Home | History | Annotate | Download | only in AST
      1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implements C++ name mangling according to the Itanium C++ ABI,
     11 // which is used in GCC 3.2 and newer (and many compilers that are
     12 // ABI-compatible with GCC):
     13 //
     14 //   http://www.codesourcery.com/public/cxx-abi/abi.html
     15 //
     16 //===----------------------------------------------------------------------===//
     17 #include "clang/AST/Mangle.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Attr.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/ExprCXX.h"
     25 #include "clang/AST/ExprObjC.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Basic/ABI.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "llvm/ADT/StringExtras.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 
     34 #define MANGLE_CHECKER 0
     35 
     36 #if MANGLE_CHECKER
     37 #include <cxxabi.h>
     38 #endif
     39 
     40 using namespace clang;
     41 
     42 namespace {
     43 
     44 /// \brief Retrieve the declaration context that should be used when mangling
     45 /// the given declaration.
     46 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
     47   // The ABI assumes that lambda closure types that occur within
     48   // default arguments live in the context of the function. However, due to
     49   // the way in which Clang parses and creates function declarations, this is
     50   // not the case: the lambda closure type ends up living in the context
     51   // where the function itself resides, because the function declaration itself
     52   // had not yet been created. Fix the context here.
     53   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
     54     if (RD->isLambda())
     55       if (ParmVarDecl *ContextParam
     56             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
     57         return ContextParam->getDeclContext();
     58   }
     59 
     60   // Perform the same check for block literals.
     61   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
     62     if (ParmVarDecl *ContextParam
     63           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
     64       return ContextParam->getDeclContext();
     65   }
     66 
     67   const DeclContext *DC = D->getDeclContext();
     68   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
     69     return getEffectiveDeclContext(CD);
     70 
     71   return DC;
     72 }
     73 
     74 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
     75   return getEffectiveDeclContext(cast<Decl>(DC));
     76 }
     77 
     78 static bool isLocalContainerContext(const DeclContext *DC) {
     79   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
     80 }
     81 
     82 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
     83   const DeclContext *DC = getEffectiveDeclContext(D);
     84   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
     85     if (isLocalContainerContext(DC))
     86       return dyn_cast<RecordDecl>(D);
     87     D = cast<Decl>(DC);
     88     DC = getEffectiveDeclContext(D);
     89   }
     90   return 0;
     91 }
     92 
     93 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
     94   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
     95     return ftd->getTemplatedDecl();
     96 
     97   return fn;
     98 }
     99 
    100 static const NamedDecl *getStructor(const NamedDecl *decl) {
    101   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
    102   return (fn ? getStructor(fn) : decl);
    103 }
    104 
    105 static const unsigned UnknownArity = ~0U;
    106 
    107 class ItaniumMangleContext : public MangleContext {
    108   llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
    109   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
    110   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
    111   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
    112 
    113 public:
    114   explicit ItaniumMangleContext(ASTContext &Context,
    115                                 DiagnosticsEngine &Diags)
    116     : MangleContext(Context, Diags) { }
    117 
    118   uint64_t getAnonymousStructId(const TagDecl *TD) {
    119     std::pair<llvm::DenseMap<const TagDecl *,
    120       uint64_t>::iterator, bool> Result =
    121       AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
    122     return Result.first->second;
    123   }
    124 
    125   /// @name Mangler Entry Points
    126   /// @{
    127 
    128   bool shouldMangleDeclName(const NamedDecl *D);
    129   void mangleName(const NamedDecl *D, raw_ostream &);
    130   void mangleThunk(const CXXMethodDecl *MD,
    131                    const ThunkInfo &Thunk,
    132                    raw_ostream &);
    133   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
    134                           const ThisAdjustment &ThisAdjustment,
    135                           raw_ostream &);
    136   void mangleReferenceTemporary(const VarDecl *D,
    137                                 raw_ostream &);
    138   void mangleCXXVTable(const CXXRecordDecl *RD,
    139                        raw_ostream &);
    140   void mangleCXXVTT(const CXXRecordDecl *RD,
    141                     raw_ostream &);
    142   void mangleCXXVBTable(const CXXRecordDecl *Derived,
    143                         ArrayRef<const CXXRecordDecl *> BasePath,
    144                         raw_ostream &Out);
    145   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
    146                            const CXXRecordDecl *Type,
    147                            raw_ostream &);
    148   void mangleCXXRTTI(QualType T, raw_ostream &);
    149   void mangleCXXRTTIName(QualType T, raw_ostream &);
    150   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
    151                      raw_ostream &);
    152   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
    153                      raw_ostream &);
    154 
    155   void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
    156   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
    157   void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
    158 
    159   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
    160     // Lambda closure types are already numbered.
    161     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
    162       if (RD->isLambda())
    163         return false;
    164 
    165     // Anonymous tags are already numbered.
    166     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
    167       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
    168         return false;
    169     }
    170 
    171     // Use the canonical number for externally visible decls.
    172     if (ND->isExternallyVisible()) {
    173       unsigned discriminator = getASTContext().getManglingNumber(ND);
    174       if (discriminator == 1)
    175         return false;
    176       disc = discriminator - 2;
    177       return true;
    178     }
    179 
    180     // Make up a reasonable number for internal decls.
    181     unsigned &discriminator = Uniquifier[ND];
    182     if (!discriminator) {
    183       const DeclContext *DC = getEffectiveDeclContext(ND);
    184       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
    185     }
    186     if (discriminator == 1)
    187       return false;
    188     disc = discriminator-2;
    189     return true;
    190   }
    191   /// @}
    192 };
    193 
    194 /// CXXNameMangler - Manage the mangling of a single name.
    195 class CXXNameMangler {
    196   ItaniumMangleContext &Context;
    197   raw_ostream &Out;
    198 
    199   /// The "structor" is the top-level declaration being mangled, if
    200   /// that's not a template specialization; otherwise it's the pattern
    201   /// for that specialization.
    202   const NamedDecl *Structor;
    203   unsigned StructorType;
    204 
    205   /// SeqID - The next subsitution sequence number.
    206   unsigned SeqID;
    207 
    208   class FunctionTypeDepthState {
    209     unsigned Bits;
    210 
    211     enum { InResultTypeMask = 1 };
    212 
    213   public:
    214     FunctionTypeDepthState() : Bits(0) {}
    215 
    216     /// The number of function types we're inside.
    217     unsigned getDepth() const {
    218       return Bits >> 1;
    219     }
    220 
    221     /// True if we're in the return type of the innermost function type.
    222     bool isInResultType() const {
    223       return Bits & InResultTypeMask;
    224     }
    225 
    226     FunctionTypeDepthState push() {
    227       FunctionTypeDepthState tmp = *this;
    228       Bits = (Bits & ~InResultTypeMask) + 2;
    229       return tmp;
    230     }
    231 
    232     void enterResultType() {
    233       Bits |= InResultTypeMask;
    234     }
    235 
    236     void leaveResultType() {
    237       Bits &= ~InResultTypeMask;
    238     }
    239 
    240     void pop(FunctionTypeDepthState saved) {
    241       assert(getDepth() == saved.getDepth() + 1);
    242       Bits = saved.Bits;
    243     }
    244 
    245   } FunctionTypeDepth;
    246 
    247   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
    248 
    249   ASTContext &getASTContext() const { return Context.getASTContext(); }
    250 
    251 public:
    252   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
    253                  const NamedDecl *D = 0)
    254     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
    255       SeqID(0) {
    256     // These can't be mangled without a ctor type or dtor type.
    257     assert(!D || (!isa<CXXDestructorDecl>(D) &&
    258                   !isa<CXXConstructorDecl>(D)));
    259   }
    260   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
    261                  const CXXConstructorDecl *D, CXXCtorType Type)
    262     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    263       SeqID(0) { }
    264   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
    265                  const CXXDestructorDecl *D, CXXDtorType Type)
    266     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
    267       SeqID(0) { }
    268 
    269 #if MANGLE_CHECKER
    270   ~CXXNameMangler() {
    271     if (Out.str()[0] == '\01')
    272       return;
    273 
    274     int status = 0;
    275     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
    276     assert(status == 0 && "Could not demangle mangled name!");
    277     free(result);
    278   }
    279 #endif
    280   raw_ostream &getStream() { return Out; }
    281 
    282   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
    283   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
    284   void mangleNumber(const llvm::APSInt &I);
    285   void mangleNumber(int64_t Number);
    286   void mangleFloat(const llvm::APFloat &F);
    287   void mangleFunctionEncoding(const FunctionDecl *FD);
    288   void mangleName(const NamedDecl *ND);
    289   void mangleType(QualType T);
    290   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
    291 
    292 private:
    293   bool mangleSubstitution(const NamedDecl *ND);
    294   bool mangleSubstitution(QualType T);
    295   bool mangleSubstitution(TemplateName Template);
    296   bool mangleSubstitution(uintptr_t Ptr);
    297 
    298   void mangleExistingSubstitution(QualType type);
    299   void mangleExistingSubstitution(TemplateName name);
    300 
    301   bool mangleStandardSubstitution(const NamedDecl *ND);
    302 
    303   void addSubstitution(const NamedDecl *ND) {
    304     ND = cast<NamedDecl>(ND->getCanonicalDecl());
    305 
    306     addSubstitution(reinterpret_cast<uintptr_t>(ND));
    307   }
    308   void addSubstitution(QualType T);
    309   void addSubstitution(TemplateName Template);
    310   void addSubstitution(uintptr_t Ptr);
    311 
    312   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
    313                               NamedDecl *firstQualifierLookup,
    314                               bool recursive = false);
    315   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
    316                             NamedDecl *firstQualifierLookup,
    317                             DeclarationName name,
    318                             unsigned KnownArity = UnknownArity);
    319 
    320   void mangleName(const TemplateDecl *TD,
    321                   const TemplateArgument *TemplateArgs,
    322                   unsigned NumTemplateArgs);
    323   void mangleUnqualifiedName(const NamedDecl *ND) {
    324     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
    325   }
    326   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
    327                              unsigned KnownArity);
    328   void mangleUnscopedName(const NamedDecl *ND);
    329   void mangleUnscopedTemplateName(const TemplateDecl *ND);
    330   void mangleUnscopedTemplateName(TemplateName);
    331   void mangleSourceName(const IdentifierInfo *II);
    332   void mangleLocalName(const Decl *D);
    333   void mangleBlockForPrefix(const BlockDecl *Block);
    334   void mangleUnqualifiedBlock(const BlockDecl *Block);
    335   void mangleLambda(const CXXRecordDecl *Lambda);
    336   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
    337                         bool NoFunction=false);
    338   void mangleNestedName(const TemplateDecl *TD,
    339                         const TemplateArgument *TemplateArgs,
    340                         unsigned NumTemplateArgs);
    341   void manglePrefix(NestedNameSpecifier *qualifier);
    342   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
    343   void manglePrefix(QualType type);
    344   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
    345   void mangleTemplatePrefix(TemplateName Template);
    346   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
    347   void mangleQualifiers(Qualifiers Quals);
    348   void mangleRefQualifier(RefQualifierKind RefQualifier);
    349 
    350   void mangleObjCMethodName(const ObjCMethodDecl *MD);
    351 
    352   // Declare manglers for every type class.
    353 #define ABSTRACT_TYPE(CLASS, PARENT)
    354 #define NON_CANONICAL_TYPE(CLASS, PARENT)
    355 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
    356 #include "clang/AST/TypeNodes.def"
    357 
    358   void mangleType(const TagType*);
    359   void mangleType(TemplateName);
    360   void mangleBareFunctionType(const FunctionType *T,
    361                               bool MangleReturnType);
    362   void mangleNeonVectorType(const VectorType *T);
    363   void mangleAArch64NeonVectorType(const VectorType *T);
    364 
    365   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
    366   void mangleMemberExpr(const Expr *base, bool isArrow,
    367                         NestedNameSpecifier *qualifier,
    368                         NamedDecl *firstQualifierLookup,
    369                         DeclarationName name,
    370                         unsigned knownArity);
    371   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
    372   void mangleCXXCtorType(CXXCtorType T);
    373   void mangleCXXDtorType(CXXDtorType T);
    374 
    375   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
    376   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
    377                           unsigned NumTemplateArgs);
    378   void mangleTemplateArgs(const TemplateArgumentList &AL);
    379   void mangleTemplateArg(TemplateArgument A);
    380 
    381   void mangleTemplateParameter(unsigned Index);
    382 
    383   void mangleFunctionParam(const ParmVarDecl *parm);
    384 };
    385 
    386 }
    387 
    388 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
    389   // In C, functions with no attributes never need to be mangled. Fastpath them.
    390   if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
    391     return false;
    392 
    393   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    394   // over all other naming in the .o file.
    395   if (D->hasAttr<AsmLabelAttr>())
    396     return true;
    397 
    398   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    399   if (FD) {
    400     LanguageLinkage L = FD->getLanguageLinkage();
    401     // Overloadable functions need mangling.
    402     if (FD->hasAttr<OverloadableAttr>())
    403       return true;
    404 
    405     // "main" is not mangled.
    406     if (FD->isMain())
    407       return false;
    408 
    409     // C++ functions and those whose names are not a simple identifier need
    410     // mangling.
    411     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
    412       return true;
    413 
    414     // C functions are not mangled.
    415     if (L == CLanguageLinkage)
    416       return false;
    417   }
    418 
    419   // Otherwise, no mangling is done outside C++ mode.
    420   if (!getASTContext().getLangOpts().CPlusPlus)
    421     return false;
    422 
    423   const VarDecl *VD = dyn_cast<VarDecl>(D);
    424   if (VD) {
    425     // C variables are not mangled.
    426     if (VD->isExternC())
    427       return false;
    428 
    429     // Variables at global scope with non-internal linkage are not mangled
    430     const DeclContext *DC = getEffectiveDeclContext(D);
    431     // Check for extern variable declared locally.
    432     if (DC->isFunctionOrMethod() && D->hasLinkage())
    433       while (!DC->isNamespace() && !DC->isTranslationUnit())
    434         DC = getEffectiveParentContext(DC);
    435     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
    436         !isa<VarTemplateSpecializationDecl>(D))
    437       return false;
    438   }
    439 
    440   return true;
    441 }
    442 
    443 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
    444   // Any decl can be declared with __asm("foo") on it, and this takes precedence
    445   // over all other naming in the .o file.
    446   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
    447     // If we have an asm name, then we use it as the mangling.
    448 
    449     // Adding the prefix can cause problems when one file has a "foo" and
    450     // another has a "\01foo". That is known to happen on ELF with the
    451     // tricks normally used for producing aliases (PR9177). Fortunately the
    452     // llvm mangler on ELF is a nop, so we can just avoid adding the \01
    453     // marker.  We also avoid adding the marker if this is an alias for an
    454     // LLVM intrinsic.
    455     StringRef UserLabelPrefix =
    456       getASTContext().getTargetInfo().getUserLabelPrefix();
    457     if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
    458       Out << '\01';  // LLVM IR Marker for __asm("foo")
    459 
    460     Out << ALA->getLabel();
    461     return;
    462   }
    463 
    464   // <mangled-name> ::= _Z <encoding>
    465   //            ::= <data name>
    466   //            ::= <special-name>
    467   Out << Prefix;
    468   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    469     mangleFunctionEncoding(FD);
    470   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    471     mangleName(VD);
    472   else
    473     mangleName(cast<FieldDecl>(D));
    474 }
    475 
    476 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
    477   // <encoding> ::= <function name> <bare-function-type>
    478   mangleName(FD);
    479 
    480   // Don't mangle in the type if this isn't a decl we should typically mangle.
    481   if (!Context.shouldMangleDeclName(FD))
    482     return;
    483 
    484   // Whether the mangling of a function type includes the return type depends on
    485   // the context and the nature of the function. The rules for deciding whether
    486   // the return type is included are:
    487   //
    488   //   1. Template functions (names or types) have return types encoded, with
    489   //   the exceptions listed below.
    490   //   2. Function types not appearing as part of a function name mangling,
    491   //   e.g. parameters, pointer types, etc., have return type encoded, with the
    492   //   exceptions listed below.
    493   //   3. Non-template function names do not have return types encoded.
    494   //
    495   // The exceptions mentioned in (1) and (2) above, for which the return type is
    496   // never included, are
    497   //   1. Constructors.
    498   //   2. Destructors.
    499   //   3. Conversion operator functions, e.g. operator int.
    500   bool MangleReturnType = false;
    501   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
    502     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
    503           isa<CXXConversionDecl>(FD)))
    504       MangleReturnType = true;
    505 
    506     // Mangle the type of the primary template.
    507     FD = PrimaryTemplate->getTemplatedDecl();
    508   }
    509 
    510   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
    511                          MangleReturnType);
    512 }
    513 
    514 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
    515   while (isa<LinkageSpecDecl>(DC)) {
    516     DC = getEffectiveParentContext(DC);
    517   }
    518 
    519   return DC;
    520 }
    521 
    522 /// isStd - Return whether a given namespace is the 'std' namespace.
    523 static bool isStd(const NamespaceDecl *NS) {
    524   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
    525                                 ->isTranslationUnit())
    526     return false;
    527 
    528   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
    529   return II && II->isStr("std");
    530 }
    531 
    532 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
    533 // namespace.
    534 static bool isStdNamespace(const DeclContext *DC) {
    535   if (!DC->isNamespace())
    536     return false;
    537 
    538   return isStd(cast<NamespaceDecl>(DC));
    539 }
    540 
    541 static const TemplateDecl *
    542 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
    543   // Check if we have a function template.
    544   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
    545     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
    546       TemplateArgs = FD->getTemplateSpecializationArgs();
    547       return TD;
    548     }
    549   }
    550 
    551   // Check if we have a class template.
    552   if (const ClassTemplateSpecializationDecl *Spec =
    553         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
    554     TemplateArgs = &Spec->getTemplateArgs();
    555     return Spec->getSpecializedTemplate();
    556   }
    557 
    558   // Check if we have a variable template.
    559   if (const VarTemplateSpecializationDecl *Spec =
    560           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
    561     TemplateArgs = &Spec->getTemplateArgs();
    562     return Spec->getSpecializedTemplate();
    563   }
    564 
    565   return 0;
    566 }
    567 
    568 static bool isLambda(const NamedDecl *ND) {
    569   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
    570   if (!Record)
    571     return false;
    572 
    573   return Record->isLambda();
    574 }
    575 
    576 void CXXNameMangler::mangleName(const NamedDecl *ND) {
    577   //  <name> ::= <nested-name>
    578   //         ::= <unscoped-name>
    579   //         ::= <unscoped-template-name> <template-args>
    580   //         ::= <local-name>
    581   //
    582   const DeclContext *DC = getEffectiveDeclContext(ND);
    583 
    584   // If this is an extern variable declared locally, the relevant DeclContext
    585   // is that of the containing namespace, or the translation unit.
    586   // FIXME: This is a hack; extern variables declared locally should have
    587   // a proper semantic declaration context!
    588   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
    589     while (!DC->isNamespace() && !DC->isTranslationUnit())
    590       DC = getEffectiveParentContext(DC);
    591   else if (GetLocalClassDecl(ND)) {
    592     mangleLocalName(ND);
    593     return;
    594   }
    595 
    596   DC = IgnoreLinkageSpecDecls(DC);
    597 
    598   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
    599     // Check if we have a template.
    600     const TemplateArgumentList *TemplateArgs = 0;
    601     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
    602       mangleUnscopedTemplateName(TD);
    603       mangleTemplateArgs(*TemplateArgs);
    604       return;
    605     }
    606 
    607     mangleUnscopedName(ND);
    608     return;
    609   }
    610 
    611   if (isLocalContainerContext(DC)) {
    612     mangleLocalName(ND);
    613     return;
    614   }
    615 
    616   mangleNestedName(ND, DC);
    617 }
    618 void CXXNameMangler::mangleName(const TemplateDecl *TD,
    619                                 const TemplateArgument *TemplateArgs,
    620                                 unsigned NumTemplateArgs) {
    621   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
    622 
    623   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
    624     mangleUnscopedTemplateName(TD);
    625     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
    626   } else {
    627     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
    628   }
    629 }
    630 
    631 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
    632   //  <unscoped-name> ::= <unqualified-name>
    633   //                  ::= St <unqualified-name>   # ::std::
    634 
    635   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
    636     Out << "St";
    637 
    638   mangleUnqualifiedName(ND);
    639 }
    640 
    641 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
    642   //     <unscoped-template-name> ::= <unscoped-name>
    643   //                              ::= <substitution>
    644   if (mangleSubstitution(ND))
    645     return;
    646 
    647   // <template-template-param> ::= <template-param>
    648   if (const TemplateTemplateParmDecl *TTP
    649                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
    650     mangleTemplateParameter(TTP->getIndex());
    651     return;
    652   }
    653 
    654   mangleUnscopedName(ND->getTemplatedDecl());
    655   addSubstitution(ND);
    656 }
    657 
    658 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
    659   //     <unscoped-template-name> ::= <unscoped-name>
    660   //                              ::= <substitution>
    661   if (TemplateDecl *TD = Template.getAsTemplateDecl())
    662     return mangleUnscopedTemplateName(TD);
    663 
    664   if (mangleSubstitution(Template))
    665     return;
    666 
    667   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
    668   assert(Dependent && "Not a dependent template name?");
    669   if (const IdentifierInfo *Id = Dependent->getIdentifier())
    670     mangleSourceName(Id);
    671   else
    672     mangleOperatorName(Dependent->getOperator(), UnknownArity);
    673 
    674   addSubstitution(Template);
    675 }
    676 
    677 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
    678   // ABI:
    679   //   Floating-point literals are encoded using a fixed-length
    680   //   lowercase hexadecimal string corresponding to the internal
    681   //   representation (IEEE on Itanium), high-order bytes first,
    682   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
    683   //   on Itanium.
    684   // The 'without leading zeroes' thing seems to be an editorial
    685   // mistake; see the discussion on cxx-abi-dev beginning on
    686   // 2012-01-16.
    687 
    688   // Our requirements here are just barely weird enough to justify
    689   // using a custom algorithm instead of post-processing APInt::toString().
    690 
    691   llvm::APInt valueBits = f.bitcastToAPInt();
    692   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
    693   assert(numCharacters != 0);
    694 
    695   // Allocate a buffer of the right number of characters.
    696   SmallVector<char, 20> buffer;
    697   buffer.set_size(numCharacters);
    698 
    699   // Fill the buffer left-to-right.
    700   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
    701     // The bit-index of the next hex digit.
    702     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
    703 
    704     // Project out 4 bits starting at 'digitIndex'.
    705     llvm::integerPart hexDigit
    706       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
    707     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
    708     hexDigit &= 0xF;
    709 
    710     // Map that over to a lowercase hex digit.
    711     static const char charForHex[16] = {
    712       '0', '1', '2', '3', '4', '5', '6', '7',
    713       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
    714     };
    715     buffer[stringIndex] = charForHex[hexDigit];
    716   }
    717 
    718   Out.write(buffer.data(), numCharacters);
    719 }
    720 
    721 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
    722   if (Value.isSigned() && Value.isNegative()) {
    723     Out << 'n';
    724     Value.abs().print(Out, /*signed*/ false);
    725   } else {
    726     Value.print(Out, /*signed*/ false);
    727   }
    728 }
    729 
    730 void CXXNameMangler::mangleNumber(int64_t Number) {
    731   //  <number> ::= [n] <non-negative decimal integer>
    732   if (Number < 0) {
    733     Out << 'n';
    734     Number = -Number;
    735   }
    736 
    737   Out << Number;
    738 }
    739 
    740 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
    741   //  <call-offset>  ::= h <nv-offset> _
    742   //                 ::= v <v-offset> _
    743   //  <nv-offset>    ::= <offset number>        # non-virtual base override
    744   //  <v-offset>     ::= <offset number> _ <virtual offset number>
    745   //                      # virtual base override, with vcall offset
    746   if (!Virtual) {
    747     Out << 'h';
    748     mangleNumber(NonVirtual);
    749     Out << '_';
    750     return;
    751   }
    752 
    753   Out << 'v';
    754   mangleNumber(NonVirtual);
    755   Out << '_';
    756   mangleNumber(Virtual);
    757   Out << '_';
    758 }
    759 
    760 void CXXNameMangler::manglePrefix(QualType type) {
    761   if (const TemplateSpecializationType *TST =
    762         type->getAs<TemplateSpecializationType>()) {
    763     if (!mangleSubstitution(QualType(TST, 0))) {
    764       mangleTemplatePrefix(TST->getTemplateName());
    765 
    766       // FIXME: GCC does not appear to mangle the template arguments when
    767       // the template in question is a dependent template name. Should we
    768       // emulate that badness?
    769       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
    770       addSubstitution(QualType(TST, 0));
    771     }
    772   } else if (const DependentTemplateSpecializationType *DTST
    773                = type->getAs<DependentTemplateSpecializationType>()) {
    774     TemplateName Template
    775       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
    776                                                  DTST->getIdentifier());
    777     mangleTemplatePrefix(Template);
    778 
    779     // FIXME: GCC does not appear to mangle the template arguments when
    780     // the template in question is a dependent template name. Should we
    781     // emulate that badness?
    782     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
    783   } else {
    784     // We use the QualType mangle type variant here because it handles
    785     // substitutions.
    786     mangleType(type);
    787   }
    788 }
    789 
    790 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
    791 ///
    792 /// \param firstQualifierLookup - the entity found by unqualified lookup
    793 ///   for the first name in the qualifier, if this is for a member expression
    794 /// \param recursive - true if this is being called recursively,
    795 ///   i.e. if there is more prefix "to the right".
    796 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
    797                                             NamedDecl *firstQualifierLookup,
    798                                             bool recursive) {
    799 
    800   // x, ::x
    801   // <unresolved-name> ::= [gs] <base-unresolved-name>
    802 
    803   // T::x / decltype(p)::x
    804   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
    805 
    806   // T::N::x /decltype(p)::N::x
    807   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
    808   //                       <base-unresolved-name>
    809 
    810   // A::x, N::y, A<T>::z; "gs" means leading "::"
    811   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
    812   //                       <base-unresolved-name>
    813 
    814   switch (qualifier->getKind()) {
    815   case NestedNameSpecifier::Global:
    816     Out << "gs";
    817 
    818     // We want an 'sr' unless this is the entire NNS.
    819     if (recursive)
    820       Out << "sr";
    821 
    822     // We never want an 'E' here.
    823     return;
    824 
    825   case NestedNameSpecifier::Namespace:
    826     if (qualifier->getPrefix())
    827       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    828                              /*recursive*/ true);
    829     else
    830       Out << "sr";
    831     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
    832     break;
    833   case NestedNameSpecifier::NamespaceAlias:
    834     if (qualifier->getPrefix())
    835       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    836                              /*recursive*/ true);
    837     else
    838       Out << "sr";
    839     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
    840     break;
    841 
    842   case NestedNameSpecifier::TypeSpec:
    843   case NestedNameSpecifier::TypeSpecWithTemplate: {
    844     const Type *type = qualifier->getAsType();
    845 
    846     // We only want to use an unresolved-type encoding if this is one of:
    847     //   - a decltype
    848     //   - a template type parameter
    849     //   - a template template parameter with arguments
    850     // In all of these cases, we should have no prefix.
    851     if (qualifier->getPrefix()) {
    852       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
    853                              /*recursive*/ true);
    854     } else {
    855       // Otherwise, all the cases want this.
    856       Out << "sr";
    857     }
    858 
    859     // Only certain other types are valid as prefixes;  enumerate them.
    860     switch (type->getTypeClass()) {
    861     case Type::Builtin:
    862     case Type::Complex:
    863     case Type::Decayed:
    864     case Type::Pointer:
    865     case Type::BlockPointer:
    866     case Type::LValueReference:
    867     case Type::RValueReference:
    868     case Type::MemberPointer:
    869     case Type::ConstantArray:
    870     case Type::IncompleteArray:
    871     case Type::VariableArray:
    872     case Type::DependentSizedArray:
    873     case Type::DependentSizedExtVector:
    874     case Type::Vector:
    875     case Type::ExtVector:
    876     case Type::FunctionProto:
    877     case Type::FunctionNoProto:
    878     case Type::Enum:
    879     case Type::Paren:
    880     case Type::Elaborated:
    881     case Type::Attributed:
    882     case Type::Auto:
    883     case Type::PackExpansion:
    884     case Type::ObjCObject:
    885     case Type::ObjCInterface:
    886     case Type::ObjCObjectPointer:
    887     case Type::Atomic:
    888       llvm_unreachable("type is illegal as a nested name specifier");
    889 
    890     case Type::SubstTemplateTypeParmPack:
    891       // FIXME: not clear how to mangle this!
    892       // template <class T...> class A {
    893       //   template <class U...> void foo(decltype(T::foo(U())) x...);
    894       // };
    895       Out << "_SUBSTPACK_";
    896       break;
    897 
    898     // <unresolved-type> ::= <template-param>
    899     //                   ::= <decltype>
    900     //                   ::= <template-template-param> <template-args>
    901     // (this last is not official yet)
    902     case Type::TypeOfExpr:
    903     case Type::TypeOf:
    904     case Type::Decltype:
    905     case Type::TemplateTypeParm:
    906     case Type::UnaryTransform:
    907     case Type::SubstTemplateTypeParm:
    908     unresolvedType:
    909       assert(!qualifier->getPrefix());
    910 
    911       // We only get here recursively if we're followed by identifiers.
    912       if (recursive) Out << 'N';
    913 
    914       // This seems to do everything we want.  It's not really
    915       // sanctioned for a substituted template parameter, though.
    916       mangleType(QualType(type, 0));
    917 
    918       // We never want to print 'E' directly after an unresolved-type,
    919       // so we return directly.
    920       return;
    921 
    922     case Type::Typedef:
    923       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
    924       break;
    925 
    926     case Type::UnresolvedUsing:
    927       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
    928                          ->getIdentifier());
    929       break;
    930 
    931     case Type::Record:
    932       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
    933       break;
    934 
    935     case Type::TemplateSpecialization: {
    936       const TemplateSpecializationType *tst
    937         = cast<TemplateSpecializationType>(type);
    938       TemplateName name = tst->getTemplateName();
    939       switch (name.getKind()) {
    940       case TemplateName::Template:
    941       case TemplateName::QualifiedTemplate: {
    942         TemplateDecl *temp = name.getAsTemplateDecl();
    943 
    944         // If the base is a template template parameter, this is an
    945         // unresolved type.
    946         assert(temp && "no template for template specialization type");
    947         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
    948 
    949         mangleSourceName(temp->getIdentifier());
    950         break;
    951       }
    952 
    953       case TemplateName::OverloadedTemplate:
    954       case TemplateName::DependentTemplate:
    955         llvm_unreachable("invalid base for a template specialization type");
    956 
    957       case TemplateName::SubstTemplateTemplateParm: {
    958         SubstTemplateTemplateParmStorage *subst
    959           = name.getAsSubstTemplateTemplateParm();
    960         mangleExistingSubstitution(subst->getReplacement());
    961         break;
    962       }
    963 
    964       case TemplateName::SubstTemplateTemplateParmPack: {
    965         // FIXME: not clear how to mangle this!
    966         // template <template <class U> class T...> class A {
    967         //   template <class U...> void foo(decltype(T<U>::foo) x...);
    968         // };
    969         Out << "_SUBSTPACK_";
    970         break;
    971       }
    972       }
    973 
    974       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
    975       break;
    976     }
    977 
    978     case Type::InjectedClassName:
    979       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
    980                          ->getIdentifier());
    981       break;
    982 
    983     case Type::DependentName:
    984       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
    985       break;
    986 
    987     case Type::DependentTemplateSpecialization: {
    988       const DependentTemplateSpecializationType *tst
    989         = cast<DependentTemplateSpecializationType>(type);
    990       mangleSourceName(tst->getIdentifier());
    991       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
    992       break;
    993     }
    994     }
    995     break;
    996   }
    997 
    998   case NestedNameSpecifier::Identifier:
    999     // Member expressions can have these without prefixes.
   1000     if (qualifier->getPrefix()) {
   1001       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
   1002                              /*recursive*/ true);
   1003     } else if (firstQualifierLookup) {
   1004 
   1005       // Try to make a proper qualifier out of the lookup result, and
   1006       // then just recurse on that.
   1007       NestedNameSpecifier *newQualifier;
   1008       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
   1009         QualType type = getASTContext().getTypeDeclType(typeDecl);
   1010 
   1011         // Pretend we had a different nested name specifier.
   1012         newQualifier = NestedNameSpecifier::Create(getASTContext(),
   1013                                                    /*prefix*/ 0,
   1014                                                    /*template*/ false,
   1015                                                    type.getTypePtr());
   1016       } else if (NamespaceDecl *nspace =
   1017                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
   1018         newQualifier = NestedNameSpecifier::Create(getASTContext(),
   1019                                                    /*prefix*/ 0,
   1020                                                    nspace);
   1021       } else if (NamespaceAliasDecl *alias =
   1022                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
   1023         newQualifier = NestedNameSpecifier::Create(getASTContext(),
   1024                                                    /*prefix*/ 0,
   1025                                                    alias);
   1026       } else {
   1027         // No sensible mangling to do here.
   1028         newQualifier = 0;
   1029       }
   1030 
   1031       if (newQualifier)
   1032         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
   1033 
   1034     } else {
   1035       Out << "sr";
   1036     }
   1037 
   1038     mangleSourceName(qualifier->getAsIdentifier());
   1039     break;
   1040   }
   1041 
   1042   // If this was the innermost part of the NNS, and we fell out to
   1043   // here, append an 'E'.
   1044   if (!recursive)
   1045     Out << 'E';
   1046 }
   1047 
   1048 /// Mangle an unresolved-name, which is generally used for names which
   1049 /// weren't resolved to specific entities.
   1050 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
   1051                                           NamedDecl *firstQualifierLookup,
   1052                                           DeclarationName name,
   1053                                           unsigned knownArity) {
   1054   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
   1055   mangleUnqualifiedName(0, name, knownArity);
   1056 }
   1057 
   1058 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
   1059   assert(RD->isAnonymousStructOrUnion() &&
   1060          "Expected anonymous struct or union!");
   1061 
   1062   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   1063        I != E; ++I) {
   1064     if (I->getIdentifier())
   1065       return *I;
   1066 
   1067     if (const RecordType *RT = I->getType()->getAs<RecordType>())
   1068       if (const FieldDecl *NamedDataMember =
   1069           FindFirstNamedDataMember(RT->getDecl()))
   1070         return NamedDataMember;
   1071     }
   1072 
   1073   // We didn't find a named data member.
   1074   return 0;
   1075 }
   1076 
   1077 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
   1078                                            DeclarationName Name,
   1079                                            unsigned KnownArity) {
   1080   //  <unqualified-name> ::= <operator-name>
   1081   //                     ::= <ctor-dtor-name>
   1082   //                     ::= <source-name>
   1083   switch (Name.getNameKind()) {
   1084   case DeclarationName::Identifier: {
   1085     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
   1086       // We must avoid conflicts between internally- and externally-
   1087       // linked variable and function declaration names in the same TU:
   1088       //   void test() { extern void foo(); }
   1089       //   static void foo();
   1090       // This naming convention is the same as that followed by GCC,
   1091       // though it shouldn't actually matter.
   1092       if (ND && ND->getFormalLinkage() == InternalLinkage &&
   1093           getEffectiveDeclContext(ND)->isFileContext())
   1094         Out << 'L';
   1095 
   1096       mangleSourceName(II);
   1097       break;
   1098     }
   1099 
   1100     // Otherwise, an anonymous entity.  We must have a declaration.
   1101     assert(ND && "mangling empty name without declaration");
   1102 
   1103     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
   1104       if (NS->isAnonymousNamespace()) {
   1105         // This is how gcc mangles these names.
   1106         Out << "12_GLOBAL__N_1";
   1107         break;
   1108       }
   1109     }
   1110 
   1111     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
   1112       // We must have an anonymous union or struct declaration.
   1113       const RecordDecl *RD =
   1114         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
   1115 
   1116       // Itanium C++ ABI 5.1.2:
   1117       //
   1118       //   For the purposes of mangling, the name of an anonymous union is
   1119       //   considered to be the name of the first named data member found by a
   1120       //   pre-order, depth-first, declaration-order walk of the data members of
   1121       //   the anonymous union. If there is no such data member (i.e., if all of
   1122       //   the data members in the union are unnamed), then there is no way for
   1123       //   a program to refer to the anonymous union, and there is therefore no
   1124       //   need to mangle its name.
   1125       const FieldDecl *FD = FindFirstNamedDataMember(RD);
   1126 
   1127       // It's actually possible for various reasons for us to get here
   1128       // with an empty anonymous struct / union.  Fortunately, it
   1129       // doesn't really matter what name we generate.
   1130       if (!FD) break;
   1131       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
   1132 
   1133       mangleSourceName(FD->getIdentifier());
   1134       break;
   1135     }
   1136 
   1137     // Class extensions have no name as a category, and it's possible
   1138     // for them to be the semantic parent of certain declarations
   1139     // (primarily, tag decls defined within declarations).  Such
   1140     // declarations will always have internal linkage, so the name
   1141     // doesn't really matter, but we shouldn't crash on them.  For
   1142     // safety, just handle all ObjC containers here.
   1143     if (isa<ObjCContainerDecl>(ND))
   1144       break;
   1145 
   1146     // We must have an anonymous struct.
   1147     const TagDecl *TD = cast<TagDecl>(ND);
   1148     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
   1149       assert(TD->getDeclContext() == D->getDeclContext() &&
   1150              "Typedef should not be in another decl context!");
   1151       assert(D->getDeclName().getAsIdentifierInfo() &&
   1152              "Typedef was not named!");
   1153       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
   1154       break;
   1155     }
   1156 
   1157     // <unnamed-type-name> ::= <closure-type-name>
   1158     //
   1159     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
   1160     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
   1161     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
   1162       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
   1163         mangleLambda(Record);
   1164         break;
   1165       }
   1166     }
   1167 
   1168     if (TD->isExternallyVisible()) {
   1169       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
   1170       Out << "Ut";
   1171       if (UnnamedMangle > 1)
   1172         Out << llvm::utostr(UnnamedMangle - 2);
   1173       Out << '_';
   1174       break;
   1175     }
   1176 
   1177     // Get a unique id for the anonymous struct.
   1178     uint64_t AnonStructId = Context.getAnonymousStructId(TD);
   1179 
   1180     // Mangle it as a source name in the form
   1181     // [n] $_<id>
   1182     // where n is the length of the string.
   1183     SmallString<8> Str;
   1184     Str += "$_";
   1185     Str += llvm::utostr(AnonStructId);
   1186 
   1187     Out << Str.size();
   1188     Out << Str.str();
   1189     break;
   1190   }
   1191 
   1192   case DeclarationName::ObjCZeroArgSelector:
   1193   case DeclarationName::ObjCOneArgSelector:
   1194   case DeclarationName::ObjCMultiArgSelector:
   1195     llvm_unreachable("Can't mangle Objective-C selector names here!");
   1196 
   1197   case DeclarationName::CXXConstructorName:
   1198     if (ND == Structor)
   1199       // If the named decl is the C++ constructor we're mangling, use the type
   1200       // we were given.
   1201       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
   1202     else
   1203       // Otherwise, use the complete constructor name. This is relevant if a
   1204       // class with a constructor is declared within a constructor.
   1205       mangleCXXCtorType(Ctor_Complete);
   1206     break;
   1207 
   1208   case DeclarationName::CXXDestructorName:
   1209     if (ND == Structor)
   1210       // If the named decl is the C++ destructor we're mangling, use the type we
   1211       // were given.
   1212       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
   1213     else
   1214       // Otherwise, use the complete destructor name. This is relevant if a
   1215       // class with a destructor is declared within a destructor.
   1216       mangleCXXDtorType(Dtor_Complete);
   1217     break;
   1218 
   1219   case DeclarationName::CXXConversionFunctionName:
   1220     // <operator-name> ::= cv <type>    # (cast)
   1221     Out << "cv";
   1222     mangleType(Name.getCXXNameType());
   1223     break;
   1224 
   1225   case DeclarationName::CXXOperatorName: {
   1226     unsigned Arity;
   1227     if (ND) {
   1228       Arity = cast<FunctionDecl>(ND)->getNumParams();
   1229 
   1230       // If we have a C++ member function, we need to include the 'this' pointer.
   1231       // FIXME: This does not make sense for operators that are static, but their
   1232       // names stay the same regardless of the arity (operator new for instance).
   1233       if (isa<CXXMethodDecl>(ND))
   1234         Arity++;
   1235     } else
   1236       Arity = KnownArity;
   1237 
   1238     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
   1239     break;
   1240   }
   1241 
   1242   case DeclarationName::CXXLiteralOperatorName:
   1243     // FIXME: This mangling is not yet official.
   1244     Out << "li";
   1245     mangleSourceName(Name.getCXXLiteralIdentifier());
   1246     break;
   1247 
   1248   case DeclarationName::CXXUsingDirective:
   1249     llvm_unreachable("Can't mangle a using directive name!");
   1250   }
   1251 }
   1252 
   1253 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
   1254   // <source-name> ::= <positive length number> <identifier>
   1255   // <number> ::= [n] <non-negative decimal integer>
   1256   // <identifier> ::= <unqualified source code identifier>
   1257   Out << II->getLength() << II->getName();
   1258 }
   1259 
   1260 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
   1261                                       const DeclContext *DC,
   1262                                       bool NoFunction) {
   1263   // <nested-name>
   1264   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
   1265   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
   1266   //       <template-args> E
   1267 
   1268   Out << 'N';
   1269   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
   1270     mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   1271     mangleRefQualifier(Method->getRefQualifier());
   1272   }
   1273 
   1274   // Check if we have a template.
   1275   const TemplateArgumentList *TemplateArgs = 0;
   1276   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
   1277     mangleTemplatePrefix(TD, NoFunction);
   1278     mangleTemplateArgs(*TemplateArgs);
   1279   }
   1280   else {
   1281     manglePrefix(DC, NoFunction);
   1282     mangleUnqualifiedName(ND);
   1283   }
   1284 
   1285   Out << 'E';
   1286 }
   1287 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
   1288                                       const TemplateArgument *TemplateArgs,
   1289                                       unsigned NumTemplateArgs) {
   1290   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
   1291 
   1292   Out << 'N';
   1293 
   1294   mangleTemplatePrefix(TD);
   1295   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
   1296 
   1297   Out << 'E';
   1298 }
   1299 
   1300 void CXXNameMangler::mangleLocalName(const Decl *D) {
   1301   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
   1302   //              := Z <function encoding> E s [<discriminator>]
   1303   // <local-name> := Z <function encoding> E d [ <parameter number> ]
   1304   //                 _ <entity name>
   1305   // <discriminator> := _ <non-negative number>
   1306   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
   1307   const RecordDecl *RD = GetLocalClassDecl(D);
   1308   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
   1309 
   1310   Out << 'Z';
   1311 
   1312   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
   1313     mangleObjCMethodName(MD);
   1314   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
   1315     mangleBlockForPrefix(BD);
   1316   else
   1317     mangleFunctionEncoding(cast<FunctionDecl>(DC));
   1318 
   1319   Out << 'E';
   1320 
   1321   if (RD) {
   1322     // The parameter number is omitted for the last parameter, 0 for the
   1323     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
   1324     // <entity name> will of course contain a <closure-type-name>: Its
   1325     // numbering will be local to the particular argument in which it appears
   1326     // -- other default arguments do not affect its encoding.
   1327     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
   1328     if (CXXRD->isLambda()) {
   1329       if (const ParmVarDecl *Parm
   1330               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
   1331         if (const FunctionDecl *Func
   1332               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
   1333           Out << 'd';
   1334           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
   1335           if (Num > 1)
   1336             mangleNumber(Num - 2);
   1337           Out << '_';
   1338         }
   1339       }
   1340     }
   1341 
   1342     // Mangle the name relative to the closest enclosing function.
   1343     // equality ok because RD derived from ND above
   1344     if (D == RD)  {
   1345       mangleUnqualifiedName(RD);
   1346     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
   1347       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
   1348       mangleUnqualifiedBlock(BD);
   1349     } else {
   1350       const NamedDecl *ND = cast<NamedDecl>(D);
   1351       mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
   1352     }
   1353   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
   1354     // Mangle a block in a default parameter; see above explanation for
   1355     // lambdas.
   1356     if (const ParmVarDecl *Parm
   1357             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
   1358       if (const FunctionDecl *Func
   1359             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
   1360         Out << 'd';
   1361         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
   1362         if (Num > 1)
   1363           mangleNumber(Num - 2);
   1364         Out << '_';
   1365       }
   1366     }
   1367 
   1368     mangleUnqualifiedBlock(BD);
   1369   } else {
   1370     mangleUnqualifiedName(cast<NamedDecl>(D));
   1371   }
   1372 
   1373   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
   1374     unsigned disc;
   1375     if (Context.getNextDiscriminator(ND, disc)) {
   1376       if (disc < 10)
   1377         Out << '_' << disc;
   1378       else
   1379         Out << "__" << disc << '_';
   1380     }
   1381   }
   1382 }
   1383 
   1384 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
   1385   if (GetLocalClassDecl(Block)) {
   1386     mangleLocalName(Block);
   1387     return;
   1388   }
   1389   const DeclContext *DC = getEffectiveDeclContext(Block);
   1390   if (isLocalContainerContext(DC)) {
   1391     mangleLocalName(Block);
   1392     return;
   1393   }
   1394   manglePrefix(getEffectiveDeclContext(Block));
   1395   mangleUnqualifiedBlock(Block);
   1396 }
   1397 
   1398 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
   1399   if (Decl *Context = Block->getBlockManglingContextDecl()) {
   1400     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
   1401         Context->getDeclContext()->isRecord()) {
   1402       if (const IdentifierInfo *Name
   1403             = cast<NamedDecl>(Context)->getIdentifier()) {
   1404         mangleSourceName(Name);
   1405         Out << 'M';
   1406       }
   1407     }
   1408   }
   1409 
   1410   // If we have a block mangling number, use it.
   1411   unsigned Number = Block->getBlockManglingNumber();
   1412   // Otherwise, just make up a number. It doesn't matter what it is because
   1413   // the symbol in question isn't externally visible.
   1414   if (!Number)
   1415     Number = Context.getBlockId(Block, false);
   1416   Out << "Ub";
   1417   if (Number > 1)
   1418     Out << Number - 2;
   1419   Out << '_';
   1420 }
   1421 
   1422 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
   1423   // If the context of a closure type is an initializer for a class member
   1424   // (static or nonstatic), it is encoded in a qualified name with a final
   1425   // <prefix> of the form:
   1426   //
   1427   //   <data-member-prefix> := <member source-name> M
   1428   //
   1429   // Technically, the data-member-prefix is part of the <prefix>. However,
   1430   // since a closure type will always be mangled with a prefix, it's easier
   1431   // to emit that last part of the prefix here.
   1432   if (Decl *Context = Lambda->getLambdaContextDecl()) {
   1433     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
   1434         Context->getDeclContext()->isRecord()) {
   1435       if (const IdentifierInfo *Name
   1436             = cast<NamedDecl>(Context)->getIdentifier()) {
   1437         mangleSourceName(Name);
   1438         Out << 'M';
   1439       }
   1440     }
   1441   }
   1442 
   1443   Out << "Ul";
   1444   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
   1445                                    getAs<FunctionProtoType>();
   1446   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
   1447   Out << "E";
   1448 
   1449   // The number is omitted for the first closure type with a given
   1450   // <lambda-sig> in a given context; it is n-2 for the nth closure type
   1451   // (in lexical order) with that same <lambda-sig> and context.
   1452   //
   1453   // The AST keeps track of the number for us.
   1454   unsigned Number = Lambda->getLambdaManglingNumber();
   1455   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
   1456   if (Number > 1)
   1457     mangleNumber(Number - 2);
   1458   Out << '_';
   1459 }
   1460 
   1461 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
   1462   switch (qualifier->getKind()) {
   1463   case NestedNameSpecifier::Global:
   1464     // nothing
   1465     return;
   1466 
   1467   case NestedNameSpecifier::Namespace:
   1468     mangleName(qualifier->getAsNamespace());
   1469     return;
   1470 
   1471   case NestedNameSpecifier::NamespaceAlias:
   1472     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
   1473     return;
   1474 
   1475   case NestedNameSpecifier::TypeSpec:
   1476   case NestedNameSpecifier::TypeSpecWithTemplate:
   1477     manglePrefix(QualType(qualifier->getAsType(), 0));
   1478     return;
   1479 
   1480   case NestedNameSpecifier::Identifier:
   1481     // Member expressions can have these without prefixes, but that
   1482     // should end up in mangleUnresolvedPrefix instead.
   1483     assert(qualifier->getPrefix());
   1484     manglePrefix(qualifier->getPrefix());
   1485 
   1486     mangleSourceName(qualifier->getAsIdentifier());
   1487     return;
   1488   }
   1489 
   1490   llvm_unreachable("unexpected nested name specifier");
   1491 }
   1492 
   1493 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
   1494   //  <prefix> ::= <prefix> <unqualified-name>
   1495   //           ::= <template-prefix> <template-args>
   1496   //           ::= <template-param>
   1497   //           ::= # empty
   1498   //           ::= <substitution>
   1499 
   1500   DC = IgnoreLinkageSpecDecls(DC);
   1501 
   1502   if (DC->isTranslationUnit())
   1503     return;
   1504 
   1505   if (NoFunction && isLocalContainerContext(DC))
   1506     return;
   1507 
   1508   assert(!isLocalContainerContext(DC));
   1509 
   1510   const NamedDecl *ND = cast<NamedDecl>(DC);
   1511   if (mangleSubstitution(ND))
   1512     return;
   1513 
   1514   // Check if we have a template.
   1515   const TemplateArgumentList *TemplateArgs = 0;
   1516   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
   1517     mangleTemplatePrefix(TD);
   1518     mangleTemplateArgs(*TemplateArgs);
   1519   } else {
   1520     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
   1521     mangleUnqualifiedName(ND);
   1522   }
   1523 
   1524   addSubstitution(ND);
   1525 }
   1526 
   1527 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
   1528   // <template-prefix> ::= <prefix> <template unqualified-name>
   1529   //                   ::= <template-param>
   1530   //                   ::= <substitution>
   1531   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   1532     return mangleTemplatePrefix(TD);
   1533 
   1534   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
   1535     manglePrefix(Qualified->getQualifier());
   1536 
   1537   if (OverloadedTemplateStorage *Overloaded
   1538                                       = Template.getAsOverloadedTemplate()) {
   1539     mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
   1540                           UnknownArity);
   1541     return;
   1542   }
   1543 
   1544   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
   1545   assert(Dependent && "Unknown template name kind?");
   1546   manglePrefix(Dependent->getQualifier());
   1547   mangleUnscopedTemplateName(Template);
   1548 }
   1549 
   1550 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
   1551                                           bool NoFunction) {
   1552   // <template-prefix> ::= <prefix> <template unqualified-name>
   1553   //                   ::= <template-param>
   1554   //                   ::= <substitution>
   1555   // <template-template-param> ::= <template-param>
   1556   //                               <substitution>
   1557 
   1558   if (mangleSubstitution(ND))
   1559     return;
   1560 
   1561   // <template-template-param> ::= <template-param>
   1562   if (const TemplateTemplateParmDecl *TTP
   1563                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
   1564     mangleTemplateParameter(TTP->getIndex());
   1565     return;
   1566   }
   1567 
   1568   manglePrefix(getEffectiveDeclContext(ND), NoFunction);
   1569   mangleUnqualifiedName(ND->getTemplatedDecl());
   1570   addSubstitution(ND);
   1571 }
   1572 
   1573 /// Mangles a template name under the production <type>.  Required for
   1574 /// template template arguments.
   1575 ///   <type> ::= <class-enum-type>
   1576 ///          ::= <template-param>
   1577 ///          ::= <substitution>
   1578 void CXXNameMangler::mangleType(TemplateName TN) {
   1579   if (mangleSubstitution(TN))
   1580     return;
   1581 
   1582   TemplateDecl *TD = 0;
   1583 
   1584   switch (TN.getKind()) {
   1585   case TemplateName::QualifiedTemplate:
   1586     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
   1587     goto HaveDecl;
   1588 
   1589   case TemplateName::Template:
   1590     TD = TN.getAsTemplateDecl();
   1591     goto HaveDecl;
   1592 
   1593   HaveDecl:
   1594     if (isa<TemplateTemplateParmDecl>(TD))
   1595       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
   1596     else
   1597       mangleName(TD);
   1598     break;
   1599 
   1600   case TemplateName::OverloadedTemplate:
   1601     llvm_unreachable("can't mangle an overloaded template name as a <type>");
   1602 
   1603   case TemplateName::DependentTemplate: {
   1604     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
   1605     assert(Dependent->isIdentifier());
   1606 
   1607     // <class-enum-type> ::= <name>
   1608     // <name> ::= <nested-name>
   1609     mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
   1610     mangleSourceName(Dependent->getIdentifier());
   1611     break;
   1612   }
   1613 
   1614   case TemplateName::SubstTemplateTemplateParm: {
   1615     // Substituted template parameters are mangled as the substituted
   1616     // template.  This will check for the substitution twice, which is
   1617     // fine, but we have to return early so that we don't try to *add*
   1618     // the substitution twice.
   1619     SubstTemplateTemplateParmStorage *subst
   1620       = TN.getAsSubstTemplateTemplateParm();
   1621     mangleType(subst->getReplacement());
   1622     return;
   1623   }
   1624 
   1625   case TemplateName::SubstTemplateTemplateParmPack: {
   1626     // FIXME: not clear how to mangle this!
   1627     // template <template <class> class T...> class A {
   1628     //   template <template <class> class U...> void foo(B<T,U> x...);
   1629     // };
   1630     Out << "_SUBSTPACK_";
   1631     break;
   1632   }
   1633   }
   1634 
   1635   addSubstitution(TN);
   1636 }
   1637 
   1638 void
   1639 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
   1640   switch (OO) {
   1641   // <operator-name> ::= nw     # new
   1642   case OO_New: Out << "nw"; break;
   1643   //              ::= na        # new[]
   1644   case OO_Array_New: Out << "na"; break;
   1645   //              ::= dl        # delete
   1646   case OO_Delete: Out << "dl"; break;
   1647   //              ::= da        # delete[]
   1648   case OO_Array_Delete: Out << "da"; break;
   1649   //              ::= ps        # + (unary)
   1650   //              ::= pl        # + (binary or unknown)
   1651   case OO_Plus:
   1652     Out << (Arity == 1? "ps" : "pl"); break;
   1653   //              ::= ng        # - (unary)
   1654   //              ::= mi        # - (binary or unknown)
   1655   case OO_Minus:
   1656     Out << (Arity == 1? "ng" : "mi"); break;
   1657   //              ::= ad        # & (unary)
   1658   //              ::= an        # & (binary or unknown)
   1659   case OO_Amp:
   1660     Out << (Arity == 1? "ad" : "an"); break;
   1661   //              ::= de        # * (unary)
   1662   //              ::= ml        # * (binary or unknown)
   1663   case OO_Star:
   1664     // Use binary when unknown.
   1665     Out << (Arity == 1? "de" : "ml"); break;
   1666   //              ::= co        # ~
   1667   case OO_Tilde: Out << "co"; break;
   1668   //              ::= dv        # /
   1669   case OO_Slash: Out << "dv"; break;
   1670   //              ::= rm        # %
   1671   case OO_Percent: Out << "rm"; break;
   1672   //              ::= or        # |
   1673   case OO_Pipe: Out << "or"; break;
   1674   //              ::= eo        # ^
   1675   case OO_Caret: Out << "eo"; break;
   1676   //              ::= aS        # =
   1677   case OO_Equal: Out << "aS"; break;
   1678   //              ::= pL        # +=
   1679   case OO_PlusEqual: Out << "pL"; break;
   1680   //              ::= mI        # -=
   1681   case OO_MinusEqual: Out << "mI"; break;
   1682   //              ::= mL        # *=
   1683   case OO_StarEqual: Out << "mL"; break;
   1684   //              ::= dV        # /=
   1685   case OO_SlashEqual: Out << "dV"; break;
   1686   //              ::= rM        # %=
   1687   case OO_PercentEqual: Out << "rM"; break;
   1688   //              ::= aN        # &=
   1689   case OO_AmpEqual: Out << "aN"; break;
   1690   //              ::= oR        # |=
   1691   case OO_PipeEqual: Out << "oR"; break;
   1692   //              ::= eO        # ^=
   1693   case OO_CaretEqual: Out << "eO"; break;
   1694   //              ::= ls        # <<
   1695   case OO_LessLess: Out << "ls"; break;
   1696   //              ::= rs        # >>
   1697   case OO_GreaterGreater: Out << "rs"; break;
   1698   //              ::= lS        # <<=
   1699   case OO_LessLessEqual: Out << "lS"; break;
   1700   //              ::= rS        # >>=
   1701   case OO_GreaterGreaterEqual: Out << "rS"; break;
   1702   //              ::= eq        # ==
   1703   case OO_EqualEqual: Out << "eq"; break;
   1704   //              ::= ne        # !=
   1705   case OO_ExclaimEqual: Out << "ne"; break;
   1706   //              ::= lt        # <
   1707   case OO_Less: Out << "lt"; break;
   1708   //              ::= gt        # >
   1709   case OO_Greater: Out << "gt"; break;
   1710   //              ::= le        # <=
   1711   case OO_LessEqual: Out << "le"; break;
   1712   //              ::= ge        # >=
   1713   case OO_GreaterEqual: Out << "ge"; break;
   1714   //              ::= nt        # !
   1715   case OO_Exclaim: Out << "nt"; break;
   1716   //              ::= aa        # &&
   1717   case OO_AmpAmp: Out << "aa"; break;
   1718   //              ::= oo        # ||
   1719   case OO_PipePipe: Out << "oo"; break;
   1720   //              ::= pp        # ++
   1721   case OO_PlusPlus: Out << "pp"; break;
   1722   //              ::= mm        # --
   1723   case OO_MinusMinus: Out << "mm"; break;
   1724   //              ::= cm        # ,
   1725   case OO_Comma: Out << "cm"; break;
   1726   //              ::= pm        # ->*
   1727   case OO_ArrowStar: Out << "pm"; break;
   1728   //              ::= pt        # ->
   1729   case OO_Arrow: Out << "pt"; break;
   1730   //              ::= cl        # ()
   1731   case OO_Call: Out << "cl"; break;
   1732   //              ::= ix        # []
   1733   case OO_Subscript: Out << "ix"; break;
   1734 
   1735   //              ::= qu        # ?
   1736   // The conditional operator can't be overloaded, but we still handle it when
   1737   // mangling expressions.
   1738   case OO_Conditional: Out << "qu"; break;
   1739 
   1740   case OO_None:
   1741   case NUM_OVERLOADED_OPERATORS:
   1742     llvm_unreachable("Not an overloaded operator");
   1743   }
   1744 }
   1745 
   1746 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
   1747   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
   1748   if (Quals.hasRestrict())
   1749     Out << 'r';
   1750   if (Quals.hasVolatile())
   1751     Out << 'V';
   1752   if (Quals.hasConst())
   1753     Out << 'K';
   1754 
   1755   if (Quals.hasAddressSpace()) {
   1756     // Extension:
   1757     //
   1758     //   <type> ::= U <address-space-number>
   1759     //
   1760     // where <address-space-number> is a source name consisting of 'AS'
   1761     // followed by the address space <number>.
   1762     SmallString<64> ASString;
   1763     ASString = "AS" + llvm::utostr_32(
   1764         Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
   1765     Out << 'U' << ASString.size() << ASString;
   1766   }
   1767 
   1768   StringRef LifetimeName;
   1769   switch (Quals.getObjCLifetime()) {
   1770   // Objective-C ARC Extension:
   1771   //
   1772   //   <type> ::= U "__strong"
   1773   //   <type> ::= U "__weak"
   1774   //   <type> ::= U "__autoreleasing"
   1775   case Qualifiers::OCL_None:
   1776     break;
   1777 
   1778   case Qualifiers::OCL_Weak:
   1779     LifetimeName = "__weak";
   1780     break;
   1781 
   1782   case Qualifiers::OCL_Strong:
   1783     LifetimeName = "__strong";
   1784     break;
   1785 
   1786   case Qualifiers::OCL_Autoreleasing:
   1787     LifetimeName = "__autoreleasing";
   1788     break;
   1789 
   1790   case Qualifiers::OCL_ExplicitNone:
   1791     // The __unsafe_unretained qualifier is *not* mangled, so that
   1792     // __unsafe_unretained types in ARC produce the same manglings as the
   1793     // equivalent (but, naturally, unqualified) types in non-ARC, providing
   1794     // better ABI compatibility.
   1795     //
   1796     // It's safe to do this because unqualified 'id' won't show up
   1797     // in any type signatures that need to be mangled.
   1798     break;
   1799   }
   1800   if (!LifetimeName.empty())
   1801     Out << 'U' << LifetimeName.size() << LifetimeName;
   1802 }
   1803 
   1804 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
   1805   // <ref-qualifier> ::= R                # lvalue reference
   1806   //                 ::= O                # rvalue-reference
   1807   // Proposal to Itanium C++ ABI list on 1/26/11
   1808   switch (RefQualifier) {
   1809   case RQ_None:
   1810     break;
   1811 
   1812   case RQ_LValue:
   1813     Out << 'R';
   1814     break;
   1815 
   1816   case RQ_RValue:
   1817     Out << 'O';
   1818     break;
   1819   }
   1820 }
   1821 
   1822 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
   1823   Context.mangleObjCMethodName(MD, Out);
   1824 }
   1825 
   1826 void CXXNameMangler::mangleType(QualType T) {
   1827   // If our type is instantiation-dependent but not dependent, we mangle
   1828   // it as it was written in the source, removing any top-level sugar.
   1829   // Otherwise, use the canonical type.
   1830   //
   1831   // FIXME: This is an approximation of the instantiation-dependent name
   1832   // mangling rules, since we should really be using the type as written and
   1833   // augmented via semantic analysis (i.e., with implicit conversions and
   1834   // default template arguments) for any instantiation-dependent type.
   1835   // Unfortunately, that requires several changes to our AST:
   1836   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
   1837   //     uniqued, so that we can handle substitutions properly
   1838   //   - Default template arguments will need to be represented in the
   1839   //     TemplateSpecializationType, since they need to be mangled even though
   1840   //     they aren't written.
   1841   //   - Conversions on non-type template arguments need to be expressed, since
   1842   //     they can affect the mangling of sizeof/alignof.
   1843   if (!T->isInstantiationDependentType() || T->isDependentType())
   1844     T = T.getCanonicalType();
   1845   else {
   1846     // Desugar any types that are purely sugar.
   1847     do {
   1848       // Don't desugar through template specialization types that aren't
   1849       // type aliases. We need to mangle the template arguments as written.
   1850       if (const TemplateSpecializationType *TST
   1851                                       = dyn_cast<TemplateSpecializationType>(T))
   1852         if (!TST->isTypeAlias())
   1853           break;
   1854 
   1855       QualType Desugared
   1856         = T.getSingleStepDesugaredType(Context.getASTContext());
   1857       if (Desugared == T)
   1858         break;
   1859 
   1860       T = Desugared;
   1861     } while (true);
   1862   }
   1863   SplitQualType split = T.split();
   1864   Qualifiers quals = split.Quals;
   1865   const Type *ty = split.Ty;
   1866 
   1867   bool isSubstitutable = quals || !isa<BuiltinType>(T);
   1868   if (isSubstitutable && mangleSubstitution(T))
   1869     return;
   1870 
   1871   // If we're mangling a qualified array type, push the qualifiers to
   1872   // the element type.
   1873   if (quals && isa<ArrayType>(T)) {
   1874     ty = Context.getASTContext().getAsArrayType(T);
   1875     quals = Qualifiers();
   1876 
   1877     // Note that we don't update T: we want to add the
   1878     // substitution at the original type.
   1879   }
   1880 
   1881   if (quals) {
   1882     mangleQualifiers(quals);
   1883     // Recurse:  even if the qualified type isn't yet substitutable,
   1884     // the unqualified type might be.
   1885     mangleType(QualType(ty, 0));
   1886   } else {
   1887     switch (ty->getTypeClass()) {
   1888 #define ABSTRACT_TYPE(CLASS, PARENT)
   1889 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
   1890     case Type::CLASS: \
   1891       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
   1892       return;
   1893 #define TYPE(CLASS, PARENT) \
   1894     case Type::CLASS: \
   1895       mangleType(static_cast<const CLASS##Type*>(ty)); \
   1896       break;
   1897 #include "clang/AST/TypeNodes.def"
   1898     }
   1899   }
   1900 
   1901   // Add the substitution.
   1902   if (isSubstitutable)
   1903     addSubstitution(T);
   1904 }
   1905 
   1906 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
   1907   if (!mangleStandardSubstitution(ND))
   1908     mangleName(ND);
   1909 }
   1910 
   1911 void CXXNameMangler::mangleType(const BuiltinType *T) {
   1912   //  <type>         ::= <builtin-type>
   1913   //  <builtin-type> ::= v  # void
   1914   //                 ::= w  # wchar_t
   1915   //                 ::= b  # bool
   1916   //                 ::= c  # char
   1917   //                 ::= a  # signed char
   1918   //                 ::= h  # unsigned char
   1919   //                 ::= s  # short
   1920   //                 ::= t  # unsigned short
   1921   //                 ::= i  # int
   1922   //                 ::= j  # unsigned int
   1923   //                 ::= l  # long
   1924   //                 ::= m  # unsigned long
   1925   //                 ::= x  # long long, __int64
   1926   //                 ::= y  # unsigned long long, __int64
   1927   //                 ::= n  # __int128
   1928   // UNSUPPORTED:    ::= o  # unsigned __int128
   1929   //                 ::= f  # float
   1930   //                 ::= d  # double
   1931   //                 ::= e  # long double, __float80
   1932   // UNSUPPORTED:    ::= g  # __float128
   1933   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
   1934   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
   1935   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
   1936   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
   1937   //                 ::= Di # char32_t
   1938   //                 ::= Ds # char16_t
   1939   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
   1940   //                 ::= u <source-name>    # vendor extended type
   1941   switch (T->getKind()) {
   1942   case BuiltinType::Void: Out << 'v'; break;
   1943   case BuiltinType::Bool: Out << 'b'; break;
   1944   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
   1945   case BuiltinType::UChar: Out << 'h'; break;
   1946   case BuiltinType::UShort: Out << 't'; break;
   1947   case BuiltinType::UInt: Out << 'j'; break;
   1948   case BuiltinType::ULong: Out << 'm'; break;
   1949   case BuiltinType::ULongLong: Out << 'y'; break;
   1950   case BuiltinType::UInt128: Out << 'o'; break;
   1951   case BuiltinType::SChar: Out << 'a'; break;
   1952   case BuiltinType::WChar_S:
   1953   case BuiltinType::WChar_U: Out << 'w'; break;
   1954   case BuiltinType::Char16: Out << "Ds"; break;
   1955   case BuiltinType::Char32: Out << "Di"; break;
   1956   case BuiltinType::Short: Out << 's'; break;
   1957   case BuiltinType::Int: Out << 'i'; break;
   1958   case BuiltinType::Long: Out << 'l'; break;
   1959   case BuiltinType::LongLong: Out << 'x'; break;
   1960   case BuiltinType::Int128: Out << 'n'; break;
   1961   case BuiltinType::Half: Out << "Dh"; break;
   1962   case BuiltinType::Float: Out << 'f'; break;
   1963   case BuiltinType::Double: Out << 'd'; break;
   1964   case BuiltinType::LongDouble: Out << 'e'; break;
   1965   case BuiltinType::NullPtr: Out << "Dn"; break;
   1966 
   1967 #define BUILTIN_TYPE(Id, SingletonId)
   1968 #define PLACEHOLDER_TYPE(Id, SingletonId) \
   1969   case BuiltinType::Id:
   1970 #include "clang/AST/BuiltinTypes.def"
   1971   case BuiltinType::Dependent:
   1972     llvm_unreachable("mangling a placeholder type");
   1973   case BuiltinType::ObjCId: Out << "11objc_object"; break;
   1974   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
   1975   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
   1976   case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
   1977   case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
   1978   case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
   1979   case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
   1980   case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
   1981   case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
   1982   case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
   1983   case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
   1984   }
   1985 }
   1986 
   1987 // <type>          ::= <function-type>
   1988 // <function-type> ::= [<CV-qualifiers>] F [Y]
   1989 //                      <bare-function-type> [<ref-qualifier>] E
   1990 // (Proposal to cxx-abi-dev, 2012-05-11)
   1991 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
   1992   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
   1993   // e.g. "const" in "int (A::*)() const".
   1994   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
   1995 
   1996   Out << 'F';
   1997 
   1998   // FIXME: We don't have enough information in the AST to produce the 'Y'
   1999   // encoding for extern "C" function types.
   2000   mangleBareFunctionType(T, /*MangleReturnType=*/true);
   2001 
   2002   // Mangle the ref-qualifier, if present.
   2003   mangleRefQualifier(T->getRefQualifier());
   2004 
   2005   Out << 'E';
   2006 }
   2007 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
   2008   llvm_unreachable("Can't mangle K&R function prototypes");
   2009 }
   2010 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
   2011                                             bool MangleReturnType) {
   2012   // We should never be mangling something without a prototype.
   2013   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   2014 
   2015   // Record that we're in a function type.  See mangleFunctionParam
   2016   // for details on what we're trying to achieve here.
   2017   FunctionTypeDepthState saved = FunctionTypeDepth.push();
   2018 
   2019   // <bare-function-type> ::= <signature type>+
   2020   if (MangleReturnType) {
   2021     FunctionTypeDepth.enterResultType();
   2022     mangleType(Proto->getResultType());
   2023     FunctionTypeDepth.leaveResultType();
   2024   }
   2025 
   2026   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
   2027     //   <builtin-type> ::= v   # void
   2028     Out << 'v';
   2029 
   2030     FunctionTypeDepth.pop(saved);
   2031     return;
   2032   }
   2033 
   2034   for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
   2035                                          ArgEnd = Proto->arg_type_end();
   2036        Arg != ArgEnd; ++Arg)
   2037     mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
   2038 
   2039   FunctionTypeDepth.pop(saved);
   2040 
   2041   // <builtin-type>      ::= z  # ellipsis
   2042   if (Proto->isVariadic())
   2043     Out << 'z';
   2044 }
   2045 
   2046 // <type>            ::= <class-enum-type>
   2047 // <class-enum-type> ::= <name>
   2048 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
   2049   mangleName(T->getDecl());
   2050 }
   2051 
   2052 // <type>            ::= <class-enum-type>
   2053 // <class-enum-type> ::= <name>
   2054 void CXXNameMangler::mangleType(const EnumType *T) {
   2055   mangleType(static_cast<const TagType*>(T));
   2056 }
   2057 void CXXNameMangler::mangleType(const RecordType *T) {
   2058   mangleType(static_cast<const TagType*>(T));
   2059 }
   2060 void CXXNameMangler::mangleType(const TagType *T) {
   2061   mangleName(T->getDecl());
   2062 }
   2063 
   2064 // <type>       ::= <array-type>
   2065 // <array-type> ::= A <positive dimension number> _ <element type>
   2066 //              ::= A [<dimension expression>] _ <element type>
   2067 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
   2068   Out << 'A' << T->getSize() << '_';
   2069   mangleType(T->getElementType());
   2070 }
   2071 void CXXNameMangler::mangleType(const VariableArrayType *T) {
   2072   Out << 'A';
   2073   // decayed vla types (size 0) will just be skipped.
   2074   if (T->getSizeExpr())
   2075     mangleExpression(T->getSizeExpr());
   2076   Out << '_';
   2077   mangleType(T->getElementType());
   2078 }
   2079 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
   2080   Out << 'A';
   2081   mangleExpression(T->getSizeExpr());
   2082   Out << '_';
   2083   mangleType(T->getElementType());
   2084 }
   2085 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
   2086   Out << "A_";
   2087   mangleType(T->getElementType());
   2088 }
   2089 
   2090 // <type>                   ::= <pointer-to-member-type>
   2091 // <pointer-to-member-type> ::= M <class type> <member type>
   2092 void CXXNameMangler::mangleType(const MemberPointerType *T) {
   2093   Out << 'M';
   2094   mangleType(QualType(T->getClass(), 0));
   2095   QualType PointeeType = T->getPointeeType();
   2096   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
   2097     mangleType(FPT);
   2098 
   2099     // Itanium C++ ABI 5.1.8:
   2100     //
   2101     //   The type of a non-static member function is considered to be different,
   2102     //   for the purposes of substitution, from the type of a namespace-scope or
   2103     //   static member function whose type appears similar. The types of two
   2104     //   non-static member functions are considered to be different, for the
   2105     //   purposes of substitution, if the functions are members of different
   2106     //   classes. In other words, for the purposes of substitution, the class of
   2107     //   which the function is a member is considered part of the type of
   2108     //   function.
   2109 
   2110     // Given that we already substitute member function pointers as a
   2111     // whole, the net effect of this rule is just to unconditionally
   2112     // suppress substitution on the function type in a member pointer.
   2113     // We increment the SeqID here to emulate adding an entry to the
   2114     // substitution table.
   2115     ++SeqID;
   2116   } else
   2117     mangleType(PointeeType);
   2118 }
   2119 
   2120 // <type>           ::= <template-param>
   2121 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
   2122   mangleTemplateParameter(T->getIndex());
   2123 }
   2124 
   2125 // <type>           ::= <template-param>
   2126 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
   2127   // FIXME: not clear how to mangle this!
   2128   // template <class T...> class A {
   2129   //   template <class U...> void foo(T(*)(U) x...);
   2130   // };
   2131   Out << "_SUBSTPACK_";
   2132 }
   2133 
   2134 // <type> ::= P <type>   # pointer-to
   2135 void CXXNameMangler::mangleType(const PointerType *T) {
   2136   Out << 'P';
   2137   mangleType(T->getPointeeType());
   2138 }
   2139 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
   2140   Out << 'P';
   2141   mangleType(T->getPointeeType());
   2142 }
   2143 
   2144 // <type> ::= R <type>   # reference-to
   2145 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
   2146   Out << 'R';
   2147   mangleType(T->getPointeeType());
   2148 }
   2149 
   2150 // <type> ::= O <type>   # rvalue reference-to (C++0x)
   2151 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
   2152   Out << 'O';
   2153   mangleType(T->getPointeeType());
   2154 }
   2155 
   2156 // <type> ::= C <type>   # complex pair (C 2000)
   2157 void CXXNameMangler::mangleType(const ComplexType *T) {
   2158   Out << 'C';
   2159   mangleType(T->getElementType());
   2160 }
   2161 
   2162 // ARM's ABI for Neon vector types specifies that they should be mangled as
   2163 // if they are structs (to match ARM's initial implementation).  The
   2164 // vector type must be one of the special types predefined by ARM.
   2165 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
   2166   QualType EltType = T->getElementType();
   2167   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
   2168   const char *EltName = 0;
   2169   if (T->getVectorKind() == VectorType::NeonPolyVector) {
   2170     switch (cast<BuiltinType>(EltType)->getKind()) {
   2171     case BuiltinType::SChar:     EltName = "poly8_t"; break;
   2172     case BuiltinType::Short:     EltName = "poly16_t"; break;
   2173     default: llvm_unreachable("unexpected Neon polynomial vector element type");
   2174     }
   2175   } else {
   2176     switch (cast<BuiltinType>(EltType)->getKind()) {
   2177     case BuiltinType::SChar:     EltName = "int8_t"; break;
   2178     case BuiltinType::UChar:     EltName = "uint8_t"; break;
   2179     case BuiltinType::Short:     EltName = "int16_t"; break;
   2180     case BuiltinType::UShort:    EltName = "uint16_t"; break;
   2181     case BuiltinType::Int:       EltName = "int32_t"; break;
   2182     case BuiltinType::UInt:      EltName = "uint32_t"; break;
   2183     case BuiltinType::LongLong:  EltName = "int64_t"; break;
   2184     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
   2185     case BuiltinType::Float:     EltName = "float32_t"; break;
   2186     case BuiltinType::Half:      EltName = "float16_t";break;
   2187     default:
   2188       llvm_unreachable("unexpected Neon vector element type");
   2189     }
   2190   }
   2191   const char *BaseName = 0;
   2192   unsigned BitSize = (T->getNumElements() *
   2193                       getASTContext().getTypeSize(EltType));
   2194   if (BitSize == 64)
   2195     BaseName = "__simd64_";
   2196   else {
   2197     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
   2198     BaseName = "__simd128_";
   2199   }
   2200   Out << strlen(BaseName) + strlen(EltName);
   2201   Out << BaseName << EltName;
   2202 }
   2203 
   2204 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
   2205   switch (EltType->getKind()) {
   2206   case BuiltinType::SChar:
   2207     return "Int8";
   2208   case BuiltinType::Short:
   2209     return "Int16";
   2210   case BuiltinType::Int:
   2211     return "Int32";
   2212   case BuiltinType::LongLong:
   2213     return "Int64";
   2214   case BuiltinType::UChar:
   2215     return "Uint8";
   2216   case BuiltinType::UShort:
   2217     return "Uint16";
   2218   case BuiltinType::UInt:
   2219     return "Uint32";
   2220   case BuiltinType::ULongLong:
   2221     return "Uint64";
   2222   case BuiltinType::Half:
   2223     return "Float16";
   2224   case BuiltinType::Float:
   2225     return "Float32";
   2226   case BuiltinType::Double:
   2227     return "Float64";
   2228   default:
   2229     llvm_unreachable("Unexpected vector element base type");
   2230   }
   2231 }
   2232 
   2233 // AArch64's ABI for Neon vector types specifies that they should be mangled as
   2234 // the equivalent internal name. The vector type must be one of the special
   2235 // types predefined by ARM.
   2236 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
   2237   QualType EltType = T->getElementType();
   2238   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
   2239   unsigned BitSize =
   2240       (T->getNumElements() * getASTContext().getTypeSize(EltType));
   2241   (void)BitSize; // Silence warning.
   2242 
   2243   assert((BitSize == 64 || BitSize == 128) &&
   2244          "Neon vector type not 64 or 128 bits");
   2245 
   2246   assert(getASTContext().getTypeSize(EltType) != BitSize &&
   2247          "Vector of 1 element not permitted");
   2248 
   2249   StringRef EltName;
   2250   if (T->getVectorKind() == VectorType::NeonPolyVector) {
   2251     switch (cast<BuiltinType>(EltType)->getKind()) {
   2252     case BuiltinType::UChar:
   2253       EltName = "Poly8";
   2254       break;
   2255     case BuiltinType::UShort:
   2256       EltName = "Poly16";
   2257       break;
   2258     default:
   2259       llvm_unreachable("unexpected Neon polynomial vector element type");
   2260     }
   2261   } else
   2262     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
   2263 
   2264   std::string TypeName =
   2265       ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
   2266   Out << TypeName.length() << TypeName;
   2267 }
   2268 
   2269 // GNU extension: vector types
   2270 // <type>                  ::= <vector-type>
   2271 // <vector-type>           ::= Dv <positive dimension number> _
   2272 //                                    <extended element type>
   2273 //                         ::= Dv [<dimension expression>] _ <element type>
   2274 // <extended element type> ::= <element type>
   2275 //                         ::= p # AltiVec vector pixel
   2276 //                         ::= b # Altivec vector bool
   2277 void CXXNameMangler::mangleType(const VectorType *T) {
   2278   if ((T->getVectorKind() == VectorType::NeonVector ||
   2279        T->getVectorKind() == VectorType::NeonPolyVector)) {
   2280     if (getASTContext().getTargetInfo().getTriple().getArch() ==
   2281         llvm::Triple::aarch64)
   2282       mangleAArch64NeonVectorType(T);
   2283     else
   2284       mangleNeonVectorType(T);
   2285     return;
   2286   }
   2287   Out << "Dv" << T->getNumElements() << '_';
   2288   if (T->getVectorKind() == VectorType::AltiVecPixel)
   2289     Out << 'p';
   2290   else if (T->getVectorKind() == VectorType::AltiVecBool)
   2291     Out << 'b';
   2292   else
   2293     mangleType(T->getElementType());
   2294 }
   2295 void CXXNameMangler::mangleType(const ExtVectorType *T) {
   2296   mangleType(static_cast<const VectorType*>(T));
   2297 }
   2298 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
   2299   Out << "Dv";
   2300   mangleExpression(T->getSizeExpr());
   2301   Out << '_';
   2302   mangleType(T->getElementType());
   2303 }
   2304 
   2305 void CXXNameMangler::mangleType(const PackExpansionType *T) {
   2306   // <type>  ::= Dp <type>          # pack expansion (C++0x)
   2307   Out << "Dp";
   2308   mangleType(T->getPattern());
   2309 }
   2310 
   2311 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
   2312   mangleSourceName(T->getDecl()->getIdentifier());
   2313 }
   2314 
   2315 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
   2316   if (!T->qual_empty()) {
   2317     // Mangle protocol qualifiers.
   2318     SmallString<64> QualStr;
   2319     llvm::raw_svector_ostream QualOS(QualStr);
   2320     QualOS << "objcproto";
   2321     ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
   2322     for ( ; i != e; ++i) {
   2323       StringRef name = (*i)->getName();
   2324       QualOS << name.size() << name;
   2325     }
   2326     QualOS.flush();
   2327     Out << 'U' << QualStr.size() << QualStr;
   2328   }
   2329   mangleType(T->getBaseType());
   2330 }
   2331 
   2332 void CXXNameMangler::mangleType(const BlockPointerType *T) {
   2333   Out << "U13block_pointer";
   2334   mangleType(T->getPointeeType());
   2335 }
   2336 
   2337 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
   2338   // Mangle injected class name types as if the user had written the
   2339   // specialization out fully.  It may not actually be possible to see
   2340   // this mangling, though.
   2341   mangleType(T->getInjectedSpecializationType());
   2342 }
   2343 
   2344 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
   2345   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
   2346     mangleName(TD, T->getArgs(), T->getNumArgs());
   2347   } else {
   2348     if (mangleSubstitution(QualType(T, 0)))
   2349       return;
   2350 
   2351     mangleTemplatePrefix(T->getTemplateName());
   2352 
   2353     // FIXME: GCC does not appear to mangle the template arguments when
   2354     // the template in question is a dependent template name. Should we
   2355     // emulate that badness?
   2356     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
   2357     addSubstitution(QualType(T, 0));
   2358   }
   2359 }
   2360 
   2361 void CXXNameMangler::mangleType(const DependentNameType *T) {
   2362   // Typename types are always nested
   2363   Out << 'N';
   2364   manglePrefix(T->getQualifier());
   2365   mangleSourceName(T->getIdentifier());
   2366   Out << 'E';
   2367 }
   2368 
   2369 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
   2370   // Dependently-scoped template types are nested if they have a prefix.
   2371   Out << 'N';
   2372 
   2373   // TODO: avoid making this TemplateName.
   2374   TemplateName Prefix =
   2375     getASTContext().getDependentTemplateName(T->getQualifier(),
   2376                                              T->getIdentifier());
   2377   mangleTemplatePrefix(Prefix);
   2378 
   2379   // FIXME: GCC does not appear to mangle the template arguments when
   2380   // the template in question is a dependent template name. Should we
   2381   // emulate that badness?
   2382   mangleTemplateArgs(T->getArgs(), T->getNumArgs());
   2383   Out << 'E';
   2384 }
   2385 
   2386 void CXXNameMangler::mangleType(const TypeOfType *T) {
   2387   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
   2388   // "extension with parameters" mangling.
   2389   Out << "u6typeof";
   2390 }
   2391 
   2392 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
   2393   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
   2394   // "extension with parameters" mangling.
   2395   Out << "u6typeof";
   2396 }
   2397 
   2398 void CXXNameMangler::mangleType(const DecltypeType *T) {
   2399   Expr *E = T->getUnderlyingExpr();
   2400 
   2401   // type ::= Dt <expression> E  # decltype of an id-expression
   2402   //                             #   or class member access
   2403   //      ::= DT <expression> E  # decltype of an expression
   2404 
   2405   // This purports to be an exhaustive list of id-expressions and
   2406   // class member accesses.  Note that we do not ignore parentheses;
   2407   // parentheses change the semantics of decltype for these
   2408   // expressions (and cause the mangler to use the other form).
   2409   if (isa<DeclRefExpr>(E) ||
   2410       isa<MemberExpr>(E) ||
   2411       isa<UnresolvedLookupExpr>(E) ||
   2412       isa<DependentScopeDeclRefExpr>(E) ||
   2413       isa<CXXDependentScopeMemberExpr>(E) ||
   2414       isa<UnresolvedMemberExpr>(E))
   2415     Out << "Dt";
   2416   else
   2417     Out << "DT";
   2418   mangleExpression(E);
   2419   Out << 'E';
   2420 }
   2421 
   2422 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
   2423   // If this is dependent, we need to record that. If not, we simply
   2424   // mangle it as the underlying type since they are equivalent.
   2425   if (T->isDependentType()) {
   2426     Out << 'U';
   2427 
   2428     switch (T->getUTTKind()) {
   2429       case UnaryTransformType::EnumUnderlyingType:
   2430         Out << "3eut";
   2431         break;
   2432     }
   2433   }
   2434 
   2435   mangleType(T->getUnderlyingType());
   2436 }
   2437 
   2438 void CXXNameMangler::mangleType(const AutoType *T) {
   2439   QualType D = T->getDeducedType();
   2440   // <builtin-type> ::= Da  # dependent auto
   2441   if (D.isNull())
   2442     Out << (T->isDecltypeAuto() ? "Dc" : "Da");
   2443   else
   2444     mangleType(D);
   2445 }
   2446 
   2447 void CXXNameMangler::mangleType(const AtomicType *T) {
   2448   // <type> ::= U <source-name> <type>	# vendor extended type qualifier
   2449   // (Until there's a standardized mangling...)
   2450   Out << "U7_Atomic";
   2451   mangleType(T->getValueType());
   2452 }
   2453 
   2454 void CXXNameMangler::mangleIntegerLiteral(QualType T,
   2455                                           const llvm::APSInt &Value) {
   2456   //  <expr-primary> ::= L <type> <value number> E # integer literal
   2457   Out << 'L';
   2458 
   2459   mangleType(T);
   2460   if (T->isBooleanType()) {
   2461     // Boolean values are encoded as 0/1.
   2462     Out << (Value.getBoolValue() ? '1' : '0');
   2463   } else {
   2464     mangleNumber(Value);
   2465   }
   2466   Out << 'E';
   2467 
   2468 }
   2469 
   2470 /// Mangles a member expression.
   2471 void CXXNameMangler::mangleMemberExpr(const Expr *base,
   2472                                       bool isArrow,
   2473                                       NestedNameSpecifier *qualifier,
   2474                                       NamedDecl *firstQualifierLookup,
   2475                                       DeclarationName member,
   2476                                       unsigned arity) {
   2477   // <expression> ::= dt <expression> <unresolved-name>
   2478   //              ::= pt <expression> <unresolved-name>
   2479   if (base) {
   2480     if (base->isImplicitCXXThis()) {
   2481       // Note: GCC mangles member expressions to the implicit 'this' as
   2482       // *this., whereas we represent them as this->. The Itanium C++ ABI
   2483       // does not specify anything here, so we follow GCC.
   2484       Out << "dtdefpT";
   2485     } else {
   2486       Out << (isArrow ? "pt" : "dt");
   2487       mangleExpression(base);
   2488     }
   2489   }
   2490   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
   2491 }
   2492 
   2493 /// Look at the callee of the given call expression and determine if
   2494 /// it's a parenthesized id-expression which would have triggered ADL
   2495 /// otherwise.
   2496 static bool isParenthesizedADLCallee(const CallExpr *call) {
   2497   const Expr *callee = call->getCallee();
   2498   const Expr *fn = callee->IgnoreParens();
   2499 
   2500   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
   2501   // too, but for those to appear in the callee, it would have to be
   2502   // parenthesized.
   2503   if (callee == fn) return false;
   2504 
   2505   // Must be an unresolved lookup.
   2506   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
   2507   if (!lookup) return false;
   2508 
   2509   assert(!lookup->requiresADL());
   2510 
   2511   // Must be an unqualified lookup.
   2512   if (lookup->getQualifier()) return false;
   2513 
   2514   // Must not have found a class member.  Note that if one is a class
   2515   // member, they're all class members.
   2516   if (lookup->getNumDecls() > 0 &&
   2517       (*lookup->decls_begin())->isCXXClassMember())
   2518     return false;
   2519 
   2520   // Otherwise, ADL would have been triggered.
   2521   return true;
   2522 }
   2523 
   2524 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
   2525   // <expression> ::= <unary operator-name> <expression>
   2526   //              ::= <binary operator-name> <expression> <expression>
   2527   //              ::= <trinary operator-name> <expression> <expression> <expression>
   2528   //              ::= cv <type> expression           # conversion with one argument
   2529   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
   2530   //              ::= st <type>                      # sizeof (a type)
   2531   //              ::= at <type>                      # alignof (a type)
   2532   //              ::= <template-param>
   2533   //              ::= <function-param>
   2534   //              ::= sr <type> <unqualified-name>                   # dependent name
   2535   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
   2536   //              ::= ds <expression> <expression>                   # expr.*expr
   2537   //              ::= sZ <template-param>                            # size of a parameter pack
   2538   //              ::= sZ <function-param>    # size of a function parameter pack
   2539   //              ::= <expr-primary>
   2540   // <expr-primary> ::= L <type> <value number> E    # integer literal
   2541   //                ::= L <type <value float> E      # floating literal
   2542   //                ::= L <mangled-name> E           # external name
   2543   //                ::= fpT                          # 'this' expression
   2544   QualType ImplicitlyConvertedToType;
   2545 
   2546 recurse:
   2547   switch (E->getStmtClass()) {
   2548   case Expr::NoStmtClass:
   2549 #define ABSTRACT_STMT(Type)
   2550 #define EXPR(Type, Base)
   2551 #define STMT(Type, Base) \
   2552   case Expr::Type##Class:
   2553 #include "clang/AST/StmtNodes.inc"
   2554     // fallthrough
   2555 
   2556   // These all can only appear in local or variable-initialization
   2557   // contexts and so should never appear in a mangling.
   2558   case Expr::AddrLabelExprClass:
   2559   case Expr::DesignatedInitExprClass:
   2560   case Expr::ImplicitValueInitExprClass:
   2561   case Expr::ParenListExprClass:
   2562   case Expr::LambdaExprClass:
   2563   case Expr::MSPropertyRefExprClass:
   2564     llvm_unreachable("unexpected statement kind");
   2565 
   2566   // FIXME: invent manglings for all these.
   2567   case Expr::BlockExprClass:
   2568   case Expr::CXXPseudoDestructorExprClass:
   2569   case Expr::ChooseExprClass:
   2570   case Expr::CompoundLiteralExprClass:
   2571   case Expr::ExtVectorElementExprClass:
   2572   case Expr::GenericSelectionExprClass:
   2573   case Expr::ObjCEncodeExprClass:
   2574   case Expr::ObjCIsaExprClass:
   2575   case Expr::ObjCIvarRefExprClass:
   2576   case Expr::ObjCMessageExprClass:
   2577   case Expr::ObjCPropertyRefExprClass:
   2578   case Expr::ObjCProtocolExprClass:
   2579   case Expr::ObjCSelectorExprClass:
   2580   case Expr::ObjCStringLiteralClass:
   2581   case Expr::ObjCBoxedExprClass:
   2582   case Expr::ObjCArrayLiteralClass:
   2583   case Expr::ObjCDictionaryLiteralClass:
   2584   case Expr::ObjCSubscriptRefExprClass:
   2585   case Expr::ObjCIndirectCopyRestoreExprClass:
   2586   case Expr::OffsetOfExprClass:
   2587   case Expr::PredefinedExprClass:
   2588   case Expr::ShuffleVectorExprClass:
   2589   case Expr::StmtExprClass:
   2590   case Expr::UnaryTypeTraitExprClass:
   2591   case Expr::BinaryTypeTraitExprClass:
   2592   case Expr::TypeTraitExprClass:
   2593   case Expr::ArrayTypeTraitExprClass:
   2594   case Expr::ExpressionTraitExprClass:
   2595   case Expr::VAArgExprClass:
   2596   case Expr::CXXUuidofExprClass:
   2597   case Expr::CUDAKernelCallExprClass:
   2598   case Expr::AsTypeExprClass:
   2599   case Expr::PseudoObjectExprClass:
   2600   case Expr::AtomicExprClass:
   2601   {
   2602     // As bad as this diagnostic is, it's better than crashing.
   2603     DiagnosticsEngine &Diags = Context.getDiags();
   2604     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2605                                      "cannot yet mangle expression type %0");
   2606     Diags.Report(E->getExprLoc(), DiagID)
   2607       << E->getStmtClassName() << E->getSourceRange();
   2608     break;
   2609   }
   2610 
   2611   // Even gcc-4.5 doesn't mangle this.
   2612   case Expr::BinaryConditionalOperatorClass: {
   2613     DiagnosticsEngine &Diags = Context.getDiags();
   2614     unsigned DiagID =
   2615       Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2616                 "?: operator with omitted middle operand cannot be mangled");
   2617     Diags.Report(E->getExprLoc(), DiagID)
   2618       << E->getStmtClassName() << E->getSourceRange();
   2619     break;
   2620   }
   2621 
   2622   // These are used for internal purposes and cannot be meaningfully mangled.
   2623   case Expr::OpaqueValueExprClass:
   2624     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
   2625 
   2626   case Expr::InitListExprClass: {
   2627     // Proposal by Jason Merrill, 2012-01-03
   2628     Out << "il";
   2629     const InitListExpr *InitList = cast<InitListExpr>(E);
   2630     for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
   2631       mangleExpression(InitList->getInit(i));
   2632     Out << "E";
   2633     break;
   2634   }
   2635 
   2636   case Expr::CXXDefaultArgExprClass:
   2637     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
   2638     break;
   2639 
   2640   case Expr::CXXDefaultInitExprClass:
   2641     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
   2642     break;
   2643 
   2644   case Expr::CXXStdInitializerListExprClass:
   2645     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
   2646     break;
   2647 
   2648   case Expr::SubstNonTypeTemplateParmExprClass:
   2649     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
   2650                      Arity);
   2651     break;
   2652 
   2653   case Expr::UserDefinedLiteralClass:
   2654     // We follow g++'s approach of mangling a UDL as a call to the literal
   2655     // operator.
   2656   case Expr::CXXMemberCallExprClass: // fallthrough
   2657   case Expr::CallExprClass: {
   2658     const CallExpr *CE = cast<CallExpr>(E);
   2659 
   2660     // <expression> ::= cp <simple-id> <expression>* E
   2661     // We use this mangling only when the call would use ADL except
   2662     // for being parenthesized.  Per discussion with David
   2663     // Vandervoorde, 2011.04.25.
   2664     if (isParenthesizedADLCallee(CE)) {
   2665       Out << "cp";
   2666       // The callee here is a parenthesized UnresolvedLookupExpr with
   2667       // no qualifier and should always get mangled as a <simple-id>
   2668       // anyway.
   2669 
   2670     // <expression> ::= cl <expression>* E
   2671     } else {
   2672       Out << "cl";
   2673     }
   2674 
   2675     mangleExpression(CE->getCallee(), CE->getNumArgs());
   2676     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
   2677       mangleExpression(CE->getArg(I));
   2678     Out << 'E';
   2679     break;
   2680   }
   2681 
   2682   case Expr::CXXNewExprClass: {
   2683     const CXXNewExpr *New = cast<CXXNewExpr>(E);
   2684     if (New->isGlobalNew()) Out << "gs";
   2685     Out << (New->isArray() ? "na" : "nw");
   2686     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
   2687            E = New->placement_arg_end(); I != E; ++I)
   2688       mangleExpression(*I);
   2689     Out << '_';
   2690     mangleType(New->getAllocatedType());
   2691     if (New->hasInitializer()) {
   2692       // Proposal by Jason Merrill, 2012-01-03
   2693       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
   2694         Out << "il";
   2695       else
   2696         Out << "pi";
   2697       const Expr *Init = New->getInitializer();
   2698       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
   2699         // Directly inline the initializers.
   2700         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
   2701                                                   E = CCE->arg_end();
   2702              I != E; ++I)
   2703           mangleExpression(*I);
   2704       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
   2705         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
   2706           mangleExpression(PLE->getExpr(i));
   2707       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
   2708                  isa<InitListExpr>(Init)) {
   2709         // Only take InitListExprs apart for list-initialization.
   2710         const InitListExpr *InitList = cast<InitListExpr>(Init);
   2711         for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
   2712           mangleExpression(InitList->getInit(i));
   2713       } else
   2714         mangleExpression(Init);
   2715     }
   2716     Out << 'E';
   2717     break;
   2718   }
   2719 
   2720   case Expr::MemberExprClass: {
   2721     const MemberExpr *ME = cast<MemberExpr>(E);
   2722     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2723                      ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
   2724                      Arity);
   2725     break;
   2726   }
   2727 
   2728   case Expr::UnresolvedMemberExprClass: {
   2729     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
   2730     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2731                      ME->getQualifier(), 0, ME->getMemberName(),
   2732                      Arity);
   2733     if (ME->hasExplicitTemplateArgs())
   2734       mangleTemplateArgs(ME->getExplicitTemplateArgs());
   2735     break;
   2736   }
   2737 
   2738   case Expr::CXXDependentScopeMemberExprClass: {
   2739     const CXXDependentScopeMemberExpr *ME
   2740       = cast<CXXDependentScopeMemberExpr>(E);
   2741     mangleMemberExpr(ME->getBase(), ME->isArrow(),
   2742                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
   2743                      ME->getMember(), Arity);
   2744     if (ME->hasExplicitTemplateArgs())
   2745       mangleTemplateArgs(ME->getExplicitTemplateArgs());
   2746     break;
   2747   }
   2748 
   2749   case Expr::UnresolvedLookupExprClass: {
   2750     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
   2751     mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
   2752 
   2753     // All the <unresolved-name> productions end in a
   2754     // base-unresolved-name, where <template-args> are just tacked
   2755     // onto the end.
   2756     if (ULE->hasExplicitTemplateArgs())
   2757       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
   2758     break;
   2759   }
   2760 
   2761   case Expr::CXXUnresolvedConstructExprClass: {
   2762     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
   2763     unsigned N = CE->arg_size();
   2764 
   2765     Out << "cv";
   2766     mangleType(CE->getType());
   2767     if (N != 1) Out << '_';
   2768     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
   2769     if (N != 1) Out << 'E';
   2770     break;
   2771   }
   2772 
   2773   case Expr::CXXTemporaryObjectExprClass:
   2774   case Expr::CXXConstructExprClass: {
   2775     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
   2776     unsigned N = CE->getNumArgs();
   2777 
   2778     // Proposal by Jason Merrill, 2012-01-03
   2779     if (CE->isListInitialization())
   2780       Out << "tl";
   2781     else
   2782       Out << "cv";
   2783     mangleType(CE->getType());
   2784     if (N != 1) Out << '_';
   2785     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
   2786     if (N != 1) Out << 'E';
   2787     break;
   2788   }
   2789 
   2790   case Expr::CXXScalarValueInitExprClass:
   2791     Out <<"cv";
   2792     mangleType(E->getType());
   2793     Out <<"_E";
   2794     break;
   2795 
   2796   case Expr::CXXNoexceptExprClass:
   2797     Out << "nx";
   2798     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
   2799     break;
   2800 
   2801   case Expr::UnaryExprOrTypeTraitExprClass: {
   2802     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
   2803 
   2804     if (!SAE->isInstantiationDependent()) {
   2805       // Itanium C++ ABI:
   2806       //   If the operand of a sizeof or alignof operator is not
   2807       //   instantiation-dependent it is encoded as an integer literal
   2808       //   reflecting the result of the operator.
   2809       //
   2810       //   If the result of the operator is implicitly converted to a known
   2811       //   integer type, that type is used for the literal; otherwise, the type
   2812       //   of std::size_t or std::ptrdiff_t is used.
   2813       QualType T = (ImplicitlyConvertedToType.isNull() ||
   2814                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
   2815                                                     : ImplicitlyConvertedToType;
   2816       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
   2817       mangleIntegerLiteral(T, V);
   2818       break;
   2819     }
   2820 
   2821     switch(SAE->getKind()) {
   2822     case UETT_SizeOf:
   2823       Out << 's';
   2824       break;
   2825     case UETT_AlignOf:
   2826       Out << 'a';
   2827       break;
   2828     case UETT_VecStep:
   2829       DiagnosticsEngine &Diags = Context.getDiags();
   2830       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
   2831                                      "cannot yet mangle vec_step expression");
   2832       Diags.Report(DiagID);
   2833       return;
   2834     }
   2835     if (SAE->isArgumentType()) {
   2836       Out << 't';
   2837       mangleType(SAE->getArgumentType());
   2838     } else {
   2839       Out << 'z';
   2840       mangleExpression(SAE->getArgumentExpr());
   2841     }
   2842     break;
   2843   }
   2844 
   2845   case Expr::CXXThrowExprClass: {
   2846     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
   2847 
   2848     // Proposal from David Vandervoorde, 2010.06.30
   2849     if (TE->getSubExpr()) {
   2850       Out << "tw";
   2851       mangleExpression(TE->getSubExpr());
   2852     } else {
   2853       Out << "tr";
   2854     }
   2855     break;
   2856   }
   2857 
   2858   case Expr::CXXTypeidExprClass: {
   2859     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
   2860 
   2861     // Proposal from David Vandervoorde, 2010.06.30
   2862     if (TIE->isTypeOperand()) {
   2863       Out << "ti";
   2864       mangleType(TIE->getTypeOperand());
   2865     } else {
   2866       Out << "te";
   2867       mangleExpression(TIE->getExprOperand());
   2868     }
   2869     break;
   2870   }
   2871 
   2872   case Expr::CXXDeleteExprClass: {
   2873     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
   2874 
   2875     // Proposal from David Vandervoorde, 2010.06.30
   2876     if (DE->isGlobalDelete()) Out << "gs";
   2877     Out << (DE->isArrayForm() ? "da" : "dl");
   2878     mangleExpression(DE->getArgument());
   2879     break;
   2880   }
   2881 
   2882   case Expr::UnaryOperatorClass: {
   2883     const UnaryOperator *UO = cast<UnaryOperator>(E);
   2884     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
   2885                        /*Arity=*/1);
   2886     mangleExpression(UO->getSubExpr());
   2887     break;
   2888   }
   2889 
   2890   case Expr::ArraySubscriptExprClass: {
   2891     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
   2892 
   2893     // Array subscript is treated as a syntactically weird form of
   2894     // binary operator.
   2895     Out << "ix";
   2896     mangleExpression(AE->getLHS());
   2897     mangleExpression(AE->getRHS());
   2898     break;
   2899   }
   2900 
   2901   case Expr::CompoundAssignOperatorClass: // fallthrough
   2902   case Expr::BinaryOperatorClass: {
   2903     const BinaryOperator *BO = cast<BinaryOperator>(E);
   2904     if (BO->getOpcode() == BO_PtrMemD)
   2905       Out << "ds";
   2906     else
   2907       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
   2908                          /*Arity=*/2);
   2909     mangleExpression(BO->getLHS());
   2910     mangleExpression(BO->getRHS());
   2911     break;
   2912   }
   2913 
   2914   case Expr::ConditionalOperatorClass: {
   2915     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
   2916     mangleOperatorName(OO_Conditional, /*Arity=*/3);
   2917     mangleExpression(CO->getCond());
   2918     mangleExpression(CO->getLHS(), Arity);
   2919     mangleExpression(CO->getRHS(), Arity);
   2920     break;
   2921   }
   2922 
   2923   case Expr::ImplicitCastExprClass: {
   2924     ImplicitlyConvertedToType = E->getType();
   2925     E = cast<ImplicitCastExpr>(E)->getSubExpr();
   2926     goto recurse;
   2927   }
   2928 
   2929   case Expr::ObjCBridgedCastExprClass: {
   2930     // Mangle ownership casts as a vendor extended operator __bridge,
   2931     // __bridge_transfer, or __bridge_retain.
   2932     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
   2933     Out << "v1U" << Kind.size() << Kind;
   2934   }
   2935   // Fall through to mangle the cast itself.
   2936 
   2937   case Expr::CStyleCastExprClass:
   2938   case Expr::CXXStaticCastExprClass:
   2939   case Expr::CXXDynamicCastExprClass:
   2940   case Expr::CXXReinterpretCastExprClass:
   2941   case Expr::CXXConstCastExprClass:
   2942   case Expr::CXXFunctionalCastExprClass: {
   2943     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
   2944     Out << "cv";
   2945     mangleType(ECE->getType());
   2946     mangleExpression(ECE->getSubExpr());
   2947     break;
   2948   }
   2949 
   2950   case Expr::CXXOperatorCallExprClass: {
   2951     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
   2952     unsigned NumArgs = CE->getNumArgs();
   2953     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
   2954     // Mangle the arguments.
   2955     for (unsigned i = 0; i != NumArgs; ++i)
   2956       mangleExpression(CE->getArg(i));
   2957     break;
   2958   }
   2959 
   2960   case Expr::ParenExprClass:
   2961     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
   2962     break;
   2963 
   2964   case Expr::DeclRefExprClass: {
   2965     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
   2966 
   2967     switch (D->getKind()) {
   2968     default:
   2969       //  <expr-primary> ::= L <mangled-name> E # external name
   2970       Out << 'L';
   2971       mangle(D, "_Z");
   2972       Out << 'E';
   2973       break;
   2974 
   2975     case Decl::ParmVar:
   2976       mangleFunctionParam(cast<ParmVarDecl>(D));
   2977       break;
   2978 
   2979     case Decl::EnumConstant: {
   2980       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
   2981       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
   2982       break;
   2983     }
   2984 
   2985     case Decl::NonTypeTemplateParm: {
   2986       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
   2987       mangleTemplateParameter(PD->getIndex());
   2988       break;
   2989     }
   2990 
   2991     }
   2992 
   2993     break;
   2994   }
   2995 
   2996   case Expr::SubstNonTypeTemplateParmPackExprClass:
   2997     // FIXME: not clear how to mangle this!
   2998     // template <unsigned N...> class A {
   2999     //   template <class U...> void foo(U (&x)[N]...);
   3000     // };
   3001     Out << "_SUBSTPACK_";
   3002     break;
   3003 
   3004   case Expr::FunctionParmPackExprClass: {
   3005     // FIXME: not clear how to mangle this!
   3006     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
   3007     Out << "v110_SUBSTPACK";
   3008     mangleFunctionParam(FPPE->getParameterPack());
   3009     break;
   3010   }
   3011 
   3012   case Expr::DependentScopeDeclRefExprClass: {
   3013     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
   3014     mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
   3015 
   3016     // All the <unresolved-name> productions end in a
   3017     // base-unresolved-name, where <template-args> are just tacked
   3018     // onto the end.
   3019     if (DRE->hasExplicitTemplateArgs())
   3020       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
   3021     break;
   3022   }
   3023 
   3024   case Expr::CXXBindTemporaryExprClass:
   3025     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
   3026     break;
   3027 
   3028   case Expr::ExprWithCleanupsClass:
   3029     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
   3030     break;
   3031 
   3032   case Expr::FloatingLiteralClass: {
   3033     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
   3034     Out << 'L';
   3035     mangleType(FL->getType());
   3036     mangleFloat(FL->getValue());
   3037     Out << 'E';
   3038     break;
   3039   }
   3040 
   3041   case Expr::CharacterLiteralClass:
   3042     Out << 'L';
   3043     mangleType(E->getType());
   3044     Out << cast<CharacterLiteral>(E)->getValue();
   3045     Out << 'E';
   3046     break;
   3047 
   3048   // FIXME. __objc_yes/__objc_no are mangled same as true/false
   3049   case Expr::ObjCBoolLiteralExprClass:
   3050     Out << "Lb";
   3051     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
   3052     Out << 'E';
   3053     break;
   3054 
   3055   case Expr::CXXBoolLiteralExprClass:
   3056     Out << "Lb";
   3057     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
   3058     Out << 'E';
   3059     break;
   3060 
   3061   case Expr::IntegerLiteralClass: {
   3062     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
   3063     if (E->getType()->isSignedIntegerType())
   3064       Value.setIsSigned(true);
   3065     mangleIntegerLiteral(E->getType(), Value);
   3066     break;
   3067   }
   3068 
   3069   case Expr::ImaginaryLiteralClass: {
   3070     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
   3071     // Mangle as if a complex literal.
   3072     // Proposal from David Vandevoorde, 2010.06.30.
   3073     Out << 'L';
   3074     mangleType(E->getType());
   3075     if (const FloatingLiteral *Imag =
   3076           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
   3077       // Mangle a floating-point zero of the appropriate type.
   3078       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
   3079       Out << '_';
   3080       mangleFloat(Imag->getValue());
   3081     } else {
   3082       Out << "0_";
   3083       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
   3084       if (IE->getSubExpr()->getType()->isSignedIntegerType())
   3085         Value.setIsSigned(true);
   3086       mangleNumber(Value);
   3087     }
   3088     Out << 'E';
   3089     break;
   3090   }
   3091 
   3092   case Expr::StringLiteralClass: {
   3093     // Revised proposal from David Vandervoorde, 2010.07.15.
   3094     Out << 'L';
   3095     assert(isa<ConstantArrayType>(E->getType()));
   3096     mangleType(E->getType());
   3097     Out << 'E';
   3098     break;
   3099   }
   3100 
   3101   case Expr::GNUNullExprClass:
   3102     // FIXME: should this really be mangled the same as nullptr?
   3103     // fallthrough
   3104 
   3105   case Expr::CXXNullPtrLiteralExprClass: {
   3106     // Proposal from David Vandervoorde, 2010.06.30, as
   3107     // modified by ABI list discussion.
   3108     Out << "LDnE";
   3109     break;
   3110   }
   3111 
   3112   case Expr::PackExpansionExprClass:
   3113     Out << "sp";
   3114     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
   3115     break;
   3116 
   3117   case Expr::SizeOfPackExprClass: {
   3118     Out << "sZ";
   3119     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
   3120     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
   3121       mangleTemplateParameter(TTP->getIndex());
   3122     else if (const NonTypeTemplateParmDecl *NTTP
   3123                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
   3124       mangleTemplateParameter(NTTP->getIndex());
   3125     else if (const TemplateTemplateParmDecl *TempTP
   3126                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
   3127       mangleTemplateParameter(TempTP->getIndex());
   3128     else
   3129       mangleFunctionParam(cast<ParmVarDecl>(Pack));
   3130     break;
   3131   }
   3132 
   3133   case Expr::MaterializeTemporaryExprClass: {
   3134     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
   3135     break;
   3136   }
   3137 
   3138   case Expr::CXXThisExprClass:
   3139     Out << "fpT";
   3140     break;
   3141   }
   3142 }
   3143 
   3144 /// Mangle an expression which refers to a parameter variable.
   3145 ///
   3146 /// <expression>     ::= <function-param>
   3147 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
   3148 /// <function-param> ::= fp <top-level CV-qualifiers>
   3149 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
   3150 /// <function-param> ::= fL <L-1 non-negative number>
   3151 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
   3152 /// <function-param> ::= fL <L-1 non-negative number>
   3153 ///                      p <top-level CV-qualifiers>
   3154 ///                      <I-1 non-negative number> _         # L > 0, I > 0
   3155 ///
   3156 /// L is the nesting depth of the parameter, defined as 1 if the
   3157 /// parameter comes from the innermost function prototype scope
   3158 /// enclosing the current context, 2 if from the next enclosing
   3159 /// function prototype scope, and so on, with one special case: if
   3160 /// we've processed the full parameter clause for the innermost
   3161 /// function type, then L is one less.  This definition conveniently
   3162 /// makes it irrelevant whether a function's result type was written
   3163 /// trailing or leading, but is otherwise overly complicated; the
   3164 /// numbering was first designed without considering references to
   3165 /// parameter in locations other than return types, and then the
   3166 /// mangling had to be generalized without changing the existing
   3167 /// manglings.
   3168 ///
   3169 /// I is the zero-based index of the parameter within its parameter
   3170 /// declaration clause.  Note that the original ABI document describes
   3171 /// this using 1-based ordinals.
   3172 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
   3173   unsigned parmDepth = parm->getFunctionScopeDepth();
   3174   unsigned parmIndex = parm->getFunctionScopeIndex();
   3175 
   3176   // Compute 'L'.
   3177   // parmDepth does not include the declaring function prototype.
   3178   // FunctionTypeDepth does account for that.
   3179   assert(parmDepth < FunctionTypeDepth.getDepth());
   3180   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
   3181   if (FunctionTypeDepth.isInResultType())
   3182     nestingDepth--;
   3183 
   3184   if (nestingDepth == 0) {
   3185     Out << "fp";
   3186   } else {
   3187     Out << "fL" << (nestingDepth - 1) << 'p';
   3188   }
   3189 
   3190   // Top-level qualifiers.  We don't have to worry about arrays here,
   3191   // because parameters declared as arrays should already have been
   3192   // transformed to have pointer type. FIXME: apparently these don't
   3193   // get mangled if used as an rvalue of a known non-class type?
   3194   assert(!parm->getType()->isArrayType()
   3195          && "parameter's type is still an array type?");
   3196   mangleQualifiers(parm->getType().getQualifiers());
   3197 
   3198   // Parameter index.
   3199   if (parmIndex != 0) {
   3200     Out << (parmIndex - 1);
   3201   }
   3202   Out << '_';
   3203 }
   3204 
   3205 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
   3206   // <ctor-dtor-name> ::= C1  # complete object constructor
   3207   //                  ::= C2  # base object constructor
   3208   //                  ::= C3  # complete object allocating constructor
   3209   //
   3210   switch (T) {
   3211   case Ctor_Complete:
   3212     Out << "C1";
   3213     break;
   3214   case Ctor_Base:
   3215     Out << "C2";
   3216     break;
   3217   case Ctor_CompleteAllocating:
   3218     Out << "C3";
   3219     break;
   3220   }
   3221 }
   3222 
   3223 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
   3224   // <ctor-dtor-name> ::= D0  # deleting destructor
   3225   //                  ::= D1  # complete object destructor
   3226   //                  ::= D2  # base object destructor
   3227   //
   3228   switch (T) {
   3229   case Dtor_Deleting:
   3230     Out << "D0";
   3231     break;
   3232   case Dtor_Complete:
   3233     Out << "D1";
   3234     break;
   3235   case Dtor_Base:
   3236     Out << "D2";
   3237     break;
   3238   }
   3239 }
   3240 
   3241 void CXXNameMangler::mangleTemplateArgs(
   3242                           const ASTTemplateArgumentListInfo &TemplateArgs) {
   3243   // <template-args> ::= I <template-arg>+ E
   3244   Out << 'I';
   3245   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
   3246     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
   3247   Out << 'E';
   3248 }
   3249 
   3250 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
   3251   // <template-args> ::= I <template-arg>+ E
   3252   Out << 'I';
   3253   for (unsigned i = 0, e = AL.size(); i != e; ++i)
   3254     mangleTemplateArg(AL[i]);
   3255   Out << 'E';
   3256 }
   3257 
   3258 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
   3259                                         unsigned NumTemplateArgs) {
   3260   // <template-args> ::= I <template-arg>+ E
   3261   Out << 'I';
   3262   for (unsigned i = 0; i != NumTemplateArgs; ++i)
   3263     mangleTemplateArg(TemplateArgs[i]);
   3264   Out << 'E';
   3265 }
   3266 
   3267 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
   3268   // <template-arg> ::= <type>              # type or template
   3269   //                ::= X <expression> E    # expression
   3270   //                ::= <expr-primary>      # simple expressions
   3271   //                ::= J <template-arg>* E # argument pack
   3272   //                ::= sp <expression>     # pack expansion of (C++0x)
   3273   if (!A.isInstantiationDependent() || A.isDependent())
   3274     A = Context.getASTContext().getCanonicalTemplateArgument(A);
   3275 
   3276   switch (A.getKind()) {
   3277   case TemplateArgument::Null:
   3278     llvm_unreachable("Cannot mangle NULL template argument");
   3279 
   3280   case TemplateArgument::Type:
   3281     mangleType(A.getAsType());
   3282     break;
   3283   case TemplateArgument::Template:
   3284     // This is mangled as <type>.
   3285     mangleType(A.getAsTemplate());
   3286     break;
   3287   case TemplateArgument::TemplateExpansion:
   3288     // <type>  ::= Dp <type>          # pack expansion (C++0x)
   3289     Out << "Dp";
   3290     mangleType(A.getAsTemplateOrTemplatePattern());
   3291     break;
   3292   case TemplateArgument::Expression: {
   3293     // It's possible to end up with a DeclRefExpr here in certain
   3294     // dependent cases, in which case we should mangle as a
   3295     // declaration.
   3296     const Expr *E = A.getAsExpr()->IgnoreParens();
   3297     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3298       const ValueDecl *D = DRE->getDecl();
   3299       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
   3300         Out << "L";
   3301         mangle(D, "_Z");
   3302         Out << 'E';
   3303         break;
   3304       }
   3305     }
   3306 
   3307     Out << 'X';
   3308     mangleExpression(E);
   3309     Out << 'E';
   3310     break;
   3311   }
   3312   case TemplateArgument::Integral:
   3313     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
   3314     break;
   3315   case TemplateArgument::Declaration: {
   3316     //  <expr-primary> ::= L <mangled-name> E # external name
   3317     // Clang produces AST's where pointer-to-member-function expressions
   3318     // and pointer-to-function expressions are represented as a declaration not
   3319     // an expression. We compensate for it here to produce the correct mangling.
   3320     ValueDecl *D = A.getAsDecl();
   3321     bool compensateMangling = !A.isDeclForReferenceParam();
   3322     if (compensateMangling) {
   3323       Out << 'X';
   3324       mangleOperatorName(OO_Amp, 1);
   3325     }
   3326 
   3327     Out << 'L';
   3328     // References to external entities use the mangled name; if the name would
   3329     // not normally be manged then mangle it as unqualified.
   3330     //
   3331     // FIXME: The ABI specifies that external names here should have _Z, but
   3332     // gcc leaves this off.
   3333     if (compensateMangling)
   3334       mangle(D, "_Z");
   3335     else
   3336       mangle(D, "Z");
   3337     Out << 'E';
   3338 
   3339     if (compensateMangling)
   3340       Out << 'E';
   3341 
   3342     break;
   3343   }
   3344   case TemplateArgument::NullPtr: {
   3345     //  <expr-primary> ::= L <type> 0 E
   3346     Out << 'L';
   3347     mangleType(A.getNullPtrType());
   3348     Out << "0E";
   3349     break;
   3350   }
   3351   case TemplateArgument::Pack: {
   3352     // Note: proposal by Mike Herrick on 12/20/10
   3353     Out << 'J';
   3354     for (TemplateArgument::pack_iterator PA = A.pack_begin(),
   3355                                       PAEnd = A.pack_end();
   3356          PA != PAEnd; ++PA)
   3357       mangleTemplateArg(*PA);
   3358     Out << 'E';
   3359   }
   3360   }
   3361 }
   3362 
   3363 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
   3364   // <template-param> ::= T_    # first template parameter
   3365   //                  ::= T <parameter-2 non-negative number> _
   3366   if (Index == 0)
   3367     Out << "T_";
   3368   else
   3369     Out << 'T' << (Index - 1) << '_';
   3370 }
   3371 
   3372 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
   3373   bool result = mangleSubstitution(type);
   3374   assert(result && "no existing substitution for type");
   3375   (void) result;
   3376 }
   3377 
   3378 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
   3379   bool result = mangleSubstitution(tname);
   3380   assert(result && "no existing substitution for template name");
   3381   (void) result;
   3382 }
   3383 
   3384 // <substitution> ::= S <seq-id> _
   3385 //                ::= S_
   3386 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
   3387   // Try one of the standard substitutions first.
   3388   if (mangleStandardSubstitution(ND))
   3389     return true;
   3390 
   3391   ND = cast<NamedDecl>(ND->getCanonicalDecl());
   3392   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
   3393 }
   3394 
   3395 /// \brief Determine whether the given type has any qualifiers that are
   3396 /// relevant for substitutions.
   3397 static bool hasMangledSubstitutionQualifiers(QualType T) {
   3398   Qualifiers Qs = T.getQualifiers();
   3399   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
   3400 }
   3401 
   3402 bool CXXNameMangler::mangleSubstitution(QualType T) {
   3403   if (!hasMangledSubstitutionQualifiers(T)) {
   3404     if (const RecordType *RT = T->getAs<RecordType>())
   3405       return mangleSubstitution(RT->getDecl());
   3406   }
   3407 
   3408   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
   3409 
   3410   return mangleSubstitution(TypePtr);
   3411 }
   3412 
   3413 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
   3414   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   3415     return mangleSubstitution(TD);
   3416 
   3417   Template = Context.getASTContext().getCanonicalTemplateName(Template);
   3418   return mangleSubstitution(
   3419                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
   3420 }
   3421 
   3422 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
   3423   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
   3424   if (I == Substitutions.end())
   3425     return false;
   3426 
   3427   unsigned SeqID = I->second;
   3428   if (SeqID == 0)
   3429     Out << "S_";
   3430   else {
   3431     SeqID--;
   3432 
   3433     // <seq-id> is encoded in base-36, using digits and upper case letters.
   3434     char Buffer[10];
   3435     char *BufferPtr = llvm::array_endof(Buffer);
   3436 
   3437     if (SeqID == 0) *--BufferPtr = '0';
   3438 
   3439     while (SeqID) {
   3440       assert(BufferPtr > Buffer && "Buffer overflow!");
   3441 
   3442       char c = static_cast<char>(SeqID % 36);
   3443 
   3444       *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
   3445       SeqID /= 36;
   3446     }
   3447 
   3448     Out << 'S'
   3449         << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
   3450         << '_';
   3451   }
   3452 
   3453   return true;
   3454 }
   3455 
   3456 static bool isCharType(QualType T) {
   3457   if (T.isNull())
   3458     return false;
   3459 
   3460   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3461     T->isSpecificBuiltinType(BuiltinType::Char_U);
   3462 }
   3463 
   3464 /// isCharSpecialization - Returns whether a given type is a template
   3465 /// specialization of a given name with a single argument of type char.
   3466 static bool isCharSpecialization(QualType T, const char *Name) {
   3467   if (T.isNull())
   3468     return false;
   3469 
   3470   const RecordType *RT = T->getAs<RecordType>();
   3471   if (!RT)
   3472     return false;
   3473 
   3474   const ClassTemplateSpecializationDecl *SD =
   3475     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
   3476   if (!SD)
   3477     return false;
   3478 
   3479   if (!isStdNamespace(getEffectiveDeclContext(SD)))
   3480     return false;
   3481 
   3482   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3483   if (TemplateArgs.size() != 1)
   3484     return false;
   3485 
   3486   if (!isCharType(TemplateArgs[0].getAsType()))
   3487     return false;
   3488 
   3489   return SD->getIdentifier()->getName() == Name;
   3490 }
   3491 
   3492 template <std::size_t StrLen>
   3493 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
   3494                                        const char (&Str)[StrLen]) {
   3495   if (!SD->getIdentifier()->isStr(Str))
   3496     return false;
   3497 
   3498   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3499   if (TemplateArgs.size() != 2)
   3500     return false;
   3501 
   3502   if (!isCharType(TemplateArgs[0].getAsType()))
   3503     return false;
   3504 
   3505   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
   3506     return false;
   3507 
   3508   return true;
   3509 }
   3510 
   3511 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
   3512   // <substitution> ::= St # ::std::
   3513   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
   3514     if (isStd(NS)) {
   3515       Out << "St";
   3516       return true;
   3517     }
   3518   }
   3519 
   3520   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
   3521     if (!isStdNamespace(getEffectiveDeclContext(TD)))
   3522       return false;
   3523 
   3524     // <substitution> ::= Sa # ::std::allocator
   3525     if (TD->getIdentifier()->isStr("allocator")) {
   3526       Out << "Sa";
   3527       return true;
   3528     }
   3529 
   3530     // <<substitution> ::= Sb # ::std::basic_string
   3531     if (TD->getIdentifier()->isStr("basic_string")) {
   3532       Out << "Sb";
   3533       return true;
   3534     }
   3535   }
   3536 
   3537   if (const ClassTemplateSpecializationDecl *SD =
   3538         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
   3539     if (!isStdNamespace(getEffectiveDeclContext(SD)))
   3540       return false;
   3541 
   3542     //    <substitution> ::= Ss # ::std::basic_string<char,
   3543     //                            ::std::char_traits<char>,
   3544     //                            ::std::allocator<char> >
   3545     if (SD->getIdentifier()->isStr("basic_string")) {
   3546       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
   3547 
   3548       if (TemplateArgs.size() != 3)
   3549         return false;
   3550 
   3551       if (!isCharType(TemplateArgs[0].getAsType()))
   3552         return false;
   3553 
   3554       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
   3555         return false;
   3556 
   3557       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
   3558         return false;
   3559 
   3560       Out << "Ss";
   3561       return true;
   3562     }
   3563 
   3564     //    <substitution> ::= Si # ::std::basic_istream<char,
   3565     //                            ::std::char_traits<char> >
   3566     if (isStreamCharSpecialization(SD, "basic_istream")) {
   3567       Out << "Si";
   3568       return true;
   3569     }
   3570 
   3571     //    <substitution> ::= So # ::std::basic_ostream<char,
   3572     //                            ::std::char_traits<char> >
   3573     if (isStreamCharSpecialization(SD, "basic_ostream")) {
   3574       Out << "So";
   3575       return true;
   3576     }
   3577 
   3578     //    <substitution> ::= Sd # ::std::basic_iostream<char,
   3579     //                            ::std::char_traits<char> >
   3580     if (isStreamCharSpecialization(SD, "basic_iostream")) {
   3581       Out << "Sd";
   3582       return true;
   3583     }
   3584   }
   3585   return false;
   3586 }
   3587 
   3588 void CXXNameMangler::addSubstitution(QualType T) {
   3589   if (!hasMangledSubstitutionQualifiers(T)) {
   3590     if (const RecordType *RT = T->getAs<RecordType>()) {
   3591       addSubstitution(RT->getDecl());
   3592       return;
   3593     }
   3594   }
   3595 
   3596   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
   3597   addSubstitution(TypePtr);
   3598 }
   3599 
   3600 void CXXNameMangler::addSubstitution(TemplateName Template) {
   3601   if (TemplateDecl *TD = Template.getAsTemplateDecl())
   3602     return addSubstitution(TD);
   3603 
   3604   Template = Context.getASTContext().getCanonicalTemplateName(Template);
   3605   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
   3606 }
   3607 
   3608 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
   3609   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
   3610   Substitutions[Ptr] = SeqID++;
   3611 }
   3612 
   3613 //
   3614 
   3615 /// \brief Mangles the name of the declaration D and emits that name to the
   3616 /// given output stream.
   3617 ///
   3618 /// If the declaration D requires a mangled name, this routine will emit that
   3619 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
   3620 /// and this routine will return false. In this case, the caller should just
   3621 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
   3622 /// name.
   3623 void ItaniumMangleContext::mangleName(const NamedDecl *D,
   3624                                       raw_ostream &Out) {
   3625   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
   3626           "Invalid mangleName() call, argument is not a variable or function!");
   3627   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
   3628          "Invalid mangleName() call on 'structor decl!");
   3629 
   3630   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
   3631                                  getASTContext().getSourceManager(),
   3632                                  "Mangling declaration");
   3633 
   3634   CXXNameMangler Mangler(*this, Out, D);
   3635   return Mangler.mangle(D);
   3636 }
   3637 
   3638 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
   3639                                          CXXCtorType Type,
   3640                                          raw_ostream &Out) {
   3641   CXXNameMangler Mangler(*this, Out, D, Type);
   3642   Mangler.mangle(D);
   3643 }
   3644 
   3645 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
   3646                                          CXXDtorType Type,
   3647                                          raw_ostream &Out) {
   3648   CXXNameMangler Mangler(*this, Out, D, Type);
   3649   Mangler.mangle(D);
   3650 }
   3651 
   3652 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
   3653                                        const ThunkInfo &Thunk,
   3654                                        raw_ostream &Out) {
   3655   //  <special-name> ::= T <call-offset> <base encoding>
   3656   //                      # base is the nominal target function of thunk
   3657   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
   3658   //                      # base is the nominal target function of thunk
   3659   //                      # first call-offset is 'this' adjustment
   3660   //                      # second call-offset is result adjustment
   3661 
   3662   assert(!isa<CXXDestructorDecl>(MD) &&
   3663          "Use mangleCXXDtor for destructor decls!");
   3664   CXXNameMangler Mangler(*this, Out);
   3665   Mangler.getStream() << "_ZT";
   3666   if (!Thunk.Return.isEmpty())
   3667     Mangler.getStream() << 'c';
   3668 
   3669   // Mangle the 'this' pointer adjustment.
   3670   Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
   3671 
   3672   // Mangle the return pointer adjustment if there is one.
   3673   if (!Thunk.Return.isEmpty())
   3674     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
   3675                              Thunk.Return.VBaseOffsetOffset);
   3676 
   3677   Mangler.mangleFunctionEncoding(MD);
   3678 }
   3679 
   3680 void
   3681 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
   3682                                          CXXDtorType Type,
   3683                                          const ThisAdjustment &ThisAdjustment,
   3684                                          raw_ostream &Out) {
   3685   //  <special-name> ::= T <call-offset> <base encoding>
   3686   //                      # base is the nominal target function of thunk
   3687   CXXNameMangler Mangler(*this, Out, DD, Type);
   3688   Mangler.getStream() << "_ZT";
   3689 
   3690   // Mangle the 'this' pointer adjustment.
   3691   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
   3692                            ThisAdjustment.VCallOffsetOffset);
   3693 
   3694   Mangler.mangleFunctionEncoding(DD);
   3695 }
   3696 
   3697 /// mangleGuardVariable - Returns the mangled name for a guard variable
   3698 /// for the passed in VarDecl.
   3699 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
   3700                                                       raw_ostream &Out) {
   3701   //  <special-name> ::= GV <object name>       # Guard variable for one-time
   3702   //                                            # initialization
   3703   CXXNameMangler Mangler(*this, Out);
   3704   Mangler.getStream() << "_ZGV";
   3705   Mangler.mangleName(D);
   3706 }
   3707 
   3708 void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
   3709                                                         raw_ostream &Out) {
   3710   //  <special-name> ::= TH <object name>
   3711   CXXNameMangler Mangler(*this, Out);
   3712   Mangler.getStream() << "_ZTH";
   3713   Mangler.mangleName(D);
   3714 }
   3715 
   3716 void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
   3717                                                            raw_ostream &Out) {
   3718   //  <special-name> ::= TW <object name>
   3719   CXXNameMangler Mangler(*this, Out);
   3720   Mangler.getStream() << "_ZTW";
   3721   Mangler.mangleName(D);
   3722 }
   3723 
   3724 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
   3725                                                     raw_ostream &Out) {
   3726   // We match the GCC mangling here.
   3727   //  <special-name> ::= GR <object name>
   3728   CXXNameMangler Mangler(*this, Out);
   3729   Mangler.getStream() << "_ZGR";
   3730   Mangler.mangleName(D);
   3731 }
   3732 
   3733 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
   3734                                            raw_ostream &Out) {
   3735   // <special-name> ::= TV <type>  # virtual table
   3736   CXXNameMangler Mangler(*this, Out);
   3737   Mangler.getStream() << "_ZTV";
   3738   Mangler.mangleNameOrStandardSubstitution(RD);
   3739 }
   3740 
   3741 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
   3742                                         raw_ostream &Out) {
   3743   // <special-name> ::= TT <type>  # VTT structure
   3744   CXXNameMangler Mangler(*this, Out);
   3745   Mangler.getStream() << "_ZTT";
   3746   Mangler.mangleNameOrStandardSubstitution(RD);
   3747 }
   3748 
   3749 void
   3750 ItaniumMangleContext::mangleCXXVBTable(const CXXRecordDecl *Derived,
   3751                                        ArrayRef<const CXXRecordDecl *> BasePath,
   3752                                        raw_ostream &Out) {
   3753   llvm_unreachable("The Itanium C++ ABI does not have virtual base tables!");
   3754 }
   3755 
   3756 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
   3757                                                int64_t Offset,
   3758                                                const CXXRecordDecl *Type,
   3759                                                raw_ostream &Out) {
   3760   // <special-name> ::= TC <type> <offset number> _ <base type>
   3761   CXXNameMangler Mangler(*this, Out);
   3762   Mangler.getStream() << "_ZTC";
   3763   Mangler.mangleNameOrStandardSubstitution(RD);
   3764   Mangler.getStream() << Offset;
   3765   Mangler.getStream() << '_';
   3766   Mangler.mangleNameOrStandardSubstitution(Type);
   3767 }
   3768 
   3769 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
   3770                                          raw_ostream &Out) {
   3771   // <special-name> ::= TI <type>  # typeinfo structure
   3772   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
   3773   CXXNameMangler Mangler(*this, Out);
   3774   Mangler.getStream() << "_ZTI";
   3775   Mangler.mangleType(Ty);
   3776 }
   3777 
   3778 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
   3779                                              raw_ostream &Out) {
   3780   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
   3781   CXXNameMangler Mangler(*this, Out);
   3782   Mangler.getStream() << "_ZTS";
   3783   Mangler.mangleType(Ty);
   3784 }
   3785 
   3786 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
   3787                                                  DiagnosticsEngine &Diags) {
   3788   return new ItaniumMangleContext(Context, Diags);
   3789 }
   3790