_iter = base_files.begin(); 636 std::vector<FileMetaData*>::const_iterator base_end = base_files.end(); 637 const FileSet* added = levels_[level].added_files; 638 v->files_[level].reserve(base_files.size() + added->size()); 639 for (FileSet::const_iterator added_iter = added->begin(); 640 added_iter != added->end(); 641 ++added_iter) { 642 // Add all smaller files listed in base_ 643 for (std::vector<FileMetaData*>::const_iterator bpos 644 = std::upper_bound(base_iter, base_end, *added_iter, cmp); 645 base_iter != bpos; 646 ++base_iter) { 647 MaybeAddFile(v, level, *base_iter); 648 } 649 650 MaybeAddFile(v, level, *added_iter); 651 } 652 653 // Add remaining base files 654 for (; base_iter != base_end; ++base_iter) { 655 MaybeAddFile(v, level, *base_iter); 656 } 657 658 #ifndef NDEBUG 659 // Make sure there is no overlap in levels > 0 660 if (level > 0) { 661 for (uint32_t i = 1; i < v->files_[level].size(); i++) { 662 const InternalKey& prev_end = v->files_[level][i-1]->largest; 663 const InternalKey& this_begin = v->files_[level][i]->smallest; 664 if (vset_->icmp_.Compare(prev_end, this_begin) >= 0) { 665 fprintf(stderr, "overlapping ranges in same level %s vs. %s\n", 666 prev_end.DebugString().c_str(), 667 this_begin.DebugString().c_str()); 668 abort(); 669 } 670 } 671 } 672 #endif 673 } 674 } 675 676 void MaybeAddFile(Version* v, int level, FileMetaData* f) { 677 if (levels_[level].deleted_files.count(f->number) > 0) { 678 // File is deleted: do nothing 679 } else { 680 std::vector<FileMetaData*>* files = &v->files_[level]; 681 if (level > 0 && !files->empty()) { 682 // Must not overlap 683 assert(vset_->icmp_.Compare((*files)[files->size()-1]->largest, 684 f->smallest) < 0); 685 } 686 f->refs++; 687 files->push_back(f); 688 } 689 } 690 }; 691 692 VersionSet::VersionSet(const std::string& dbname, 693 const Options* options, 694 TableCache* table_cache, 695 const InternalKeyComparator* cmp) 696 : env_(options->env), 697 dbname_(dbname), 698 options_(options), 699 table_cache_(table_cache), 700 icmp_(*cmp), 701 next_file_number_(2), 702 manifest_file_number_(0), // Filled by Recover() 703 last_sequence_(0), 704 log_number_(0), 705 prev_log_number_(0), 706 descriptor_file_(NULL), 707 descriptor_log_(NULL), 708 dummy_versions_(this), 709 current_(NULL) { 710 AppendVersion(new Version(this)); 711 } 712 713 VersionSet::~VersionSet() { 714 current_->Unref(); 715 assert(dummy_versions_.next_ == &dummy_versions_); // List must be empty 716 delete descriptor_log_; 717 delete descriptor_file_; 718 } 719 720 void VersionSet::AppendVersion(Version* v) { 721 // Make "v" current 722 assert(v->refs_ == 0); 723 assert(v != current_); 724 if (current_ != NULL) { 725 current_->Unref(); 726 } 727 current_ = v; 728 v->Ref(); 729 730 // Append to linked list 731 v->prev_ = dummy_versions_.prev_; 732 v->next_ = &dummy_versions_; 733 v->prev_->next_ = v; 734 v->next_->prev_ = v; 735 } 736 737 Status VersionSet::LogAndApply(VersionEdit* edit, port::Mutex* mu) { 738 if (edit->has_log_number_) { 739 assert(edit->log_number_ >= log_number_); 740 assert(edit->log_number_ < next_file_number_); 741 } else { 742 edit->SetLogNumber(log_number_); 743 } 744 745 if (!edit->has_prev_log_number_) { 746 edit->SetPrevLogNumber(prev_log_number_); 747 } 748 749 edit->SetNextFile(next_file_number_); 750 edit->SetLastSequence(last_sequence_); 751 752 Version* v = new Version(this); 753 { 754 Builder builder(this, current_); 755 builder.Apply(edit); 756 builder.SaveTo(v); 757 } 758 Finalize(v); 759 760 // Initialize new descriptor log file if necessary by creating 761 // a temporary file that contains a snapshot of the current version. 762 std::string new_manifest_file; 763 Status s; 764 if (descriptor_log_ == NULL) { 765 // No reason to unlock *mu here since we only hit this path in the 766 // first call to LogAndApply (when opening the database). 767 assert(descriptor_file_ == NULL); 768 new_manifest_file = DescriptorFileName(dbname_, manifest_file_number_); 769 edit->SetNextFile(next_file_number_); 770 s = env_->NewWritableFile(new_manifest_file, &descriptor_file_); 771 if (s.ok()) { 772 descriptor_log_ = new log::Writer(descriptor_file_); 773 s = WriteSnapshot(descriptor_log_); 774 } 775 } 776 777 // Unlock during expensive MANIFEST log write 778 { 779 mu->Unlock(); 780 781 // Write new record to MANIFEST log 782 if (s.ok()) { 783 std::string record; 784 edit->EncodeTo(&record); 785 s = descriptor_log_->AddRecord(record); 786 if (s.ok()) { 787 s = descriptor_file_->Sync(); 788 } 789 if (!s.ok()) { 790 Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str()); 791 if (ManifestContains(record)) { 792 Log(options_->info_log, 793 "MANIFEST contains log record despite error; advancing to new " 794 "version to prevent mismatch between in-memory and logged state"); 795 s = Status::OK(); 796 } 797 } 798 } 799 800 // If we just created a new descriptor file, install it by writing a 801 // new CURRENT file that points to it. 802 if (s.ok() && !new_manifest_file.empty()) { 803 s = SetCurrentFile(env_, dbname_, manifest_file_number_); 804 // No need to double-check MANIFEST in case of error since it 805 // will be discarded below. 806 } 807 808 mu->Lock(); 809 } 810 811 // Install the new version 812 if (s.ok()) { 813 AppendVersion(v); 814 log_number_ = edit->log_number_; 815 prev_log_number_ = edit->prev_log_number_; 816 } else { 817 delete v; 818 if (!new_manifest_file.empty()) { 819 delete descriptor_log_; 820 delete descriptor_file_; 821 descriptor_log_ = NULL; 822 descriptor_file_ = NULL; 823 env_->DeleteFile(new_manifest_file); 824 } 825 } 826 827 return s; 828 } 829 830 Status VersionSet::Recover() { 831 struct LogReporter : public log::Reader::Reporter { 832 Status* status; 833 virtual void Corruption(size_t bytes, const Status& s) { 834 if (this->status->ok()) *this->status = s; 835 } 836 }; 837 838 // Read "CURRENT" file, which contains a pointer to the current manifest file 839 std::string current; 840 Status s = ReadFileToString(env_, CurrentFileName(dbname_), ¤t); 841 if (!s.ok()) { 842 return s; 843 } 844 if (current.empty() || current[current.size()-1] != '\n') { 845 return Status::Corruption("CURRENT file does not end with newline"); 846 } 847 current.resize(current.size() - 1); 848 849 std::string dscname = dbname_ + "/" + current; 850 SequentialFile* file; 851 s = env_->NewSequentialFile(dscname, &file); 852 if (!s.ok()) { 853 return s; 854 } 855 856 bool have_log_number = false; 857 bool have_prev_log_number = false; 858 bool have_next_file = false; 859 bool have_last_sequence = false; 860 uint64_t next_file = 0; 861 uint64_t last_sequence = 0; 862 uint64_t log_number = 0; 863 uint64_t prev_log_number = 0; 864 Builder builder(this, current_); 865 866 { 867 LogReporter reporter; 868 reporter.status = &s; 869 log::Reader reader(file, &reporter, true/*checksum*/, 0/*initial_offset*/); 870 Slice record; 871 std::string scratch; 872 while (reader.ReadRecord(&record, &scratch) && s.ok()) { 873 VersionEdit edit; 874 s = edit.DecodeFrom(record); 875 if (s.ok()) { 876 if (edit.has_comparator_ && 877 edit.comparator_ != icmp_.user_comparator()->Name()) { 878 s = Status::InvalidArgument( 879 edit.comparator_ + " does not match existing comparator ", 880 icmp_.user_comparator()->Name()); 881 } 882 } 883 884 if (s.ok()) { 885 builder.Apply(&edit); 886 } 887 888 if (edit.has_log_number_) { 889 log_number = edit.log_number_; 890 have_log_number = true; 891 } 892 893 if (edit.has_prev_log_number_) { 894 prev_log_number = edit.prev_log_number_; 895 have_prev_log_number = true; 896 } 897 898 if (edit.has_next_file_number_) { 899 next_file = edit.next_file_number_; 900 have_next_file = true; 901 } 902 903 if (edit.has_last_sequence_) { 904 last_sequence = edit.last_sequence_; 905 have_last_sequence = true; 906 } 907 } 908 } 909 delete file; 910 file = NULL; 911 912 if (s.ok()) { 913 if (!have_next_file) { 914 s = Status::Corruption("no meta-nextfile entry in descriptor"); 915 } else if (!have_log_number) { 916 s = Status::Corruption("no meta-lognumber entry in descriptor"); 917 } else if (!have_last_sequence) { 918 s = Status::Corruption("no last-sequence-number entry in descriptor"); 919 } 920 921 if (!have_prev_log_number) { 922 prev_log_number = 0; 923 } 924 925 MarkFileNumberUsed(prev_log_number); 926 MarkFileNumberUsed(log_number); 927 } 928 929 if (s.ok()) { 930 Version* v = new Version(this); 931 builder.SaveTo(v); 932 // Install recovered version 933 Finalize(v); 934 AppendVersion(v); 935 manifest_file_number_ = next_file; 936 next_file_number_ = next_file + 1; 937 last_sequence_ = last_sequence; 938 log_number_ = log_number; 939 prev_log_number_ = prev_log_number; 940 } 941 942 return s; 943 } 944 945 void VersionSet::MarkFileNumberUsed(uint64_t number) { 946 if (next_file_number_ <= number) { 947 next_file_number_ = number + 1; 948 } 949 } 950 951 void VersionSet::Finalize(Version* v) { 952 // Precomputed best level for next compaction 953 int best_level = -1; 954 double best_score = -1; 955 956 for (int level = 0; level < config::kNumLevels-1; level++) { 957 double score; 958 if (level == 0) { 959 // We treat level-0 specially by bounding the number of files 960 // instead of number of bytes for two reasons: 961 // 962 // (1) With larger write-buffer sizes, it is nice not to do too 963 // many level-0 compactions. 964 // 965 // (2) The files in level-0 are merged on every read and 966 // therefore we wish to avoid too many files when the individual 967 // file size is small (perhaps because of a small write-buffer 968 // setting, or very high compression ratios, or lots of 969 // overwrites/deletions). 970 score = v->files_[level].size() / 971 static_cast<double>(config::kL0_CompactionTrigger); 972 } else { 973 // Compute the ratio of current size to size limit. 974 const uint64_t level_bytes = TotalFileSize(v->files_[level]); 975 score = static_cast<double>(level_bytes) / MaxBytesForLevel(level); 976 } 977 978 if (score > best_score) { 979 best_level = level; 980 best_score = score; 981 } 982 } 983 984 v->compaction_level_ = best_level; 985 v->compaction_score_ = best_score; 986 } 987 988 Status VersionSet::WriteSnapshot(log::Writer* log) { 989 // TODO: Break up into multiple records to reduce memory usage on recovery? 990 991 // Save metadata 992 VersionEdit edit; 993 edit.SetComparatorName(icmp_.user_comparator()->Name()); 994 995 // Save compaction pointers 996 for (int level = 0; level < config::kNumLevels; level++) { 997 if (!compact_pointer_[level].empty()) { 998 InternalKey key; 999 key.DecodeFrom(compact_pointer_[level]); 1000 edit.SetCompactPointer(level, key); 1001 } 1002 } 1003 1004 // Save files 1005 for (int level = 0; level < config::kNumLevels; level++) { 1006 const std::vector<FileMetaData*>& files = current_->files_[level]; 1007 for (size_t i = 0; i < files.size(); i++) { 1008 const FileMetaData* f = files[i]; 1009 edit.AddFile(level, f->number, f->file_size, f->smallest, f->largest); 1010 } 1011 } 1012 1013 std::string record; 1014 edit.EncodeTo(&record); 1015 return log->AddRecord(record); 1016 } 1017 1018 int VersionSet::NumLevelFiles(int level) const { 1019 assert(level >= 0); 1020 assert(level < config::kNumLevels); 1021 return current_->files_[level].size(); 1022 } 1023 1024 const char* VersionSet::LevelSummary(LevelSummaryStorage* scratch) const { 1025 // Update code if kNumLevels changes 1026 assert(config::kNumLevels == 7); 1027 snprintf(scratch->buffer, sizeof(scratch->buffer), 1028 "files[ %d %d %d %d %d %d %d ]", 1029 int(current_->files_[0].size()), 1030 int(current_->files_[1].size()), 1031 int(current_->files_[2].size()), 1032 int(current_->files_[3].size()), 1033 int(current_->files_[4].size()), 1034 int(current_->files_[5].size()), 1035 int(current_->files_[6].size())); 1036 return scratch->buffer; 1037 } 1038 1039 // Return true iff the manifest contains the specified record. 1040 bool VersionSet::ManifestContains(const std::string& record) const { 1041 std::string fname = DescriptorFileName(dbname_, manifest_file_number_); 1042 Log(options_->info_log, "ManifestContains: checking %s\n", fname.c_str()); 1043 SequentialFile* file = NULL; 1044 Status s = env_->NewSequentialFile(fname, &file); 1045 if (!s.ok()) { 1046 Log(options_->info_log, "ManifestContains: %s\n", s.ToString().c_str()); 1047 return false; 1048 } 1049 log::Reader reader(file, NULL, true/*checksum*/, 0); 1050 Slice r; 1051 std::string scratch; 1052 bool result = false; 1053 while (reader.ReadRecord(&r, &scratch)) { 1054 if (r == Slice(record)) { 1055 result = true; 1056 break; 1057 } 1058 } 1059 delete file; 1060 Log(options_->info_log, "ManifestContains: result = %d\n", result ? 1 : 0); 1061 return result; 1062 } 1063 1064 uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) { 1065 uint64_t result = 0; 1066 for (int level = 0; level < config::kNumLevels; level++) { 1067 const std::vector<FileMetaData*>& files = v->files_[level]; 1068 for (size_t i = 0; i < files.size(); i++) { 1069 if (icmp_.Compare(files[i]->largest, ikey) <= 0) { 1070 // Entire file is before "ikey", so just add the file size 1071 result += files[i]->file_size; 1072 } else if (icmp_.Compare(files[i]->smallest, ikey) > 0) { 1073 // Entire file is after "ikey", so ignore 1074 if (level > 0) { 1075 // Files other than level 0 are sorted by meta->smallest, so 1076 // no further files in this level will contain data for 1077 // "ikey". 1078 break; 1079 } 1080 } else { 1081 // "ikey" falls in the range for this table. Add the 1082 // approximate offset of "ikey" within the table. 1083 Table* tableptr; 1084 Iterator* iter = table_cache_->NewIterator( 1085 ReadOptions(), files[i]->number, files[i]->file_size, &tableptr); 1086 if (tableptr != NULL) { 1087 result += tableptr->ApproximateOffsetOf(ikey.Encode()); 1088 } 1089 delete iter; 1090 } 1091 } 1092 } 1093 return result; 1094 } 1095 1096 void VersionSet::AddLiveFiles(std::set<uint64_t>* live) { 1097 for (Version* v = dummy_versions_.next_; 1098 v != &dummy_versions_; 1099 v = v->next_) { 1100 for (int level = 0; level < config::kNumLevels; level++) { 1101 const std::vector<FileMetaData*>& files = v->files_[level]; 1102 for (size_t i = 0; i < files.size(); i++) { 1103 live->insert(files[i]->number); 1104 } 1105 } 1106 } 1107 } 1108 1109 int64_t VersionSet::NumLevelBytes(int level) const { 1110 assert(level >= 0); 1111 assert(level < config::kNumLevels); 1112 return TotalFileSize(current_->files_[level]); 1113 } 1114 1115 int64_t VersionSet::MaxNextLevelOverlappingBytes() { 1116 int64_t result = 0; 1117 std::vector<FileMetaData*> overlaps; 1118 for (int level = 1; level < config::kNumLevels - 1; level++) { 1119 for (size_t i = 0; i < current_->files_[level].size(); i++) { 1120 const FileMetaData* f = current_->files_[level][i]; 1121 current_->GetOverlappingInputs(level+1, &f->smallest, &f->largest, 1122 &overlaps); 1123 const int64_t sum = TotalFileSize(overlaps); 1124 if (sum > result) { 1125 result = sum; 1126 } 1127 } 1128 } 1129 return result; 1130 } 1131 1132 // Stores the minimal range that covers all entries in inputs in 1133 // *smallest, *largest. 1134 // REQUIRES: inputs is not empty 1135 void VersionSet::GetRange(const std::vector<FileMetaData*>& inputs, 1136 InternalKey* smallest, 1137 InternalKey* largest) { 1138 assert(!inputs.empty()); 1139 smallest->Clear(); 1140 largest->Clear(); 1141 for (size_t i = 0; i < inputs.size(); i++) { 1142 FileMetaData* f = inputs[i]; 1143 if (i == 0) { 1144 *smallest = f->smallest; 1145 *largest = f->largest; 1146 } else { 1147 if (icmp_.Compare(f->smallest, *smallest) < 0) { 1148 *smallest = f->smallest; 1149 } 1150 if (icmp_.Compare(f->largest, *largest) > 0) { 1151 *largest = f->largest; 1152 } 1153 } 1154 } 1155 } 1156 1157 // Stores the minimal range that covers all entries in inputs1 and inputs2 1158 // in *smallest, *largest. 1159 // REQUIRES: inputs is not empty 1160 void VersionSet::GetRange2(const std::vector<FileMetaData*>& inputs1, 1161 const std::vector<FileMetaData*>& inputs2, 1162 InternalKey* smallest, 1163 InternalKey* largest) { 1164 std::vector<FileMetaData*> all = inputs1; 1165 all.insert(all.end(), inputs2.begin(), inputs2.end()); 1166 GetRange(all, smallest, largest); 1167 } 1168 1169 Iterator* VersionSet::MakeInputIterator(Compaction* c) { 1170 ReadOptions options; 1171 options.verify_checksums = options_->paranoid_checks; 1172 options.fill_cache = false; 1173 1174 // Level-0 files have to be merged together. For other levels, 1175 // we will make a concatenating iterator per level. 1176 // TODO(opt): use concatenating iterator for level-0 if there is no overlap 1177 const int space = (c->level() == 0 ? c->inputs_[0].size() + 1 : 2); 1178 Iterator** list = new Iterator*[space]; 1179 int num = 0; 1180 for (int which = 0; which < 2; which++) { 1181 if (!c->inputs_[which].empty()) { 1182 if (c->level() + which == 0) { 1183 const std::vector<FileMetaData*>& files = c->inputs_[which]; 1184 for (size_t i = 0; i < files.size(); i++) { 1185 list[num++] = table_cache_->NewIterator( 1186 options, files[i]->number, files[i]->file_size); 1187 } 1188 } else { 1189 // Create concatenating iterator for the files from this level 1190 list[num++] = NewTwoLevelIterator( 1191 new Version::LevelFileNumIterator(icmp_, &c->inputs_[which]), 1192 &GetFileIterator, table_cache_, options); 1193 } 1194 } 1195 } 1196 assert(num <= space); 1197 Iterator* result = NewMergingIterator(&icmp_, list, num); 1198 delete[] list; 1199 return result; 1200 } 1201 1202 Compaction* VersionSet::PickCompaction() { 1203 Compaction* c; 1204 int level; 1205 1206 // We prefer compactions triggered by too much data in a level over 1207 // the compactions triggered by seeks. 1208 const bool size_compaction = (current_->compaction_score_ >= 1); 1209 const bool seek_compaction = (current_->file_to_compact_ != NULL); 1210 if (size_compaction) { 1211 level = current_->compaction_level_; 1212 assert(level >= 0); 1213 assert(level+1 < config::kNumLevels); 1214 c = new Compaction(level); 1215 1216 // Pick the first file that comes after compact_pointer_[level] 1217 for (size_t i = 0; i < current_->files_[level].size(); i++) { 1218 FileMetaData* f = current_->files_[level][i]; 1219 if (compact_pointer_[level].empty() || 1220 icmp_.Compare(f->largest.Encode(), compact_pointer_[level]) > 0) { 1221 c->inputs_[0].push_back(f); 1222 break; 1223 } 1224 } 1225 if (c->inputs_[0].empty()) { 1226 // Wrap-around to the beginning of the key space 1227 c->inputs_[0].push_back(current_->files_[level][0]); 1228 } 1229 } else if (seek_compaction) { 1230 level = current_->file_to_compact_level_; 1231 c = new Compaction(level); 1232 c->inputs_[0].push_back(current_->file_to_compact_); 1233 } else { 1234 return NULL; 1235 } 1236 1237 c->input_version_ = current_; 1238 c->input_version_->Ref(); 1239 1240 // Files in level 0 may overlap each other, so pick up all overlapping ones 1241 if (level == 0) { 1242 InternalKey smallest, largest; 1243 GetRange(c->inputs_[0], &smallest, &largest); 1244 // Note that the next call will discard the file we placed in 1245 // c->inputs_[0] earlier and replace it with an overlapping set 1246 // which will include the picked file. 1247 current_->GetOverlappingInputs(0, &smallest, &largest, &c->inputs_[0]); 1248 assert(!c->inputs_[0].empty()); 1249 } 1250 1251 SetupOtherInputs(c); 1252 1253 return c; 1254 } 1255 1256 void VersionSet::SetupOtherInputs(Compaction* c) { 1257 const int level = c->level(); 1258 InternalKey smallest, largest; 1259 GetRange(c->inputs_[0], &smallest, &largest); 1260 1261 current_->GetOverlappingInputs(level+1, &smallest, &largest, &c->inputs_[1]); 1262 1263 // Get entire range covered by compaction 1264 InternalKey all_start, all_limit; 1265 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); 1266 1267 // See if we can grow the number of inputs in "level" without 1268 // changing the number of "level+1" files we pick up. 1269 if (!c->inputs_[1].empty()) { 1270 std::vector<FileMetaData*> expanded0; 1271 current_->GetOverlappingInputs(level, &all_start, &all_limit, &expanded0); 1272 const int64_t inputs0_size = TotalFileSize(c->inputs_[0]); 1273 const int64_t inputs1_size = TotalFileSize(c->inputs_[1]); 1274 const int64_t expanded0_size = TotalFileSize(expanded0); 1275 if (expanded0.size() > c->inputs_[0].size() && 1276 inputs1_size + expanded0_size < kExpandedCompactionByteSizeLimit) { 1277 InternalKey new_start, new_limit; 1278 GetRange(expanded0, &new_start, &new_limit); 1279 std::vector<FileMetaData*> expanded1; 1280 current_->GetOverlappingInputs(level+1, &new_start, &new_limit, 1281 &expanded1); 1282 if (expanded1.size() == c->inputs_[1].size()) { 1283 Log(options_->info_log, 1284 "Expanding@%d %d+%d (%ld+%ld bytes) to %d+%d (%ld+%ld bytes)\n", 1285 level, 1286 int(c->inputs_[0].size()), 1287 int(c->inputs_[1].size()), 1288 long(inputs0_size), long(inputs1_size), 1289 int(expanded0.size()), 1290 int(expanded1.size()), 1291 long(expanded0_size), long(inputs1_size)); 1292 smallest = new_start; 1293 largest = new_limit; 1294 c->inputs_[0] = expanded0; 1295 c->inputs_[1] = expanded1; 1296 GetRange2(c->inputs_[0], c->inputs_[1], &all_start, &all_limit); 1297 } 1298 } 1299 } 1300 1301 // Compute the set of grandparent files that overlap this compaction 1302 // (parent == level+1; grandparent == level+2) 1303 if (level + 2 < config::kNumLevels) { 1304 current_->GetOverlappingInputs(level + 2, &all_start, &all_limit, 1305 &c->grandparents_); 1306 } 1307 1308 if (false) { 1309 Log(options_->info_log, "Compacting %d '%s' .. '%s'", 1310 level, 1311 smallest.DebugString().c_str(), 1312 largest.DebugString().c_str()); 1313 } 1314 1315 // Update the place where we will do the next compaction for this level. 1316 // We update this immediately instead of waiting for the VersionEdit 1317 // to be applied so that if the compaction fails, we will try a different 1318 // key range next time. 1319 compact_pointer_[level] = largest.Encode().ToString(); 1320 c->edit_.SetCompactPointer(level, largest); 1321 } 1322 1323 Compaction* VersionSet::CompactRange( 1324 int level, 1325 const InternalKey* begin, 1326 const InternalKey* end) { 1327 std::vector<FileMetaData*> inputs; 1328 current_->GetOverlappingInputs(level, begin, end, &inputs); 1329 if (inputs.empty()) { 1330 return NULL; 1331 } 1332 1333 // Avoid compacting too much in one shot in case the range is large. 1334 // But we cannot do this for level-0 since level-0 files can overlap 1335 // and we must not pick one file and drop another older file if the 1336 // two files overlap. 1337 if (level > 0) { 1338 const uint64_t limit = MaxFileSizeForLevel(level); 1339 uint64_t total = 0; 1340 for (size_t i = 0; i < inputs.size(); i++) { 1341 uint64_t s = inputs[i]->file_size; 1342 total += s; 1343 if (total >= limit) { 1344 inputs.resize(i + 1); 1345 break; 1346 } 1347 } 1348 } 1349 1350 Compaction* c = new Compaction(level); 1351 c->input_version_ = current_; 1352 c->input_version_->Ref(); 1353 c->inputs_[0] = inputs; 1354 SetupOtherInputs(c); 1355 return c; 1356 } 1357 1358 Compaction::Compaction(int level) 1359 : level_(level), 1360 max_output_file_size_(MaxFileSizeForLevel(level)), 1361 input_version_(NULL), 1362 grandparent_index_(0), 1363 seen_key_(false), 1364 overlapped_bytes_(0) { 1365 for (int i = 0; i < config::kNumLevels; i++) { 1366 level_ptrs_[i] = 0; 1367 } 1368 } 1369 1370 Compaction::~Compaction() { 1371 if (input_version_ != NULL) { 1372 input_version_->Unref(); 1373 } 1374 } 1375 1376 bool Compaction::IsTrivialMove() const { 1377 // Avoid a move if there is lots of overlapping grandparent data. 1378 // Otherwise, the move could create a parent file that will require 1379 // a very expensive merge later on. 1380 return (num_input_files(0) == 1 && 1381 num_input_files(1) == 0 && 1382 TotalFileSize(grandparents_) <= kMaxGrandParentOverlapBytes); 1383 } 1384 1385 void Compaction::AddInputDeletions(VersionEdit* edit) { 1386 for (int which = 0; which < 2; which++) { 1387 for (size_t i = 0; i < inputs_[which].size(); i++) { 1388 edit->DeleteFile(level_ + which, inputs_[which][i]->number); 1389 } 1390 } 1391 } 1392 1393 bool Compaction::IsBaseLevelForKey(const Slice& user_key) { 1394 // Maybe use binary search to find right entry instead of linear search? 1395 const Comparator* user_cmp = input_version_->vset_->icmp_.user_comparator(); 1396 for (int lvl = level_ + 2; lvl < config::kNumLevels; lvl++) { 1397 const std::vector<FileMetaData*>& files = input_version_->files_[lvl]; 1398 for (; level_ptrs_[lvl] < files.size(); ) { 1399 FileMetaData* f = files[level_ptrs_[lvl]]; 1400 if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) { 1401 // We've advanced far enough 1402 if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) { 1403 // Key falls in this file's range, so definitely not base level 1404 return false; 1405 } 1406 break; 1407 } 1408 level_ptrs_[lvl]++; 1409 } 1410 } 1411 return true; 1412 } 1413 1414 bool Compaction::ShouldStopBefore(const Slice& internal_key) { 1415 // Scan to find earliest grandparent file that contains key. 1416 const InternalKeyComparator* icmp = &input_version_->vset_->icmp_; 1417 while (grandparent_index_ < grandparents_.size() && 1418 icmp->Compare(internal_key, 1419 grandparents_[grandparent_index_]->largest.Encode()) > 0) { 1420 if (seen_key_) { 1421 overlapped_bytes_ += grandparents_[grandparent_index_]->file_size; 1422 } 1423 grandparent_index_++; 1424 } 1425 seen_key_ = true; 1426 1427 if (overlapped_bytes_ > kMaxGrandParentOverlapBytes) { 1428 // Too much overlap for current output; start new output 1429 overlapped_bytes_ = 0; 1430 return true; 1431 } else { 1432 return false; 1433 } 1434 } 1435 1436 void Compaction::ReleaseInputs() { 1437 if (input_version_ != NULL) { 1438 input_version_->Unref(); 1439 input_version_ = NULL; 1440 } 1441 } 1442 1443 } // namespace leveldb 1444