Home | History | Annotate | Download | only in bsdsrc
      1 /*-
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* @(#)gamma.c	8.1 (Berkeley) 6/4/93 */
     35 #include <sys/cdefs.h>
     36 __FBSDID("$FreeBSD$");
     37 
     38 /*
     39  * This code by P. McIlroy, Oct 1992;
     40  *
     41  * The financial support of UUNET Communications Services is greatfully
     42  * acknowledged.
     43  */
     44 
     45 #include <math.h>
     46 #include "mathimpl.h"
     47 
     48 /* METHOD:
     49  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
     50  * 	At negative integers, return NaN and raise invalid.
     51  *
     52  * x < 6.5:
     53  *	Use argument reduction G(x+1) = xG(x) to reach the
     54  *	range [1.066124,2.066124].  Use a rational
     55  *	approximation centered at the minimum (x0+1) to
     56  *	ensure monotonicity.
     57  *
     58  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
     59  *	adjusted for equal-ripples:
     60  *
     61  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
     62  *
     63  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
     64  *	avoid premature round-off.
     65  *
     66  * Special values:
     67  *	-Inf:			return NaN and raise invalid;
     68  *	negative integer:	return NaN and raise invalid;
     69  *	other x ~< 177.79:	return +-0 and raise underflow;
     70  *	+-0:			return +-Inf and raise divide-by-zero;
     71  *	finite x ~> 171.63:	return +Inf and raise overflow;
     72  *	+Inf:			return +Inf;
     73  *	NaN: 			return NaN.
     74  *
     75  * Accuracy: tgamma(x) is accurate to within
     76  *	x > 0:  error provably < 0.9ulp.
     77  *	Maximum observed in 1,000,000 trials was .87ulp.
     78  *	x < 0:
     79  *	Maximum observed error < 4ulp in 1,000,000 trials.
     80  */
     81 
     82 static double neg_gam(double);
     83 static double small_gam(double);
     84 static double smaller_gam(double);
     85 static struct Double large_gam(double);
     86 static struct Double ratfun_gam(double, double);
     87 
     88 /*
     89  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
     90  * [1.066.., 2.066..] accurate to 4.25e-19.
     91  */
     92 #define LEFT -.3955078125	/* left boundary for rat. approx */
     93 #define x0 .461632144968362356785	/* xmin - 1 */
     94 
     95 #define a0_hi 0.88560319441088874992
     96 #define a0_lo -.00000000000000004996427036469019695
     97 #define P0	 6.21389571821820863029017800727e-01
     98 #define P1	 2.65757198651533466104979197553e-01
     99 #define P2	 5.53859446429917461063308081748e-03
    100 #define P3	 1.38456698304096573887145282811e-03
    101 #define P4	 2.40659950032711365819348969808e-03
    102 #define Q0	 1.45019531250000000000000000000e+00
    103 #define Q1	 1.06258521948016171343454061571e+00
    104 #define Q2	-2.07474561943859936441469926649e-01
    105 #define Q3	-1.46734131782005422506287573015e-01
    106 #define Q4	 3.07878176156175520361557573779e-02
    107 #define Q5	 5.12449347980666221336054633184e-03
    108 #define Q6	-1.76012741431666995019222898833e-03
    109 #define Q7	 9.35021023573788935372153030556e-05
    110 #define Q8	 6.13275507472443958924745652239e-06
    111 /*
    112  * Constants for large x approximation (x in [6, Inf])
    113  * (Accurate to 2.8*10^-19 absolute)
    114  */
    115 #define lns2pi_hi 0.418945312500000
    116 #define lns2pi_lo -.000006779295327258219670263595
    117 #define Pa0	 8.33333333333333148296162562474e-02
    118 #define Pa1	-2.77777777774548123579378966497e-03
    119 #define Pa2	 7.93650778754435631476282786423e-04
    120 #define Pa3	-5.95235082566672847950717262222e-04
    121 #define Pa4	 8.41428560346653702135821806252e-04
    122 #define Pa5	-1.89773526463879200348872089421e-03
    123 #define Pa6	 5.69394463439411649408050664078e-03
    124 #define Pa7	-1.44705562421428915453880392761e-02
    125 
    126 static const double zero = 0., one = 1.0, tiny = 1e-300;
    127 
    128 double
    129 tgamma(x)
    130 	double x;
    131 {
    132 	struct Double u;
    133 
    134 	if (x >= 6) {
    135 		if(x > 171.63)
    136 			return (x / zero);
    137 		u = large_gam(x);
    138 		return(__exp__D(u.a, u.b));
    139 	} else if (x >= 1.0 + LEFT + x0)
    140 		return (small_gam(x));
    141 	else if (x > 1.e-17)
    142 		return (smaller_gam(x));
    143 	else if (x > -1.e-17) {
    144 		if (x != 0.0)
    145 			u.a = one - tiny;	/* raise inexact */
    146 		return (one/x);
    147 	} else if (!finite(x))
    148 		return (x - x);		/* x is NaN or -Inf */
    149 	else
    150 		return (neg_gam(x));
    151 }
    152 /*
    153  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
    154  */
    155 static struct Double
    156 large_gam(x)
    157 	double x;
    158 {
    159 	double z, p;
    160 	struct Double t, u, v;
    161 
    162 	z = one/(x*x);
    163 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
    164 	p = p/x;
    165 
    166 	u = __log__D(x);
    167 	u.a -= one;
    168 	v.a = (x -= .5);
    169 	TRUNC(v.a);
    170 	v.b = x - v.a;
    171 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
    172 	t.b = v.b*u.a + x*u.b;
    173 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
    174 	t.b += lns2pi_lo; t.b += p;
    175 	u.a = lns2pi_hi + t.b; u.a += t.a;
    176 	u.b = t.a - u.a;
    177 	u.b += lns2pi_hi; u.b += t.b;
    178 	return (u);
    179 }
    180 /*
    181  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
    182  * It also has correct monotonicity.
    183  */
    184 static double
    185 small_gam(x)
    186 	double x;
    187 {
    188 	double y, ym1, t;
    189 	struct Double yy, r;
    190 	y = x - one;
    191 	ym1 = y - one;
    192 	if (y <= 1.0 + (LEFT + x0)) {
    193 		yy = ratfun_gam(y - x0, 0);
    194 		return (yy.a + yy.b);
    195 	}
    196 	r.a = y;
    197 	TRUNC(r.a);
    198 	yy.a = r.a - one;
    199 	y = ym1;
    200 	yy.b = r.b = y - yy.a;
    201 	/* Argument reduction: G(x+1) = x*G(x) */
    202 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
    203 		t = r.a*yy.a;
    204 		r.b = r.a*yy.b + y*r.b;
    205 		r.a = t;
    206 		TRUNC(r.a);
    207 		r.b += (t - r.a);
    208 	}
    209 	/* Return r*tgamma(y). */
    210 	yy = ratfun_gam(y - x0, 0);
    211 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
    212 	y += yy.a*r.a;
    213 	return (y);
    214 }
    215 /*
    216  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
    217  */
    218 static double
    219 smaller_gam(x)
    220 	double x;
    221 {
    222 	double t, d;
    223 	struct Double r, xx;
    224 	if (x < x0 + LEFT) {
    225 		t = x, TRUNC(t);
    226 		d = (t+x)*(x-t);
    227 		t *= t;
    228 		xx.a = (t + x), TRUNC(xx.a);
    229 		xx.b = x - xx.a; xx.b += t; xx.b += d;
    230 		t = (one-x0); t += x;
    231 		d = (one-x0); d -= t; d += x;
    232 		x = xx.a + xx.b;
    233 	} else {
    234 		xx.a =  x, TRUNC(xx.a);
    235 		xx.b = x - xx.a;
    236 		t = x - x0;
    237 		d = (-x0 -t); d += x;
    238 	}
    239 	r = ratfun_gam(t, d);
    240 	d = r.a/x, TRUNC(d);
    241 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
    242 	return (d + r.a/x);
    243 }
    244 /*
    245  * returns (z+c)^2 * P(z)/Q(z) + a0
    246  */
    247 static struct Double
    248 ratfun_gam(z, c)
    249 	double z, c;
    250 {
    251 	double p, q;
    252 	struct Double r, t;
    253 
    254 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
    255 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
    256 
    257 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
    258 	p = p/q;
    259 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
    260 	t.b = (z - t.a) + c;
    261 	t.b *= (t.a + z);
    262 	q = (t.a *= t.a);		/* t = (z+c)^2 */
    263 	TRUNC(t.a);
    264 	t.b += (q - t.a);
    265 	r.a = p, TRUNC(r.a);		/* r = P/Q */
    266 	r.b = p - r.a;
    267 	t.b = t.b*p + t.a*r.b + a0_lo;
    268 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
    269 	r.a = t.a + a0_hi, TRUNC(r.a);
    270 	r.b = ((a0_hi-r.a) + t.a) + t.b;
    271 	return (r);			/* r = a0 + t */
    272 }
    273 
    274 static double
    275 neg_gam(x)
    276 	double x;
    277 {
    278 	int sgn = 1;
    279 	struct Double lg, lsine;
    280 	double y, z;
    281 
    282 	y = ceil(x);
    283 	if (y == x)		/* Negative integer. */
    284 		return ((x - x) / zero);
    285 	z = y - x;
    286 	if (z > 0.5)
    287 		z = one - z;
    288 	y = 0.5 * y;
    289 	if (y == ceil(y))
    290 		sgn = -1;
    291 	if (z < .25)
    292 		z = sin(M_PI*z);
    293 	else
    294 		z = cos(M_PI*(0.5-z));
    295 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
    296 	if (x < -170) {
    297 		if (x < -190)
    298 			return ((double)sgn*tiny*tiny);
    299 		y = one - x;		/* exact: 128 < |x| < 255 */
    300 		lg = large_gam(y);
    301 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
    302 		lg.a -= lsine.a;		/* exact (opposite signs) */
    303 		lg.b -= lsine.b;
    304 		y = -(lg.a + lg.b);
    305 		z = (y + lg.a) + lg.b;
    306 		y = __exp__D(y, z);
    307 		if (sgn < 0) y = -y;
    308 		return (y);
    309 	}
    310 	y = one-x;
    311 	if (one-y == x)
    312 		y = tgamma(y);
    313 	else		/* 1-x is inexact */
    314 		y = -x*tgamma(-x);
    315 	if (sgn < 0) y = -y;
    316 	return (M_PI / (y*z));
    317 }
    318