1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define ATRACE_TAG ATRACE_TAG_DALVIK 18 19 #include "thread.h" 20 21 #include <cutils/trace.h> 22 #include <pthread.h> 23 #include <signal.h> 24 #include <sys/resource.h> 25 #include <sys/time.h> 26 27 #include <algorithm> 28 #include <bitset> 29 #include <cerrno> 30 #include <iostream> 31 #include <list> 32 33 #include "arch/context.h" 34 #include "base/mutex.h" 35 #include "class_linker.h" 36 #include "class_linker-inl.h" 37 #include "cutils/atomic.h" 38 #include "cutils/atomic-inline.h" 39 #include "debugger.h" 40 #include "dex_file-inl.h" 41 #include "entrypoints/entrypoint_utils.h" 42 #include "gc_map.h" 43 #include "gc/accounting/card_table-inl.h" 44 #include "gc/heap.h" 45 #include "gc/space/space.h" 46 #include "invoke_arg_array_builder.h" 47 #include "jni_internal.h" 48 #include "mirror/art_field-inl.h" 49 #include "mirror/art_method-inl.h" 50 #include "mirror/class-inl.h" 51 #include "mirror/class_loader.h" 52 #include "mirror/object_array-inl.h" 53 #include "mirror/stack_trace_element.h" 54 #include "monitor.h" 55 #include "object_utils.h" 56 #include "reflection.h" 57 #include "runtime.h" 58 #include "scoped_thread_state_change.h" 59 #include "ScopedLocalRef.h" 60 #include "ScopedUtfChars.h" 61 #include "sirt_ref.h" 62 #include "stack.h" 63 #include "stack_indirect_reference_table.h" 64 #include "thread-inl.h" 65 #include "thread_list.h" 66 #include "utils.h" 67 #include "verifier/dex_gc_map.h" 68 #include "verifier/method_verifier.h" 69 #include "vmap_table.h" 70 #include "well_known_classes.h" 71 72 namespace art { 73 74 bool Thread::is_started_ = false; 75 pthread_key_t Thread::pthread_key_self_; 76 ConditionVariable* Thread::resume_cond_ = NULL; 77 78 static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; 79 80 void Thread::InitCardTable() { 81 card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); 82 } 83 84 #if !defined(__APPLE__) 85 static void UnimplementedEntryPoint() { 86 UNIMPLEMENTED(FATAL); 87 } 88 #endif 89 90 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints, 91 PortableEntryPoints* ppoints, QuickEntryPoints* qpoints); 92 93 void Thread::InitTlsEntryPoints() { 94 #if !defined(__APPLE__) // The Mac GCC is too old to accept this code. 95 // Insert a placeholder so we can easily tell if we call an unimplemented entry point. 96 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_); 97 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_)); 98 for (uintptr_t* it = begin; it != end; ++it) { 99 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); 100 } 101 begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_); 102 end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_)); 103 for (uintptr_t* it = begin; it != end; ++it) { 104 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); 105 } 106 #endif 107 InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_, 108 &quick_entrypoints_); 109 } 110 111 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) { 112 deoptimization_shadow_frame_ = sf; 113 } 114 115 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) { 116 deoptimization_return_value_.SetJ(ret_val.GetJ()); 117 } 118 119 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) { 120 ShadowFrame* sf = deoptimization_shadow_frame_; 121 deoptimization_shadow_frame_ = NULL; 122 ret_val->SetJ(deoptimization_return_value_.GetJ()); 123 return sf; 124 } 125 126 void Thread::InitTid() { 127 tid_ = ::art::GetTid(); 128 } 129 130 void Thread::InitAfterFork() { 131 // One thread (us) survived the fork, but we have a new tid so we need to 132 // update the value stashed in this Thread*. 133 InitTid(); 134 } 135 136 void* Thread::CreateCallback(void* arg) { 137 Thread* self = reinterpret_cast<Thread*>(arg); 138 Runtime* runtime = Runtime::Current(); 139 if (runtime == NULL) { 140 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; 141 return NULL; 142 } 143 { 144 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true 145 // after self->Init(). 146 MutexLock mu(NULL, *Locks::runtime_shutdown_lock_); 147 // Check that if we got here we cannot be shutting down (as shutdown should never have started 148 // while threads are being born). 149 CHECK(!runtime->IsShuttingDown()); 150 self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 151 Runtime::Current()->EndThreadBirth(); 152 } 153 { 154 ScopedObjectAccess soa(self); 155 156 // Copy peer into self, deleting global reference when done. 157 CHECK(self->jpeer_ != NULL); 158 self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_); 159 self->GetJniEnv()->DeleteGlobalRef(self->jpeer_); 160 self->jpeer_ = NULL; 161 162 { 163 SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa)); 164 self->SetThreadName(thread_name->ToModifiedUtf8().c_str()); 165 } 166 Dbg::PostThreadStart(self); 167 168 // Invoke the 'run' method of our java.lang.Thread. 169 mirror::Object* receiver = self->opeer_; 170 jmethodID mid = WellKnownClasses::java_lang_Thread_run; 171 mirror::ArtMethod* m = 172 receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid)); 173 JValue result; 174 ArgArray arg_array(NULL, 0); 175 arg_array.Append(reinterpret_cast<uint32_t>(receiver)); 176 m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V'); 177 } 178 // Detach and delete self. 179 Runtime::Current()->GetThreadList()->Unregister(self); 180 181 return NULL; 182 } 183 184 Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, 185 mirror::Object* thread_peer) { 186 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); 187 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer))); 188 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ 189 // to stop it from going away. 190 if (kIsDebugBuild) { 191 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); 192 if (result != NULL && !result->IsSuspended()) { 193 Locks::thread_list_lock_->AssertHeld(soa.Self()); 194 } 195 } 196 return result; 197 } 198 199 Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) { 200 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread)); 201 } 202 203 static size_t FixStackSize(size_t stack_size) { 204 // A stack size of zero means "use the default". 205 if (stack_size == 0) { 206 stack_size = Runtime::Current()->GetDefaultStackSize(); 207 } 208 209 // Dalvik used the bionic pthread default stack size for native threads, 210 // so include that here to support apps that expect large native stacks. 211 stack_size += 1 * MB; 212 213 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. 214 if (stack_size < PTHREAD_STACK_MIN) { 215 stack_size = PTHREAD_STACK_MIN; 216 } 217 218 // It's likely that callers are trying to ensure they have at least a certain amount of 219 // stack space, so we should add our reserved space on top of what they requested, rather 220 // than implicitly take it away from them. 221 stack_size += Thread::kStackOverflowReservedBytes; 222 223 // Some systems require the stack size to be a multiple of the system page size, so round up. 224 stack_size = RoundUp(stack_size, kPageSize); 225 226 return stack_size; 227 } 228 229 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { 230 CHECK(java_peer != NULL); 231 Thread* self = static_cast<JNIEnvExt*>(env)->self; 232 Runtime* runtime = Runtime::Current(); 233 234 // Atomically start the birth of the thread ensuring the runtime isn't shutting down. 235 bool thread_start_during_shutdown = false; 236 { 237 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 238 if (runtime->IsShuttingDown()) { 239 thread_start_during_shutdown = true; 240 } else { 241 runtime->StartThreadBirth(); 242 } 243 } 244 if (thread_start_during_shutdown) { 245 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); 246 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); 247 return; 248 } 249 250 Thread* child_thread = new Thread(is_daemon); 251 // Use global JNI ref to hold peer live while child thread starts. 252 child_thread->jpeer_ = env->NewGlobalRef(java_peer); 253 stack_size = FixStackSize(stack_size); 254 255 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to 256 // assign it. 257 env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 258 reinterpret_cast<jint>(child_thread)); 259 260 pthread_t new_pthread; 261 pthread_attr_t attr; 262 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); 263 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); 264 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); 265 int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); 266 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); 267 268 if (pthread_create_result != 0) { 269 // pthread_create(3) failed, so clean up. 270 { 271 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 272 runtime->EndThreadBirth(); 273 } 274 // Manually delete the global reference since Thread::Init will not have been run. 275 env->DeleteGlobalRef(child_thread->jpeer_); 276 child_thread->jpeer_ = NULL; 277 delete child_thread; 278 child_thread = NULL; 279 // TODO: remove from thread group? 280 env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); 281 { 282 std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", 283 PrettySize(stack_size).c_str(), strerror(pthread_create_result))); 284 ScopedObjectAccess soa(env); 285 soa.Self()->ThrowOutOfMemoryError(msg.c_str()); 286 } 287 } 288 } 289 290 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) { 291 // This function does all the initialization that must be run by the native thread it applies to. 292 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so 293 // we can handshake with the corresponding native thread when it's ready.) Check this native 294 // thread hasn't been through here already... 295 CHECK(Thread::Current() == NULL); 296 SetUpAlternateSignalStack(); 297 InitCpu(); 298 InitTlsEntryPoints(); 299 InitCardTable(); 300 InitTid(); 301 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this 302 // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). 303 pthread_self_ = pthread_self(); 304 CHECK(is_started_); 305 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); 306 DCHECK_EQ(Thread::Current(), this); 307 308 thin_lock_id_ = thread_list->AllocThreadId(this); 309 InitStackHwm(); 310 311 jni_env_ = new JNIEnvExt(this, java_vm); 312 thread_list->Register(this); 313 } 314 315 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, 316 bool create_peer) { 317 Thread* self; 318 Runtime* runtime = Runtime::Current(); 319 if (runtime == NULL) { 320 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; 321 return NULL; 322 } 323 { 324 MutexLock mu(NULL, *Locks::runtime_shutdown_lock_); 325 if (runtime->IsShuttingDown()) { 326 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name; 327 return NULL; 328 } else { 329 Runtime::Current()->StartThreadBirth(); 330 self = new Thread(as_daemon); 331 self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 332 Runtime::Current()->EndThreadBirth(); 333 } 334 } 335 336 CHECK_NE(self->GetState(), kRunnable); 337 self->SetState(kNative); 338 339 // If we're the main thread, ClassLinker won't be created until after we're attached, 340 // so that thread needs a two-stage attach. Regular threads don't need this hack. 341 // In the compiler, all threads need this hack, because no-one's going to be getting 342 // a native peer! 343 if (create_peer) { 344 self->CreatePeer(thread_name, as_daemon, thread_group); 345 } else { 346 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. 347 if (thread_name != NULL) { 348 self->name_->assign(thread_name); 349 ::art::SetThreadName(thread_name); 350 } 351 } 352 353 return self; 354 } 355 356 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { 357 Runtime* runtime = Runtime::Current(); 358 CHECK(runtime->IsStarted()); 359 JNIEnv* env = jni_env_; 360 361 if (thread_group == NULL) { 362 thread_group = runtime->GetMainThreadGroup(); 363 } 364 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); 365 jint thread_priority = GetNativePriority(); 366 jboolean thread_is_daemon = as_daemon; 367 368 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); 369 if (peer.get() == NULL) { 370 CHECK(IsExceptionPending()); 371 return; 372 } 373 { 374 ScopedObjectAccess soa(this); 375 opeer_ = soa.Decode<mirror::Object*>(peer.get()); 376 } 377 env->CallNonvirtualVoidMethod(peer.get(), 378 WellKnownClasses::java_lang_Thread, 379 WellKnownClasses::java_lang_Thread_init, 380 thread_group, thread_name.get(), thread_priority, thread_is_daemon); 381 AssertNoPendingException(); 382 383 Thread* self = this; 384 DCHECK_EQ(self, Thread::Current()); 385 jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, 386 reinterpret_cast<jint>(self)); 387 388 ScopedObjectAccess soa(self); 389 SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa)); 390 if (peer_thread_name.get() == NULL) { 391 // The Thread constructor should have set the Thread.name to a 392 // non-null value. However, because we can run without code 393 // available (in the compiler, in tests), we manually assign the 394 // fields the constructor should have set. 395 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> 396 SetBoolean(opeer_, thread_is_daemon); 397 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> 398 SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group)); 399 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> 400 SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get())); 401 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> 402 SetInt(opeer_, thread_priority); 403 peer_thread_name.reset(GetThreadName(soa)); 404 } 405 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. 406 if (peer_thread_name.get() != NULL) { 407 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); 408 } 409 } 410 411 void Thread::SetThreadName(const char* name) { 412 name_->assign(name); 413 ::art::SetThreadName(name); 414 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); 415 } 416 417 void Thread::InitStackHwm() { 418 void* stack_base; 419 size_t stack_size; 420 GetThreadStack(pthread_self_, stack_base, stack_size); 421 422 // TODO: include this in the thread dumps; potentially useful in SIGQUIT output? 423 VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str()); 424 425 stack_begin_ = reinterpret_cast<byte*>(stack_base); 426 stack_size_ = stack_size; 427 428 if (stack_size_ <= kStackOverflowReservedBytes) { 429 LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)"; 430 } 431 432 // TODO: move this into the Linux GetThreadStack implementation. 433 #if !defined(__APPLE__) 434 // If we're the main thread, check whether we were run with an unlimited stack. In that case, 435 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection 436 // will be broken because we'll die long before we get close to 2GB. 437 bool is_main_thread = (::art::GetTid() == getpid()); 438 if (is_main_thread) { 439 rlimit stack_limit; 440 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { 441 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; 442 } 443 if (stack_limit.rlim_cur == RLIM_INFINITY) { 444 // Find the default stack size for new threads... 445 pthread_attr_t default_attributes; 446 size_t default_stack_size; 447 CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); 448 CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), 449 "default stack size query"); 450 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); 451 452 // ...and use that as our limit. 453 size_t old_stack_size = stack_size_; 454 stack_size_ = default_stack_size; 455 stack_begin_ += (old_stack_size - stack_size_); 456 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" 457 << " to " << PrettySize(stack_size_) 458 << " with base " << reinterpret_cast<void*>(stack_begin_); 459 } 460 } 461 #endif 462 463 // Set stack_end_ to the bottom of the stack saving space of stack overflows 464 ResetDefaultStackEnd(); 465 466 // Sanity check. 467 int stack_variable; 468 CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_)); 469 } 470 471 void Thread::ShortDump(std::ostream& os) const { 472 os << "Thread["; 473 if (GetThinLockId() != 0) { 474 // If we're in kStarting, we won't have a thin lock id or tid yet. 475 os << GetThinLockId() 476 << ",tid=" << GetTid() << ','; 477 } 478 os << GetState() 479 << ",Thread*=" << this 480 << ",peer=" << opeer_ 481 << ",\"" << *name_ << "\"" 482 << "]"; 483 } 484 485 void Thread::Dump(std::ostream& os) const { 486 DumpState(os); 487 DumpStack(os); 488 } 489 490 mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const { 491 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); 492 return (opeer_ != NULL) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : NULL; 493 } 494 495 void Thread::GetThreadName(std::string& name) const { 496 name.assign(*name_); 497 } 498 499 uint64_t Thread::GetCpuMicroTime() const { 500 #if defined(HAVE_POSIX_CLOCKS) 501 clockid_t cpu_clock_id; 502 pthread_getcpuclockid(pthread_self_, &cpu_clock_id); 503 timespec now; 504 clock_gettime(cpu_clock_id, &now); 505 return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL; 506 #else 507 UNIMPLEMENTED(WARNING); 508 return -1; 509 #endif 510 } 511 512 void Thread::AtomicSetFlag(ThreadFlag flag) { 513 android_atomic_or(flag, &state_and_flags_.as_int); 514 } 515 516 void Thread::AtomicClearFlag(ThreadFlag flag) { 517 android_atomic_and(-1 ^ flag, &state_and_flags_.as_int); 518 } 519 520 // Attempt to rectify locks so that we dump thread list with required locks before exiting. 521 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 522 LOG(ERROR) << *thread << " suspend count already zero."; 523 Locks::thread_suspend_count_lock_->Unlock(self); 524 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 525 Locks::mutator_lock_->SharedTryLock(self); 526 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 527 LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; 528 } 529 } 530 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 531 Locks::thread_list_lock_->TryLock(self); 532 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 533 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; 534 } 535 } 536 std::ostringstream ss; 537 Runtime::Current()->GetThreadList()->DumpLocked(ss); 538 LOG(FATAL) << ss.str(); 539 } 540 541 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { 542 DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_) 543 << delta << " " << debug_suspend_count_ << " " << this; 544 DCHECK_GE(suspend_count_, debug_suspend_count_) << this; 545 Locks::thread_suspend_count_lock_->AssertHeld(self); 546 if (this != self && !IsSuspended()) { 547 Locks::thread_list_lock_->AssertHeld(self); 548 } 549 if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) { 550 UnsafeLogFatalForSuspendCount(self, this); 551 return; 552 } 553 554 suspend_count_ += delta; 555 if (for_debugger) { 556 debug_suspend_count_ += delta; 557 } 558 559 if (suspend_count_ == 0) { 560 AtomicClearFlag(kSuspendRequest); 561 } else { 562 AtomicSetFlag(kSuspendRequest); 563 } 564 } 565 566 void Thread::RunCheckpointFunction() { 567 CHECK(checkpoint_function_ != NULL); 568 ATRACE_BEGIN("Checkpoint function"); 569 checkpoint_function_->Run(this); 570 ATRACE_END(); 571 } 572 573 bool Thread::RequestCheckpoint(Closure* function) { 574 CHECK(!ReadFlag(kCheckpointRequest)) << "Already have a pending checkpoint request"; 575 checkpoint_function_ = function; 576 union StateAndFlags old_state_and_flags = state_and_flags_; 577 // We must be runnable to request a checkpoint. 578 old_state_and_flags.as_struct.state = kRunnable; 579 union StateAndFlags new_state_and_flags = old_state_and_flags; 580 new_state_and_flags.as_struct.flags |= kCheckpointRequest; 581 int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int, 582 &state_and_flags_.as_int); 583 return succeeded == 0; 584 } 585 586 void Thread::FullSuspendCheck() { 587 VLOG(threads) << this << " self-suspending"; 588 ATRACE_BEGIN("Full suspend check"); 589 // Make thread appear suspended to other threads, release mutator_lock_. 590 TransitionFromRunnableToSuspended(kSuspended); 591 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. 592 TransitionFromSuspendedToRunnable(); 593 ATRACE_END(); 594 VLOG(threads) << this << " self-reviving"; 595 } 596 597 Thread* Thread::SuspendForDebugger(jobject peer, bool request_suspension, bool* timed_out) { 598 static const useconds_t kTimeoutUs = 30 * 1000000; // 30s. 599 useconds_t total_delay_us = 0; 600 useconds_t delay_us = 0; 601 bool did_suspend_request = false; 602 *timed_out = false; 603 while (true) { 604 Thread* thread; 605 { 606 ScopedObjectAccess soa(Thread::Current()); 607 Thread* self = soa.Self(); 608 MutexLock mu(self, *Locks::thread_list_lock_); 609 thread = Thread::FromManagedThread(soa, peer); 610 if (thread == NULL) { 611 JNIEnv* env = self->GetJniEnv(); 612 ScopedLocalRef<jstring> scoped_name_string(env, 613 (jstring)env->GetObjectField(peer, 614 WellKnownClasses::java_lang_Thread_name)); 615 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get()); 616 if (scoped_name_chars.c_str() == NULL) { 617 LOG(WARNING) << "No such thread for suspend: " << peer; 618 env->ExceptionClear(); 619 } else { 620 LOG(WARNING) << "No such thread for suspend: " << peer << ":" << scoped_name_chars.c_str(); 621 } 622 623 return NULL; 624 } 625 { 626 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); 627 if (request_suspension) { 628 thread->ModifySuspendCount(soa.Self(), +1, true /* for_debugger */); 629 request_suspension = false; 630 did_suspend_request = true; 631 } 632 // IsSuspended on the current thread will fail as the current thread is changed into 633 // Runnable above. As the suspend count is now raised if this is the current thread 634 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler 635 // to just explicitly handle the current thread in the callers to this code. 636 CHECK_NE(thread, soa.Self()) << "Attempt to suspend the current thread for the debugger"; 637 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend 638 // count, or else we've waited and it has self suspended) or is the current thread, we're 639 // done. 640 if (thread->IsSuspended()) { 641 return thread; 642 } 643 if (total_delay_us >= kTimeoutUs) { 644 LOG(ERROR) << "Thread suspension timed out: " << peer; 645 if (did_suspend_request) { 646 thread->ModifySuspendCount(soa.Self(), -1, true /* for_debugger */); 647 } 648 *timed_out = true; 649 return NULL; 650 } 651 } 652 // Release locks and come out of runnable state. 653 } 654 for (int i = kLockLevelCount - 1; i >= 0; --i) { 655 BaseMutex* held_mutex = Thread::Current()->GetHeldMutex(static_cast<LockLevel>(i)); 656 if (held_mutex != NULL) { 657 LOG(FATAL) << "Holding " << held_mutex->GetName() 658 << " while sleeping for thread suspension"; 659 } 660 } 661 { 662 useconds_t new_delay_us = delay_us * 2; 663 CHECK_GE(new_delay_us, delay_us); 664 if (new_delay_us < 500000) { // Don't allow sleeping to be more than 0.5s. 665 delay_us = new_delay_us; 666 } 667 } 668 if (delay_us == 0) { 669 sched_yield(); 670 // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep). 671 delay_us = 500; 672 } else { 673 usleep(delay_us); 674 total_delay_us += delay_us; 675 } 676 } 677 } 678 679 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { 680 std::string group_name; 681 int priority; 682 bool is_daemon = false; 683 Thread* self = Thread::Current(); 684 685 if (self != NULL && thread != NULL && thread->opeer_ != NULL) { 686 ScopedObjectAccessUnchecked soa(self); 687 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_); 688 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_); 689 690 mirror::Object* thread_group = 691 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_); 692 693 if (thread_group != NULL) { 694 mirror::ArtField* group_name_field = 695 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); 696 mirror::String* group_name_string = 697 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group)); 698 group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>"; 699 } 700 } else { 701 priority = GetNativePriority(); 702 } 703 704 std::string scheduler_group_name(GetSchedulerGroupName(tid)); 705 if (scheduler_group_name.empty()) { 706 scheduler_group_name = "default"; 707 } 708 709 if (thread != NULL) { 710 os << '"' << *thread->name_ << '"'; 711 if (is_daemon) { 712 os << " daemon"; 713 } 714 os << " prio=" << priority 715 << " tid=" << thread->GetThinLockId() 716 << " " << thread->GetState(); 717 if (thread->IsStillStarting()) { 718 os << " (still starting up)"; 719 } 720 os << "\n"; 721 } else { 722 os << '"' << ::art::GetThreadName(tid) << '"' 723 << " prio=" << priority 724 << " (not attached)\n"; 725 } 726 727 if (thread != NULL) { 728 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 729 os << " | group=\"" << group_name << "\"" 730 << " sCount=" << thread->suspend_count_ 731 << " dsCount=" << thread->debug_suspend_count_ 732 << " obj=" << reinterpret_cast<void*>(thread->opeer_) 733 << " self=" << reinterpret_cast<const void*>(thread) << "\n"; 734 } 735 736 os << " | sysTid=" << tid 737 << " nice=" << getpriority(PRIO_PROCESS, tid) 738 << " cgrp=" << scheduler_group_name; 739 if (thread != NULL) { 740 int policy; 741 sched_param sp; 742 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__); 743 os << " sched=" << policy << "/" << sp.sched_priority 744 << " handle=" << reinterpret_cast<void*>(thread->pthread_self_); 745 } 746 os << "\n"; 747 748 // Grab the scheduler stats for this thread. 749 std::string scheduler_stats; 750 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { 751 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. 752 } else { 753 scheduler_stats = "0 0 0"; 754 } 755 756 char native_thread_state = '?'; 757 int utime = 0; 758 int stime = 0; 759 int task_cpu = 0; 760 GetTaskStats(tid, native_thread_state, utime, stime, task_cpu); 761 762 os << " | state=" << native_thread_state 763 << " schedstat=( " << scheduler_stats << " )" 764 << " utm=" << utime 765 << " stm=" << stime 766 << " core=" << task_cpu 767 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; 768 if (thread != NULL) { 769 os << " | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_) 770 << " stackSize=" << PrettySize(thread->stack_size_) << "\n"; 771 } 772 } 773 774 void Thread::DumpState(std::ostream& os) const { 775 Thread::DumpState(os, this, GetTid()); 776 } 777 778 struct StackDumpVisitor : public StackVisitor { 779 StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate) 780 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 781 : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate), 782 last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) { 783 } 784 785 virtual ~StackDumpVisitor() { 786 if (frame_count == 0) { 787 os << " (no managed stack frames)\n"; 788 } 789 } 790 791 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 792 mirror::ArtMethod* m = GetMethod(); 793 if (m->IsRuntimeMethod()) { 794 return true; 795 } 796 const int kMaxRepetition = 3; 797 mirror::Class* c = m->GetDeclaringClass(); 798 const mirror::DexCache* dex_cache = c->GetDexCache(); 799 int line_number = -1; 800 if (dex_cache != NULL) { // be tolerant of bad input 801 const DexFile& dex_file = *dex_cache->GetDexFile(); 802 line_number = dex_file.GetLineNumFromPC(m, GetDexPc()); 803 } 804 if (line_number == last_line_number && last_method == m) { 805 repetition_count++; 806 } else { 807 if (repetition_count >= kMaxRepetition) { 808 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; 809 } 810 repetition_count = 0; 811 last_line_number = line_number; 812 last_method = m; 813 } 814 if (repetition_count < kMaxRepetition) { 815 os << " at " << PrettyMethod(m, false); 816 if (m->IsNative()) { 817 os << "(Native method)"; 818 } else { 819 mh.ChangeMethod(m); 820 const char* source_file(mh.GetDeclaringClassSourceFile()); 821 os << "(" << (source_file != NULL ? source_file : "unavailable") 822 << ":" << line_number << ")"; 823 } 824 os << "\n"; 825 if (frame_count == 0) { 826 Monitor::DescribeWait(os, thread); 827 } 828 if (can_allocate) { 829 Monitor::VisitLocks(this, DumpLockedObject, &os); 830 } 831 } 832 833 ++frame_count; 834 return true; 835 } 836 837 static void DumpLockedObject(mirror::Object* o, void* context) 838 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 839 std::ostream& os = *reinterpret_cast<std::ostream*>(context); 840 os << " - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n"; 841 } 842 843 std::ostream& os; 844 const Thread* thread; 845 const bool can_allocate; 846 MethodHelper mh; 847 mirror::ArtMethod* last_method; 848 int last_line_number; 849 int repetition_count; 850 int frame_count; 851 }; 852 853 static bool ShouldShowNativeStack(const Thread* thread) 854 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 855 ThreadState state = thread->GetState(); 856 857 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. 858 if (state > kWaiting && state < kStarting) { 859 return true; 860 } 861 862 // In an Object.wait variant or Thread.sleep? That's not interesting. 863 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { 864 return false; 865 } 866 867 // In some other native method? That's interesting. 868 // We don't just check kNative because native methods will be in state kSuspended if they're 869 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the 870 // thread-startup states if it's early enough in their life cycle (http://b/7432159). 871 mirror::ArtMethod* current_method = thread->GetCurrentMethod(NULL); 872 return current_method != NULL && current_method->IsNative(); 873 } 874 875 void Thread::DumpStack(std::ostream& os) const { 876 // TODO: we call this code when dying but may not have suspended the thread ourself. The 877 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit 878 // the race with the thread_suspend_count_lock_). 879 // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack. 880 bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild; 881 if (this == Thread::Current() || IsSuspended() || dump_for_abort) { 882 // If we're currently in native code, dump that stack before dumping the managed stack. 883 if (dump_for_abort || ShouldShowNativeStack(this)) { 884 DumpKernelStack(os, GetTid(), " kernel: ", false); 885 DumpNativeStack(os, GetTid(), " native: ", false); 886 } 887 UniquePtr<Context> context(Context::Create()); 888 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_); 889 dumper.WalkStack(); 890 } else { 891 os << "Not able to dump stack of thread that isn't suspended"; 892 } 893 } 894 895 void Thread::ThreadExitCallback(void* arg) { 896 Thread* self = reinterpret_cast<Thread*>(arg); 897 if (self->thread_exit_check_count_ == 0) { 898 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self; 899 CHECK(is_started_); 900 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); 901 self->thread_exit_check_count_ = 1; 902 } else { 903 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; 904 } 905 } 906 907 void Thread::Startup() { 908 CHECK(!is_started_); 909 is_started_ = true; 910 { 911 // MutexLock to keep annotalysis happy. 912 // 913 // Note we use NULL for the thread because Thread::Current can 914 // return garbage since (is_started_ == true) and 915 // Thread::pthread_key_self_ is not yet initialized. 916 // This was seen on glibc. 917 MutexLock mu(NULL, *Locks::thread_suspend_count_lock_); 918 resume_cond_ = new ConditionVariable("Thread resumption condition variable", 919 *Locks::thread_suspend_count_lock_); 920 } 921 922 // Allocate a TLS slot. 923 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); 924 925 // Double-check the TLS slot allocation. 926 if (pthread_getspecific(pthread_key_self_) != NULL) { 927 LOG(FATAL) << "Newly-created pthread TLS slot is not NULL"; 928 } 929 } 930 931 void Thread::FinishStartup() { 932 Runtime* runtime = Runtime::Current(); 933 CHECK(runtime->IsStarted()); 934 935 // Finish attaching the main thread. 936 ScopedObjectAccess soa(Thread::Current()); 937 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); 938 939 Runtime::Current()->GetClassLinker()->RunRootClinits(); 940 } 941 942 void Thread::Shutdown() { 943 CHECK(is_started_); 944 is_started_ = false; 945 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); 946 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); 947 if (resume_cond_ != NULL) { 948 delete resume_cond_; 949 resume_cond_ = NULL; 950 } 951 } 952 953 Thread::Thread(bool daemon) 954 : suspend_count_(0), 955 card_table_(NULL), 956 exception_(NULL), 957 stack_end_(NULL), 958 managed_stack_(), 959 jni_env_(NULL), 960 self_(NULL), 961 opeer_(NULL), 962 jpeer_(NULL), 963 stack_begin_(NULL), 964 stack_size_(0), 965 stack_trace_sample_(NULL), 966 trace_clock_base_(0), 967 thin_lock_id_(0), 968 tid_(0), 969 wait_mutex_(new Mutex("a thread wait mutex")), 970 wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)), 971 wait_monitor_(NULL), 972 interrupted_(false), 973 wait_next_(NULL), 974 monitor_enter_object_(NULL), 975 top_sirt_(NULL), 976 runtime_(NULL), 977 class_loader_override_(NULL), 978 long_jump_context_(NULL), 979 throwing_OutOfMemoryError_(false), 980 debug_suspend_count_(0), 981 debug_invoke_req_(new DebugInvokeReq), 982 deoptimization_shadow_frame_(NULL), 983 instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>), 984 name_(new std::string(kThreadNameDuringStartup)), 985 daemon_(daemon), 986 pthread_self_(0), 987 no_thread_suspension_(0), 988 last_no_thread_suspension_cause_(NULL), 989 checkpoint_function_(0), 990 thread_exit_check_count_(0) { 991 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); 992 state_and_flags_.as_struct.flags = 0; 993 state_and_flags_.as_struct.state = kNative; 994 memset(&held_mutexes_[0], 0, sizeof(held_mutexes_)); 995 } 996 997 bool Thread::IsStillStarting() const { 998 // You might think you can check whether the state is kStarting, but for much of thread startup, 999 // the thread is in kNative; it might also be in kVmWait. 1000 // You might think you can check whether the peer is NULL, but the peer is actually created and 1001 // assigned fairly early on, and needs to be. 1002 // It turns out that the last thing to change is the thread name; that's a good proxy for "has 1003 // this thread _ever_ entered kRunnable". 1004 return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup); 1005 } 1006 1007 void Thread::AssertNoPendingException() const { 1008 if (UNLIKELY(IsExceptionPending())) { 1009 ScopedObjectAccess soa(Thread::Current()); 1010 mirror::Throwable* exception = GetException(NULL); 1011 LOG(FATAL) << "No pending exception expected: " << exception->Dump(); 1012 } 1013 } 1014 1015 static void MonitorExitVisitor(const mirror::Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS { 1016 Thread* self = reinterpret_cast<Thread*>(arg); 1017 mirror::Object* entered_monitor = const_cast<mirror::Object*>(object); 1018 if (self->HoldsLock(entered_monitor)) { 1019 LOG(WARNING) << "Calling MonitorExit on object " 1020 << object << " (" << PrettyTypeOf(object) << ")" 1021 << " left locked by native thread " 1022 << *Thread::Current() << " which is detaching"; 1023 entered_monitor->MonitorExit(self); 1024 } 1025 } 1026 1027 void Thread::Destroy() { 1028 Thread* self = this; 1029 DCHECK_EQ(self, Thread::Current()); 1030 1031 if (opeer_ != NULL) { 1032 ScopedObjectAccess soa(self); 1033 // We may need to call user-supplied managed code, do this before final clean-up. 1034 HandleUncaughtExceptions(soa); 1035 RemoveFromThreadGroup(soa); 1036 1037 // this.nativePeer = 0; 1038 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0); 1039 Dbg::PostThreadDeath(self); 1040 1041 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone 1042 // who is waiting. 1043 mirror::Object* lock = 1044 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_); 1045 // (This conditional is only needed for tests, where Thread.lock won't have been set.) 1046 if (lock != NULL) { 1047 ObjectLock locker(self, lock); 1048 locker.Notify(); 1049 } 1050 } 1051 1052 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. 1053 if (jni_env_ != NULL) { 1054 jni_env_->monitors.VisitRoots(MonitorExitVisitor, self); 1055 } 1056 } 1057 1058 Thread::~Thread() { 1059 if (jni_env_ != NULL && jpeer_ != NULL) { 1060 // If pthread_create fails we don't have a jni env here. 1061 jni_env_->DeleteGlobalRef(jpeer_); 1062 jpeer_ = NULL; 1063 } 1064 opeer_ = NULL; 1065 1066 delete jni_env_; 1067 jni_env_ = NULL; 1068 1069 CHECK_NE(GetState(), kRunnable); 1070 // We may be deleting a still born thread. 1071 SetStateUnsafe(kTerminated); 1072 1073 delete wait_cond_; 1074 delete wait_mutex_; 1075 1076 if (long_jump_context_ != NULL) { 1077 delete long_jump_context_; 1078 } 1079 1080 delete debug_invoke_req_; 1081 delete instrumentation_stack_; 1082 delete name_; 1083 delete stack_trace_sample_; 1084 1085 TearDownAlternateSignalStack(); 1086 } 1087 1088 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { 1089 if (!IsExceptionPending()) { 1090 return; 1091 } 1092 ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_)); 1093 ScopedThreadStateChange tsc(this, kNative); 1094 1095 // Get and clear the exception. 1096 ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred()); 1097 jni_env_->ExceptionClear(); 1098 1099 // If the thread has its own handler, use that. 1100 ScopedLocalRef<jobject> handler(jni_env_, 1101 jni_env_->GetObjectField(peer.get(), 1102 WellKnownClasses::java_lang_Thread_uncaughtHandler)); 1103 if (handler.get() == NULL) { 1104 // Otherwise use the thread group's default handler. 1105 handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group)); 1106 } 1107 1108 // Call the handler. 1109 jni_env_->CallVoidMethod(handler.get(), 1110 WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException, 1111 peer.get(), exception.get()); 1112 1113 // If the handler threw, clear that exception too. 1114 jni_env_->ExceptionClear(); 1115 } 1116 1117 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { 1118 // this.group.removeThread(this); 1119 // group can be null if we're in the compiler or a test. 1120 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_); 1121 if (ogroup != NULL) { 1122 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); 1123 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_)); 1124 ScopedThreadStateChange tsc(soa.Self(), kNative); 1125 jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread, 1126 peer.get()); 1127 } 1128 } 1129 1130 size_t Thread::NumSirtReferences() { 1131 size_t count = 0; 1132 for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { 1133 count += cur->NumberOfReferences(); 1134 } 1135 return count; 1136 } 1137 1138 bool Thread::SirtContains(jobject obj) const { 1139 mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj); 1140 for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { 1141 if (cur->Contains(sirt_entry)) { 1142 return true; 1143 } 1144 } 1145 // JNI code invoked from portable code uses shadow frames rather than the SIRT. 1146 return managed_stack_.ShadowFramesContain(sirt_entry); 1147 } 1148 1149 void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) { 1150 for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { 1151 size_t num_refs = cur->NumberOfReferences(); 1152 for (size_t j = 0; j < num_refs; j++) { 1153 mirror::Object* object = cur->GetReference(j); 1154 if (object != NULL) { 1155 visitor(object, arg); 1156 } 1157 } 1158 } 1159 } 1160 1161 mirror::Object* Thread::DecodeJObject(jobject obj) const { 1162 Locks::mutator_lock_->AssertSharedHeld(this); 1163 if (obj == NULL) { 1164 return NULL; 1165 } 1166 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 1167 IndirectRefKind kind = GetIndirectRefKind(ref); 1168 mirror::Object* result; 1169 // The "kinds" below are sorted by the frequency we expect to encounter them. 1170 if (kind == kLocal) { 1171 IndirectReferenceTable& locals = jni_env_->locals; 1172 result = const_cast<mirror::Object*>(locals.Get(ref)); 1173 } else if (kind == kSirtOrInvalid) { 1174 // TODO: make stack indirect reference table lookup more efficient 1175 // Check if this is a local reference in the SIRT 1176 if (LIKELY(SirtContains(obj))) { 1177 result = *reinterpret_cast<mirror::Object**>(obj); // Read from SIRT 1178 } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) { 1179 // Assume an invalid local reference is actually a direct pointer. 1180 result = reinterpret_cast<mirror::Object*>(obj); 1181 } else { 1182 result = kInvalidIndirectRefObject; 1183 } 1184 } else if (kind == kGlobal) { 1185 JavaVMExt* vm = Runtime::Current()->GetJavaVM(); 1186 IndirectReferenceTable& globals = vm->globals; 1187 ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock); 1188 result = const_cast<mirror::Object*>(globals.Get(ref)); 1189 } else { 1190 DCHECK_EQ(kind, kWeakGlobal); 1191 result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref); 1192 if (result == kClearedJniWeakGlobal) { 1193 // This is a special case where it's okay to return NULL. 1194 return NULL; 1195 } 1196 } 1197 1198 if (UNLIKELY(result == NULL)) { 1199 JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj); 1200 } else { 1201 if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) { 1202 Runtime::Current()->GetHeap()->VerifyObject(result); 1203 } 1204 } 1205 return result; 1206 } 1207 1208 // Implements java.lang.Thread.interrupted. 1209 bool Thread::Interrupted() { 1210 MutexLock mu(Thread::Current(), *wait_mutex_); 1211 bool interrupted = interrupted_; 1212 interrupted_ = false; 1213 return interrupted; 1214 } 1215 1216 // Implements java.lang.Thread.isInterrupted. 1217 bool Thread::IsInterrupted() { 1218 MutexLock mu(Thread::Current(), *wait_mutex_); 1219 return interrupted_; 1220 } 1221 1222 void Thread::Interrupt() { 1223 Thread* self = Thread::Current(); 1224 MutexLock mu(self, *wait_mutex_); 1225 if (interrupted_) { 1226 return; 1227 } 1228 interrupted_ = true; 1229 NotifyLocked(self); 1230 } 1231 1232 void Thread::Notify() { 1233 Thread* self = Thread::Current(); 1234 MutexLock mu(self, *wait_mutex_); 1235 NotifyLocked(self); 1236 } 1237 1238 void Thread::NotifyLocked(Thread* self) { 1239 if (wait_monitor_ != NULL) { 1240 wait_cond_->Signal(self); 1241 } 1242 } 1243 1244 class CountStackDepthVisitor : public StackVisitor { 1245 public: 1246 explicit CountStackDepthVisitor(Thread* thread) 1247 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1248 : StackVisitor(thread, NULL), 1249 depth_(0), skip_depth_(0), skipping_(true) {} 1250 1251 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1252 // We want to skip frames up to and including the exception's constructor. 1253 // Note we also skip the frame if it doesn't have a method (namely the callee 1254 // save frame) 1255 mirror::ArtMethod* m = GetMethod(); 1256 if (skipping_ && !m->IsRuntimeMethod() && 1257 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { 1258 skipping_ = false; 1259 } 1260 if (!skipping_) { 1261 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). 1262 ++depth_; 1263 } 1264 } else { 1265 ++skip_depth_; 1266 } 1267 return true; 1268 } 1269 1270 int GetDepth() const { 1271 return depth_; 1272 } 1273 1274 int GetSkipDepth() const { 1275 return skip_depth_; 1276 } 1277 1278 private: 1279 uint32_t depth_; 1280 uint32_t skip_depth_; 1281 bool skipping_; 1282 }; 1283 1284 class BuildInternalStackTraceVisitor : public StackVisitor { 1285 public: 1286 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) 1287 : StackVisitor(thread, NULL), self_(self), 1288 skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {} 1289 1290 bool Init(int depth) 1291 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1292 // Allocate method trace with an extra slot that will hold the PC trace 1293 SirtRef<mirror::ObjectArray<mirror::Object> > 1294 method_trace(self_, 1295 Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_, 1296 depth + 1)); 1297 if (method_trace.get() == NULL) { 1298 return false; 1299 } 1300 mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth); 1301 if (dex_pc_trace == NULL) { 1302 return false; 1303 } 1304 // Save PC trace in last element of method trace, also places it into the 1305 // object graph. 1306 method_trace->Set(depth, dex_pc_trace); 1307 // Set the Object*s and assert that no thread suspension is now possible. 1308 const char* last_no_suspend_cause = 1309 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 1310 CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause; 1311 method_trace_ = method_trace.get(); 1312 dex_pc_trace_ = dex_pc_trace; 1313 return true; 1314 } 1315 1316 virtual ~BuildInternalStackTraceVisitor() { 1317 if (method_trace_ != NULL) { 1318 self_->EndAssertNoThreadSuspension(NULL); 1319 } 1320 } 1321 1322 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1323 if (method_trace_ == NULL || dex_pc_trace_ == NULL) { 1324 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. 1325 } 1326 if (skip_depth_ > 0) { 1327 skip_depth_--; 1328 return true; 1329 } 1330 mirror::ArtMethod* m = GetMethod(); 1331 if (m->IsRuntimeMethod()) { 1332 return true; // Ignore runtime frames (in particular callee save). 1333 } 1334 method_trace_->Set(count_, m); 1335 dex_pc_trace_->Set(count_, GetDexPc()); 1336 ++count_; 1337 return true; 1338 } 1339 1340 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { 1341 return method_trace_; 1342 } 1343 1344 private: 1345 Thread* const self_; 1346 // How many more frames to skip. 1347 int32_t skip_depth_; 1348 // Current position down stack trace. 1349 uint32_t count_; 1350 // Array of dex PC values. 1351 mirror::IntArray* dex_pc_trace_; 1352 // An array of the methods on the stack, the last entry is a reference to the PC trace. 1353 mirror::ObjectArray<mirror::Object>* method_trace_; 1354 }; 1355 1356 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const { 1357 // Compute depth of stack 1358 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); 1359 count_visitor.WalkStack(); 1360 int32_t depth = count_visitor.GetDepth(); 1361 int32_t skip_depth = count_visitor.GetSkipDepth(); 1362 1363 // Build internal stack trace. 1364 BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this), 1365 skip_depth); 1366 if (!build_trace_visitor.Init(depth)) { 1367 return NULL; // Allocation failed. 1368 } 1369 build_trace_visitor.WalkStack(); 1370 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); 1371 if (kIsDebugBuild) { 1372 for (int32_t i = 0; i < trace->GetLength(); ++i) { 1373 CHECK(trace->Get(i) != NULL); 1374 } 1375 } 1376 return soa.AddLocalReference<jobjectArray>(trace); 1377 } 1378 1379 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal, 1380 jobjectArray output_array, int* stack_depth) { 1381 // Transition into runnable state to work on Object*/Array* 1382 ScopedObjectAccess soa(env); 1383 // Decode the internal stack trace into the depth, method trace and PC trace 1384 mirror::ObjectArray<mirror::Object>* method_trace = 1385 soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal); 1386 int32_t depth = method_trace->GetLength() - 1; 1387 mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth)); 1388 1389 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1390 1391 jobjectArray result; 1392 mirror::ObjectArray<mirror::StackTraceElement>* java_traces; 1393 if (output_array != NULL) { 1394 // Reuse the array we were given. 1395 result = output_array; 1396 java_traces = soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(output_array); 1397 // ...adjusting the number of frames we'll write to not exceed the array length. 1398 depth = std::min(depth, java_traces->GetLength()); 1399 } else { 1400 // Create java_trace array and place in local reference table 1401 java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth); 1402 if (java_traces == NULL) { 1403 return NULL; 1404 } 1405 result = soa.AddLocalReference<jobjectArray>(java_traces); 1406 } 1407 1408 if (stack_depth != NULL) { 1409 *stack_depth = depth; 1410 } 1411 1412 MethodHelper mh; 1413 for (int32_t i = 0; i < depth; ++i) { 1414 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) 1415 mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i)); 1416 mh.ChangeMethod(method); 1417 uint32_t dex_pc = pc_trace->Get(i); 1418 int32_t line_number = mh.GetLineNumFromDexPC(dex_pc); 1419 // Allocate element, potentially triggering GC 1420 // TODO: reuse class_name_object via Class::name_? 1421 const char* descriptor = mh.GetDeclaringClassDescriptor(); 1422 CHECK(descriptor != NULL); 1423 std::string class_name(PrettyDescriptor(descriptor)); 1424 SirtRef<mirror::String> class_name_object(soa.Self(), 1425 mirror::String::AllocFromModifiedUtf8(soa.Self(), 1426 class_name.c_str())); 1427 if (class_name_object.get() == NULL) { 1428 return NULL; 1429 } 1430 const char* method_name = mh.GetName(); 1431 CHECK(method_name != NULL); 1432 SirtRef<mirror::String> method_name_object(soa.Self(), 1433 mirror::String::AllocFromModifiedUtf8(soa.Self(), 1434 method_name)); 1435 if (method_name_object.get() == NULL) { 1436 return NULL; 1437 } 1438 const char* source_file = mh.GetDeclaringClassSourceFile(); 1439 SirtRef<mirror::String> source_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(), 1440 source_file)); 1441 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(soa.Self(), 1442 class_name_object.get(), 1443 method_name_object.get(), 1444 source_name_object.get(), 1445 line_number); 1446 if (obj == NULL) { 1447 return NULL; 1448 } 1449 #ifdef MOVING_GARBAGE_COLLECTOR 1450 // Re-read after potential GC 1451 java_traces = Decode<ObjectArray<Object>*>(soa.Env(), result); 1452 method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(soa.Env(), internal)); 1453 pc_trace = down_cast<IntArray*>(method_trace->Get(depth)); 1454 #endif 1455 java_traces->Set(i, obj); 1456 } 1457 return result; 1458 } 1459 1460 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location, 1461 const char* exception_class_descriptor, const char* fmt, ...) { 1462 va_list args; 1463 va_start(args, fmt); 1464 ThrowNewExceptionV(throw_location, exception_class_descriptor, 1465 fmt, args); 1466 va_end(args); 1467 } 1468 1469 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location, 1470 const char* exception_class_descriptor, 1471 const char* fmt, va_list ap) { 1472 std::string msg; 1473 StringAppendV(&msg, fmt, ap); 1474 ThrowNewException(throw_location, exception_class_descriptor, msg.c_str()); 1475 } 1476 1477 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor, 1478 const char* msg) { 1479 AssertNoPendingException(); // Callers should either clear or call ThrowNewWrappedException. 1480 ThrowNewWrappedException(throw_location, exception_class_descriptor, msg); 1481 } 1482 1483 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location, 1484 const char* exception_class_descriptor, 1485 const char* msg) { 1486 DCHECK_EQ(this, Thread::Current()); 1487 // Ensure we don't forget arguments over object allocation. 1488 SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis()); 1489 SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod()); 1490 // Ignore the cause throw location. TODO: should we report this as a re-throw? 1491 SirtRef<mirror::Throwable> cause(this, GetException(NULL)); 1492 ClearException(); 1493 Runtime* runtime = Runtime::Current(); 1494 1495 mirror::ClassLoader* cl = NULL; 1496 if (throw_location.GetMethod() != NULL) { 1497 cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader(); 1498 } 1499 SirtRef<mirror::Class> 1500 exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor, cl)); 1501 if (UNLIKELY(exception_class.get() == NULL)) { 1502 CHECK(IsExceptionPending()); 1503 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); 1504 return; 1505 } 1506 1507 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) { 1508 DCHECK(IsExceptionPending()); 1509 return; 1510 } 1511 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); 1512 SirtRef<mirror::Throwable> exception(this, 1513 down_cast<mirror::Throwable*>(exception_class->AllocObject(this))); 1514 1515 // Choose an appropriate constructor and set up the arguments. 1516 const char* signature; 1517 SirtRef<mirror::String> msg_string(this, NULL); 1518 if (msg != NULL) { 1519 // Ensure we remember this and the method over the String allocation. 1520 msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg)); 1521 if (UNLIKELY(msg_string.get() == NULL)) { 1522 CHECK(IsExceptionPending()); // OOME. 1523 return; 1524 } 1525 if (cause.get() == NULL) { 1526 signature = "(Ljava/lang/String;)V"; 1527 } else { 1528 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; 1529 } 1530 } else { 1531 if (cause.get() == NULL) { 1532 signature = "()V"; 1533 } else { 1534 signature = "(Ljava/lang/Throwable;)V"; 1535 } 1536 } 1537 mirror::ArtMethod* exception_init_method = 1538 exception_class->FindDeclaredDirectMethod("<init>", signature); 1539 1540 CHECK(exception_init_method != NULL) << "No <init>" << signature << " in " 1541 << PrettyDescriptor(exception_class_descriptor); 1542 1543 if (UNLIKELY(!runtime->IsStarted())) { 1544 // Something is trying to throw an exception without a started runtime, which is the common 1545 // case in the compiler. We won't be able to invoke the constructor of the exception, so set 1546 // the exception fields directly. 1547 if (msg != NULL) { 1548 exception->SetDetailMessage(msg_string.get()); 1549 } 1550 if (cause.get() != NULL) { 1551 exception->SetCause(cause.get()); 1552 } 1553 ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(), 1554 throw_location.GetDexPc()); 1555 SetException(gc_safe_throw_location, exception.get()); 1556 } else { 1557 ArgArray args("VLL", 3); 1558 args.Append(reinterpret_cast<uint32_t>(exception.get())); 1559 if (msg != NULL) { 1560 args.Append(reinterpret_cast<uint32_t>(msg_string.get())); 1561 } 1562 if (cause.get() != NULL) { 1563 args.Append(reinterpret_cast<uint32_t>(cause.get())); 1564 } 1565 JValue result; 1566 exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V'); 1567 if (LIKELY(!IsExceptionPending())) { 1568 ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(), 1569 throw_location.GetDexPc()); 1570 SetException(gc_safe_throw_location, exception.get()); 1571 } 1572 } 1573 } 1574 1575 void Thread::ThrowOutOfMemoryError(const char* msg) { 1576 LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", 1577 msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : "")); 1578 ThrowLocation throw_location = GetCurrentLocationForThrow(); 1579 if (!throwing_OutOfMemoryError_) { 1580 throwing_OutOfMemoryError_ = true; 1581 ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg); 1582 throwing_OutOfMemoryError_ = false; 1583 } else { 1584 Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. 1585 SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 1586 } 1587 } 1588 1589 Thread* Thread::CurrentFromGdb() { 1590 return Thread::Current(); 1591 } 1592 1593 void Thread::DumpFromGdb() const { 1594 std::ostringstream ss; 1595 Dump(ss); 1596 std::string str(ss.str()); 1597 // log to stderr for debugging command line processes 1598 std::cerr << str; 1599 #ifdef HAVE_ANDROID_OS 1600 // log to logcat for debugging frameworks processes 1601 LOG(INFO) << str; 1602 #endif 1603 } 1604 1605 struct EntryPointInfo { 1606 uint32_t offset; 1607 const char* name; 1608 }; 1609 #define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } 1610 #define JNI_ENTRY_POINT_INFO(x) { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } 1611 #define PORTABLE_ENTRY_POINT_INFO(x) { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } 1612 #define QUICK_ENTRY_POINT_INFO(x) { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x } 1613 static const EntryPointInfo gThreadEntryPointInfo[] = { 1614 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge), 1615 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge), 1616 JNI_ENTRY_POINT_INFO(pDlsymLookup), 1617 PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline), 1618 PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge), 1619 QUICK_ENTRY_POINT_INFO(pAllocArray), 1620 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck), 1621 QUICK_ENTRY_POINT_INFO(pAllocObject), 1622 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck), 1623 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray), 1624 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck), 1625 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial), 1626 QUICK_ENTRY_POINT_INFO(pCanPutArrayElement), 1627 QUICK_ENTRY_POINT_INFO(pCheckCast), 1628 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage), 1629 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess), 1630 QUICK_ENTRY_POINT_INFO(pInitializeType), 1631 QUICK_ENTRY_POINT_INFO(pResolveString), 1632 QUICK_ENTRY_POINT_INFO(pSet32Instance), 1633 QUICK_ENTRY_POINT_INFO(pSet32Static), 1634 QUICK_ENTRY_POINT_INFO(pSet64Instance), 1635 QUICK_ENTRY_POINT_INFO(pSet64Static), 1636 QUICK_ENTRY_POINT_INFO(pSetObjInstance), 1637 QUICK_ENTRY_POINT_INFO(pSetObjStatic), 1638 QUICK_ENTRY_POINT_INFO(pGet32Instance), 1639 QUICK_ENTRY_POINT_INFO(pGet32Static), 1640 QUICK_ENTRY_POINT_INFO(pGet64Instance), 1641 QUICK_ENTRY_POINT_INFO(pGet64Static), 1642 QUICK_ENTRY_POINT_INFO(pGetObjInstance), 1643 QUICK_ENTRY_POINT_INFO(pGetObjStatic), 1644 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData), 1645 QUICK_ENTRY_POINT_INFO(pJniMethodStart), 1646 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized), 1647 QUICK_ENTRY_POINT_INFO(pJniMethodEnd), 1648 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized), 1649 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference), 1650 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized), 1651 QUICK_ENTRY_POINT_INFO(pLockObject), 1652 QUICK_ENTRY_POINT_INFO(pUnlockObject), 1653 QUICK_ENTRY_POINT_INFO(pCmpgDouble), 1654 QUICK_ENTRY_POINT_INFO(pCmpgFloat), 1655 QUICK_ENTRY_POINT_INFO(pCmplDouble), 1656 QUICK_ENTRY_POINT_INFO(pCmplFloat), 1657 QUICK_ENTRY_POINT_INFO(pFmod), 1658 QUICK_ENTRY_POINT_INFO(pSqrt), 1659 QUICK_ENTRY_POINT_INFO(pL2d), 1660 QUICK_ENTRY_POINT_INFO(pFmodf), 1661 QUICK_ENTRY_POINT_INFO(pL2f), 1662 QUICK_ENTRY_POINT_INFO(pD2iz), 1663 QUICK_ENTRY_POINT_INFO(pF2iz), 1664 QUICK_ENTRY_POINT_INFO(pIdivmod), 1665 QUICK_ENTRY_POINT_INFO(pD2l), 1666 QUICK_ENTRY_POINT_INFO(pF2l), 1667 QUICK_ENTRY_POINT_INFO(pLdiv), 1668 QUICK_ENTRY_POINT_INFO(pLdivmod), 1669 QUICK_ENTRY_POINT_INFO(pLmul), 1670 QUICK_ENTRY_POINT_INFO(pShlLong), 1671 QUICK_ENTRY_POINT_INFO(pShrLong), 1672 QUICK_ENTRY_POINT_INFO(pUshrLong), 1673 QUICK_ENTRY_POINT_INFO(pIndexOf), 1674 QUICK_ENTRY_POINT_INFO(pMemcmp16), 1675 QUICK_ENTRY_POINT_INFO(pStringCompareTo), 1676 QUICK_ENTRY_POINT_INFO(pMemcpy), 1677 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline), 1678 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge), 1679 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck), 1680 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampoline), 1681 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck), 1682 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck), 1683 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck), 1684 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck), 1685 QUICK_ENTRY_POINT_INFO(pCheckSuspend), 1686 QUICK_ENTRY_POINT_INFO(pTestSuspend), 1687 QUICK_ENTRY_POINT_INFO(pDeliverException), 1688 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds), 1689 QUICK_ENTRY_POINT_INFO(pThrowDivZero), 1690 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod), 1691 QUICK_ENTRY_POINT_INFO(pThrowNullPointer), 1692 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow), 1693 }; 1694 #undef QUICK_ENTRY_POINT_INFO 1695 1696 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) { 1697 CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets. 1698 1699 #define DO_THREAD_OFFSET(x) \ 1700 if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \ 1701 os << # x; \ 1702 return; \ 1703 } 1704 DO_THREAD_OFFSET(state_and_flags_); 1705 DO_THREAD_OFFSET(card_table_); 1706 DO_THREAD_OFFSET(exception_); 1707 DO_THREAD_OFFSET(opeer_); 1708 DO_THREAD_OFFSET(jni_env_); 1709 DO_THREAD_OFFSET(self_); 1710 DO_THREAD_OFFSET(stack_end_); 1711 DO_THREAD_OFFSET(suspend_count_); 1712 DO_THREAD_OFFSET(thin_lock_id_); 1713 // DO_THREAD_OFFSET(top_of_managed_stack_); 1714 // DO_THREAD_OFFSET(top_of_managed_stack_pc_); 1715 DO_THREAD_OFFSET(top_sirt_); 1716 #undef DO_THREAD_OFFSET 1717 1718 size_t entry_point_count = arraysize(gThreadEntryPointInfo); 1719 CHECK_EQ(entry_point_count * size_of_pointers, 1720 sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) + 1721 sizeof(QuickEntryPoints)); 1722 uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_); 1723 for (size_t i = 0; i < entry_point_count; ++i) { 1724 CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name; 1725 expected_offset += size_of_pointers; 1726 if (gThreadEntryPointInfo[i].offset == offset) { 1727 os << gThreadEntryPointInfo[i].name; 1728 return; 1729 } 1730 } 1731 os << offset; 1732 } 1733 1734 static const bool kDebugExceptionDelivery = false; 1735 class CatchBlockStackVisitor : public StackVisitor { 1736 public: 1737 CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location, 1738 mirror::Throwable* exception, bool is_deoptimization) 1739 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1740 : StackVisitor(self, self->GetLongJumpContext()), 1741 self_(self), exception_(exception), is_deoptimization_(is_deoptimization), 1742 to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location), 1743 handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0), 1744 native_method_count_(0), clear_exception_(false), 1745 method_tracing_active_(is_deoptimization || 1746 Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()), 1747 instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) { 1748 // Exception not in root sets, can't allow GC. 1749 last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block"); 1750 } 1751 1752 ~CatchBlockStackVisitor() { 1753 LOG(FATAL) << "UNREACHABLE"; // Expected to take long jump. 1754 } 1755 1756 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1757 mirror::ArtMethod* method = GetMethod(); 1758 if (method == NULL) { 1759 // This is the upcall, we remember the frame and last pc so that we may long jump to them. 1760 handler_quick_frame_pc_ = GetCurrentQuickFramePc(); 1761 handler_quick_frame_ = GetCurrentQuickFrame(); 1762 return false; // End stack walk. 1763 } else { 1764 if (UNLIKELY(method_tracing_active_ && 1765 GetQuickInstrumentationExitPc() == GetReturnPc())) { 1766 // Keep count of the number of unwinds during instrumentation. 1767 instrumentation_frames_to_pop_++; 1768 } 1769 if (method->IsRuntimeMethod()) { 1770 // Ignore callee save method. 1771 DCHECK(method->IsCalleeSaveMethod()); 1772 return true; 1773 } else if (is_deoptimization_) { 1774 return HandleDeoptimization(method); 1775 } else { 1776 return HandleTryItems(method); 1777 } 1778 } 1779 } 1780 1781 bool HandleTryItems(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1782 uint32_t dex_pc = DexFile::kDexNoIndex; 1783 if (method->IsNative()) { 1784 native_method_count_++; 1785 } else { 1786 dex_pc = GetDexPc(); 1787 } 1788 if (dex_pc != DexFile::kDexNoIndex) { 1789 uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc, &clear_exception_); 1790 if (found_dex_pc != DexFile::kDexNoIndex) { 1791 handler_dex_pc_ = found_dex_pc; 1792 handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc); 1793 handler_quick_frame_ = GetCurrentQuickFrame(); 1794 return false; // End stack walk. 1795 } 1796 } 1797 return true; // Continue stack walk. 1798 } 1799 1800 bool HandleDeoptimization(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1801 MethodHelper mh(m); 1802 const DexFile::CodeItem* code_item = mh.GetCodeItem(); 1803 CHECK(code_item != NULL); 1804 uint16_t num_regs = code_item->registers_size_; 1805 uint32_t dex_pc = GetDexPc(); 1806 const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc); 1807 uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits(); 1808 ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc); 1809 verifier::MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(), 1810 &mh.GetClassDef(), code_item, 1811 m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true); 1812 verifier.Verify(); 1813 std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc); 1814 for (uint16_t reg = 0; reg < num_regs; reg++) { 1815 VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2)); 1816 switch (kind) { 1817 case kUndefined: 1818 new_frame->SetVReg(reg, 0xEBADDE09); 1819 break; 1820 case kConstant: 1821 new_frame->SetVReg(reg, kinds.at((reg * 2) + 1)); 1822 break; 1823 case kReferenceVReg: 1824 new_frame->SetVRegReference(reg, 1825 reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind))); 1826 break; 1827 default: 1828 new_frame->SetVReg(reg, GetVReg(m, reg, kind)); 1829 break; 1830 } 1831 } 1832 if (prev_shadow_frame_ != NULL) { 1833 prev_shadow_frame_->SetLink(new_frame); 1834 } else { 1835 top_shadow_frame_ = new_frame; 1836 } 1837 prev_shadow_frame_ = new_frame; 1838 return true; 1839 } 1840 1841 void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1842 mirror::ArtMethod* catch_method = *handler_quick_frame_; 1843 if (catch_method == NULL) { 1844 if (kDebugExceptionDelivery) { 1845 LOG(INFO) << "Handler is upcall"; 1846 } 1847 } else { 1848 CHECK(!is_deoptimization_); 1849 if (kDebugExceptionDelivery) { 1850 const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1851 int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_); 1852 LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")"; 1853 } 1854 } 1855 if (clear_exception_) { 1856 // Exception was cleared as part of delivery. 1857 DCHECK(!self_->IsExceptionPending()); 1858 } else { 1859 // Put exception back in root set with clear throw location. 1860 self_->SetException(ThrowLocation(), exception_); 1861 } 1862 self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_); 1863 // Do instrumentation events after allowing thread suspension again. 1864 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); 1865 for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) { 1866 // We pop the instrumentation stack here so as not to corrupt it during the stack walk. 1867 if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) { 1868 // Don't pop the instrumentation frame of the catch handler. 1869 instrumentation->PopMethodForUnwind(self_, is_deoptimization_); 1870 } 1871 } 1872 if (!is_deoptimization_) { 1873 instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_, 1874 exception_); 1875 } else { 1876 // TODO: proper return value. 1877 self_->SetDeoptimizationShadowFrame(top_shadow_frame_); 1878 } 1879 // Place context back on thread so it will be available when we continue. 1880 self_->ReleaseLongJumpContext(context_); 1881 context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_)); 1882 CHECK_NE(handler_quick_frame_pc_, 0u); 1883 context_->SetPC(handler_quick_frame_pc_); 1884 context_->SmashCallerSaves(); 1885 context_->DoLongJump(); 1886 } 1887 1888 private: 1889 Thread* const self_; 1890 mirror::Throwable* const exception_; 1891 const bool is_deoptimization_; 1892 // The type of the exception catch block to find. 1893 mirror::Class* const to_find_; 1894 // Location of the throw. 1895 const ThrowLocation& throw_location_; 1896 // Quick frame with found handler or last frame if no handler found. 1897 mirror::ArtMethod** handler_quick_frame_; 1898 // PC to branch to for the handler. 1899 uintptr_t handler_quick_frame_pc_; 1900 // Associated dex PC. 1901 uint32_t handler_dex_pc_; 1902 // Number of native methods passed in crawl (equates to number of SIRTs to pop) 1903 uint32_t native_method_count_; 1904 // Should the exception be cleared as the catch block has no move-exception? 1905 bool clear_exception_; 1906 // Is method tracing active? 1907 const bool method_tracing_active_; 1908 // Support for nesting no thread suspension checks. 1909 const char* last_no_assert_suspension_cause_; 1910 // Number of frames to pop in long jump. 1911 size_t instrumentation_frames_to_pop_; 1912 ShadowFrame* top_shadow_frame_; 1913 ShadowFrame* prev_shadow_frame_; 1914 }; 1915 1916 void Thread::QuickDeliverException() { 1917 // Get exception from thread. 1918 ThrowLocation throw_location; 1919 mirror::Throwable* exception = GetException(&throw_location); 1920 CHECK(exception != NULL); 1921 // Don't leave exception visible while we try to find the handler, which may cause class 1922 // resolution. 1923 ClearException(); 1924 bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1)); 1925 if (kDebugExceptionDelivery) { 1926 if (!is_deoptimization) { 1927 mirror::String* msg = exception->GetDetailMessage(); 1928 std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : ""); 1929 DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception) 1930 << ": " << str_msg << "\n"); 1931 } else { 1932 DumpStack(LOG(INFO) << "Deoptimizing: "); 1933 } 1934 } 1935 CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization); 1936 catch_finder.WalkStack(true); 1937 catch_finder.DoLongJump(); 1938 LOG(FATAL) << "UNREACHABLE"; 1939 } 1940 1941 Context* Thread::GetLongJumpContext() { 1942 Context* result = long_jump_context_; 1943 if (result == NULL) { 1944 result = Context::Create(); 1945 } else { 1946 long_jump_context_ = NULL; // Avoid context being shared. 1947 result->Reset(); 1948 } 1949 return result; 1950 } 1951 1952 struct CurrentMethodVisitor : public StackVisitor { 1953 CurrentMethodVisitor(Thread* thread, Context* context) 1954 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1955 : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {} 1956 virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1957 mirror::ArtMethod* m = GetMethod(); 1958 if (m->IsRuntimeMethod()) { 1959 // Continue if this is a runtime method. 1960 return true; 1961 } 1962 if (context_ != NULL) { 1963 this_object_ = GetThisObject(); 1964 } 1965 method_ = m; 1966 dex_pc_ = GetDexPc(); 1967 return false; 1968 } 1969 mirror::Object* this_object_; 1970 mirror::ArtMethod* method_; 1971 uint32_t dex_pc_; 1972 }; 1973 1974 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const { 1975 CurrentMethodVisitor visitor(const_cast<Thread*>(this), NULL); 1976 visitor.WalkStack(false); 1977 if (dex_pc != NULL) { 1978 *dex_pc = visitor.dex_pc_; 1979 } 1980 return visitor.method_; 1981 } 1982 1983 ThrowLocation Thread::GetCurrentLocationForThrow() { 1984 Context* context = GetLongJumpContext(); 1985 CurrentMethodVisitor visitor(this, context); 1986 visitor.WalkStack(false); 1987 ReleaseLongJumpContext(context); 1988 return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_); 1989 } 1990 1991 bool Thread::HoldsLock(mirror::Object* object) { 1992 if (object == NULL) { 1993 return false; 1994 } 1995 return object->GetThinLockId() == thin_lock_id_; 1996 } 1997 1998 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). 1999 template <typename RootVisitor> 2000 class ReferenceMapVisitor : public StackVisitor { 2001 public: 2002 ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor) 2003 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 2004 : StackVisitor(thread, context), visitor_(visitor) {} 2005 2006 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2007 if (false) { 2008 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) 2009 << StringPrintf("@ PC:%04x", GetDexPc()); 2010 } 2011 ShadowFrame* shadow_frame = GetCurrentShadowFrame(); 2012 if (shadow_frame != NULL) { 2013 mirror::ArtMethod* m = shadow_frame->GetMethod(); 2014 size_t num_regs = shadow_frame->NumberOfVRegs(); 2015 if (m->IsNative() || shadow_frame->HasReferenceArray()) { 2016 // SIRT for JNI or References for interpreter. 2017 for (size_t reg = 0; reg < num_regs; ++reg) { 2018 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2019 if (ref != NULL) { 2020 visitor_(ref, reg, this); 2021 } 2022 } 2023 } else { 2024 // Java method. 2025 // Portable path use DexGcMap and store in Method.native_gc_map_. 2026 const uint8_t* gc_map = m->GetNativeGcMap(); 2027 CHECK(gc_map != NULL) << PrettyMethod(m); 2028 uint32_t gc_map_length = static_cast<uint32_t>((gc_map[0] << 24) | 2029 (gc_map[1] << 16) | 2030 (gc_map[2] << 8) | 2031 (gc_map[3] << 0)); 2032 verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length); 2033 uint32_t dex_pc = GetDexPc(); 2034 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc); 2035 DCHECK(reg_bitmap != NULL); 2036 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs); 2037 for (size_t reg = 0; reg < num_regs; ++reg) { 2038 if (TestBitmap(reg, reg_bitmap)) { 2039 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2040 if (ref != NULL) { 2041 visitor_(ref, reg, this); 2042 } 2043 } 2044 } 2045 } 2046 } else { 2047 mirror::ArtMethod* m = GetMethod(); 2048 // Process register map (which native and runtime methods don't have) 2049 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { 2050 const uint8_t* native_gc_map = m->GetNativeGcMap(); 2051 CHECK(native_gc_map != NULL) << PrettyMethod(m); 2052 mh_.ChangeMethod(m); 2053 const DexFile::CodeItem* code_item = mh_.GetCodeItem(); 2054 DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions? 2055 NativePcOffsetToReferenceMap map(native_gc_map); 2056 size_t num_regs = std::min(map.RegWidth() * 8, 2057 static_cast<size_t>(code_item->registers_size_)); 2058 if (num_regs > 0) { 2059 const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset()); 2060 DCHECK(reg_bitmap != NULL); 2061 const VmapTable vmap_table(m->GetVmapTable()); 2062 uint32_t core_spills = m->GetCoreSpillMask(); 2063 uint32_t fp_spills = m->GetFpSpillMask(); 2064 size_t frame_size = m->GetFrameSizeInBytes(); 2065 // For all dex registers in the bitmap 2066 mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); 2067 DCHECK(cur_quick_frame != NULL); 2068 for (size_t reg = 0; reg < num_regs; ++reg) { 2069 // Does this register hold a reference? 2070 if (TestBitmap(reg, reg_bitmap)) { 2071 uint32_t vmap_offset; 2072 mirror::Object* ref; 2073 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) { 2074 uintptr_t val = GetGPR(vmap_table.ComputeRegister(core_spills, vmap_offset, 2075 kReferenceVReg)); 2076 ref = reinterpret_cast<mirror::Object*>(val); 2077 } else { 2078 ref = reinterpret_cast<mirror::Object*>(GetVReg(cur_quick_frame, code_item, 2079 core_spills, fp_spills, frame_size, 2080 reg)); 2081 } 2082 2083 if (ref != NULL) { 2084 visitor_(ref, reg, this); 2085 } 2086 } 2087 } 2088 } 2089 } 2090 } 2091 return true; 2092 } 2093 2094 private: 2095 static bool TestBitmap(int reg, const uint8_t* reg_vector) { 2096 return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0; 2097 } 2098 2099 // Visitor for when we visit a root. 2100 const RootVisitor& visitor_; 2101 2102 // A method helper we keep around to avoid dex file/cache re-computations. 2103 MethodHelper mh_; 2104 }; 2105 2106 class RootCallbackVisitor { 2107 public: 2108 RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {} 2109 2110 void operator()(const mirror::Object* obj, size_t, const StackVisitor*) const { 2111 visitor_(obj, arg_); 2112 } 2113 2114 private: 2115 RootVisitor* visitor_; 2116 void* arg_; 2117 }; 2118 2119 class VerifyCallbackVisitor { 2120 public: 2121 VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg) 2122 : visitor_(visitor), 2123 arg_(arg) { 2124 } 2125 2126 void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const { 2127 visitor_(obj, arg_, vreg, visitor); 2128 } 2129 2130 private: 2131 VerifyRootVisitor* const visitor_; 2132 void* const arg_; 2133 }; 2134 2135 struct VerifyRootWrapperArg { 2136 VerifyRootVisitor* visitor; 2137 void* arg; 2138 }; 2139 2140 static void VerifyRootWrapperCallback(const mirror::Object* root, void* arg) { 2141 VerifyRootWrapperArg* wrapperArg = reinterpret_cast<VerifyRootWrapperArg*>(arg); 2142 wrapperArg->visitor(root, wrapperArg->arg, 0, NULL); 2143 } 2144 2145 void Thread::VerifyRoots(VerifyRootVisitor* visitor, void* arg) { 2146 // We need to map from a RootVisitor to VerifyRootVisitor, so pass in nulls for arguments we 2147 // don't have. 2148 VerifyRootWrapperArg wrapperArg; 2149 wrapperArg.arg = arg; 2150 wrapperArg.visitor = visitor; 2151 2152 if (opeer_ != NULL) { 2153 VerifyRootWrapperCallback(opeer_, &wrapperArg); 2154 } 2155 if (exception_ != NULL) { 2156 VerifyRootWrapperCallback(exception_, &wrapperArg); 2157 } 2158 throw_location_.VisitRoots(VerifyRootWrapperCallback, &wrapperArg); 2159 if (class_loader_override_ != NULL) { 2160 VerifyRootWrapperCallback(class_loader_override_, &wrapperArg); 2161 } 2162 jni_env_->locals.VisitRoots(VerifyRootWrapperCallback, &wrapperArg); 2163 jni_env_->monitors.VisitRoots(VerifyRootWrapperCallback, &wrapperArg); 2164 2165 SirtVisitRoots(VerifyRootWrapperCallback, &wrapperArg); 2166 2167 // Visit roots on this thread's stack 2168 Context* context = GetLongJumpContext(); 2169 VerifyCallbackVisitor visitorToCallback(visitor, arg); 2170 ReferenceMapVisitor<VerifyCallbackVisitor> mapper(this, context, visitorToCallback); 2171 mapper.WalkStack(); 2172 ReleaseLongJumpContext(context); 2173 2174 std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack(); 2175 typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It; 2176 for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) { 2177 mirror::Object* this_object = (*it).this_object_; 2178 if (this_object != NULL) { 2179 VerifyRootWrapperCallback(this_object, &wrapperArg); 2180 } 2181 mirror::ArtMethod* method = (*it).method_; 2182 VerifyRootWrapperCallback(method, &wrapperArg); 2183 } 2184 } 2185 2186 void Thread::VisitRoots(RootVisitor* visitor, void* arg) { 2187 if (opeer_ != NULL) { 2188 visitor(opeer_, arg); 2189 } 2190 if (exception_ != NULL) { 2191 visitor(exception_, arg); 2192 } 2193 throw_location_.VisitRoots(visitor, arg); 2194 if (class_loader_override_ != NULL) { 2195 visitor(class_loader_override_, arg); 2196 } 2197 jni_env_->locals.VisitRoots(visitor, arg); 2198 jni_env_->monitors.VisitRoots(visitor, arg); 2199 2200 SirtVisitRoots(visitor, arg); 2201 2202 // Visit roots on this thread's stack 2203 Context* context = GetLongJumpContext(); 2204 RootCallbackVisitor visitorToCallback(visitor, arg); 2205 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback); 2206 mapper.WalkStack(); 2207 ReleaseLongJumpContext(context); 2208 2209 for (const instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { 2210 mirror::Object* this_object = frame.this_object_; 2211 if (this_object != NULL) { 2212 visitor(this_object, arg); 2213 } 2214 mirror::ArtMethod* method = frame.method_; 2215 visitor(method, arg); 2216 } 2217 } 2218 2219 static void VerifyObject(const mirror::Object* root, void* arg) { 2220 gc::Heap* heap = reinterpret_cast<gc::Heap*>(arg); 2221 heap->VerifyObject(root); 2222 } 2223 2224 void Thread::VerifyStackImpl() { 2225 UniquePtr<Context> context(Context::Create()); 2226 RootCallbackVisitor visitorToCallback(VerifyObject, Runtime::Current()->GetHeap()); 2227 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback); 2228 mapper.WalkStack(); 2229 } 2230 2231 // Set the stack end to that to be used during a stack overflow 2232 void Thread::SetStackEndForStackOverflow() { 2233 // During stack overflow we allow use of the full stack. 2234 if (stack_end_ == stack_begin_) { 2235 // However, we seem to have already extended to use the full stack. 2236 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " 2237 << kStackOverflowReservedBytes << ")?"; 2238 DumpStack(LOG(ERROR)); 2239 LOG(FATAL) << "Recursive stack overflow."; 2240 } 2241 2242 stack_end_ = stack_begin_; 2243 } 2244 2245 std::ostream& operator<<(std::ostream& os, const Thread& thread) { 2246 thread.ShortDump(os); 2247 return os; 2248 } 2249 2250 } // namespace art 2251