Home | History | Annotate | Download | only in MatrixFunctions
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009, 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      5 // Copyright (C) 2011 Chen-Pang He <jdh8 (at) ms63.hinet.net>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_MATRIX_EXPONENTIAL
     12 #define EIGEN_MATRIX_EXPONENTIAL
     13 
     14 #include "StemFunction.h"
     15 
     16 namespace Eigen {
     17 
     18 #if defined(_MSC_VER) || defined(__FreeBSD__)
     19   template <typename Scalar> Scalar log2(Scalar v) { using std::log; return log(v)/log(Scalar(2)); }
     20 #endif
     21 
     22 
     23 /** \ingroup MatrixFunctions_Module
     24   * \brief Class for computing the matrix exponential.
     25   * \tparam MatrixType type of the argument of the exponential,
     26   * expected to be an instantiation of the Matrix class template.
     27   */
     28 template <typename MatrixType>
     29 class MatrixExponential {
     30 
     31   public:
     32 
     33     /** \brief Constructor.
     34       *
     35       * The class stores a reference to \p M, so it should not be
     36       * changed (or destroyed) before compute() is called.
     37       *
     38       * \param[in] M  matrix whose exponential is to be computed.
     39       */
     40     MatrixExponential(const MatrixType &M);
     41 
     42     /** \brief Computes the matrix exponential.
     43       *
     44       * \param[out] result  the matrix exponential of \p M in the constructor.
     45       */
     46     template <typename ResultType>
     47     void compute(ResultType &result);
     48 
     49   private:
     50 
     51     // Prevent copying
     52     MatrixExponential(const MatrixExponential&);
     53     MatrixExponential& operator=(const MatrixExponential&);
     54 
     55     /** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
     56      *
     57      *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     58      *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     59      *
     60      *  \param[in] A   Argument of matrix exponential
     61      */
     62     void pade3(const MatrixType &A);
     63 
     64     /** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
     65      *
     66      *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     67      *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     68      *
     69      *  \param[in] A   Argument of matrix exponential
     70      */
     71     void pade5(const MatrixType &A);
     72 
     73     /** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
     74      *
     75      *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     76      *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     77      *
     78      *  \param[in] A   Argument of matrix exponential
     79      */
     80     void pade7(const MatrixType &A);
     81 
     82     /** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
     83      *
     84      *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     85      *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     86      *
     87      *  \param[in] A   Argument of matrix exponential
     88      */
     89     void pade9(const MatrixType &A);
     90 
     91     /** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
     92      *
     93      *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     94      *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     95      *
     96      *  \param[in] A   Argument of matrix exponential
     97      */
     98     void pade13(const MatrixType &A);
     99 
    100     /** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
    101      *
    102      *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
    103      *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
    104      *
    105      *  This function activates only if your long double is double-double or quadruple.
    106      *
    107      *  \param[in] A   Argument of matrix exponential
    108      */
    109     void pade17(const MatrixType &A);
    110 
    111     /** \brief Compute Pad&eacute; approximant to the exponential.
    112      *
    113      * Computes \c m_U, \c m_V and \c m_squarings such that
    114      * \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
    115      * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
    116      * degree of the Pad&eacute; approximant and the value of
    117      * squarings are chosen such that the approximation error is no
    118      * more than the round-off error.
    119      *
    120      * The argument of this function should correspond with the (real
    121      * part of) the entries of \c m_M.  It is used to select the
    122      * correct implementation using overloading.
    123      */
    124     void computeUV(double);
    125 
    126     /** \brief Compute Pad&eacute; approximant to the exponential.
    127      *
    128      *  \sa computeUV(double);
    129      */
    130     void computeUV(float);
    131 
    132     /** \brief Compute Pad&eacute; approximant to the exponential.
    133      *
    134      *  \sa computeUV(double);
    135      */
    136     void computeUV(long double);
    137 
    138     typedef typename internal::traits<MatrixType>::Scalar Scalar;
    139     typedef typename NumTraits<Scalar>::Real RealScalar;
    140     typedef typename std::complex<RealScalar> ComplexScalar;
    141 
    142     /** \brief Reference to matrix whose exponential is to be computed. */
    143     typename internal::nested<MatrixType>::type m_M;
    144 
    145     /** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
    146     MatrixType m_U;
    147 
    148     /** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
    149     MatrixType m_V;
    150 
    151     /** \brief Used for temporary storage. */
    152     MatrixType m_tmp1;
    153 
    154     /** \brief Used for temporary storage. */
    155     MatrixType m_tmp2;
    156 
    157     /** \brief Identity matrix of the same size as \c m_M. */
    158     MatrixType m_Id;
    159 
    160     /** \brief Number of squarings required in the last step. */
    161     int m_squarings;
    162 
    163     /** \brief L1 norm of m_M. */
    164     RealScalar m_l1norm;
    165 };
    166 
    167 template <typename MatrixType>
    168 MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
    169   m_M(M),
    170   m_U(M.rows(),M.cols()),
    171   m_V(M.rows(),M.cols()),
    172   m_tmp1(M.rows(),M.cols()),
    173   m_tmp2(M.rows(),M.cols()),
    174   m_Id(MatrixType::Identity(M.rows(), M.cols())),
    175   m_squarings(0),
    176   m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
    177 {
    178   /* empty body */
    179 }
    180 
    181 template <typename MatrixType>
    182 template <typename ResultType>
    183 void MatrixExponential<MatrixType>::compute(ResultType &result)
    184 {
    185 #if LDBL_MANT_DIG > 112 // rarely happens
    186   if(sizeof(RealScalar) > 14) {
    187     result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
    188     return;
    189   }
    190 #endif
    191   computeUV(RealScalar());
    192   m_tmp1 = m_U + m_V;   // numerator of Pade approximant
    193   m_tmp2 = -m_U + m_V;  // denominator of Pade approximant
    194   result = m_tmp2.partialPivLu().solve(m_tmp1);
    195   for (int i=0; i<m_squarings; i++)
    196     result *= result;   // undo scaling by repeated squaring
    197 }
    198 
    199 template <typename MatrixType>
    200 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
    201 {
    202   const RealScalar b[] = {120., 60., 12., 1.};
    203   m_tmp1.noalias() = A * A;
    204   m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
    205   m_U.noalias() = A * m_tmp2;
    206   m_V = b[2]*m_tmp1 + b[0]*m_Id;
    207 }
    208 
    209 template <typename MatrixType>
    210 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
    211 {
    212   const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
    213   MatrixType A2 = A * A;
    214   m_tmp1.noalias() = A2 * A2;
    215   m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
    216   m_U.noalias() = A * m_tmp2;
    217   m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
    218 }
    219 
    220 template <typename MatrixType>
    221 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
    222 {
    223   const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
    224   MatrixType A2 = A * A;
    225   MatrixType A4 = A2 * A2;
    226   m_tmp1.noalias() = A4 * A2;
    227   m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
    228   m_U.noalias() = A * m_tmp2;
    229   m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
    230 }
    231 
    232 template <typename MatrixType>
    233 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
    234 {
    235   const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
    236   		      2162160., 110880., 3960., 90., 1.};
    237   MatrixType A2 = A * A;
    238   MatrixType A4 = A2 * A2;
    239   MatrixType A6 = A4 * A2;
    240   m_tmp1.noalias() = A6 * A2;
    241   m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
    242   m_U.noalias() = A * m_tmp2;
    243   m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
    244 }
    245 
    246 template <typename MatrixType>
    247 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
    248 {
    249   const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
    250   		      1187353796428800., 129060195264000., 10559470521600., 670442572800.,
    251   		      33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
    252   MatrixType A2 = A * A;
    253   MatrixType A4 = A2 * A2;
    254   m_tmp1.noalias() = A4 * A2;
    255   m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
    256   m_tmp2.noalias() = m_tmp1 * m_V;
    257   m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
    258   m_U.noalias() = A * m_tmp2;
    259   m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
    260   m_V.noalias() = m_tmp1 * m_tmp2;
    261   m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
    262 }
    263 
    264 #if LDBL_MANT_DIG > 64
    265 template <typename MatrixType>
    266 EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
    267 {
    268   const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
    269             100610229646136770560000.L, 15720348382208870400000.L,
    270             1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
    271             595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
    272             33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
    273             46512.L, 306.L, 1.L};
    274   MatrixType A2 = A * A;
    275   MatrixType A4 = A2 * A2;
    276   MatrixType A6 = A4 * A2;
    277   m_tmp1.noalias() = A4 * A4;
    278   m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage
    279   m_tmp2.noalias() = m_tmp1 * m_V;
    280   m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
    281   m_U.noalias() = A * m_tmp2;
    282   m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
    283   m_V.noalias() = m_tmp1 * m_tmp2;
    284   m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
    285 }
    286 #endif
    287 
    288 template <typename MatrixType>
    289 void MatrixExponential<MatrixType>::computeUV(float)
    290 {
    291   using std::max;
    292   using std::pow;
    293   using std::ceil;
    294   if (m_l1norm < 4.258730016922831e-001) {
    295     pade3(m_M);
    296   } else if (m_l1norm < 1.880152677804762e+000) {
    297     pade5(m_M);
    298   } else {
    299     const float maxnorm = 3.925724783138660f;
    300     m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    301     MatrixType A = m_M / pow(Scalar(2), m_squarings);
    302     pade7(A);
    303   }
    304 }
    305 
    306 template <typename MatrixType>
    307 void MatrixExponential<MatrixType>::computeUV(double)
    308 {
    309   using std::max;
    310   using std::pow;
    311   using std::ceil;
    312   if (m_l1norm < 1.495585217958292e-002) {
    313     pade3(m_M);
    314   } else if (m_l1norm < 2.539398330063230e-001) {
    315     pade5(m_M);
    316   } else if (m_l1norm < 9.504178996162932e-001) {
    317     pade7(m_M);
    318   } else if (m_l1norm < 2.097847961257068e+000) {
    319     pade9(m_M);
    320   } else {
    321     const double maxnorm = 5.371920351148152;
    322     m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    323     MatrixType A = m_M / pow(Scalar(2), m_squarings);
    324     pade13(A);
    325   }
    326 }
    327 
    328 template <typename MatrixType>
    329 void MatrixExponential<MatrixType>::computeUV(long double)
    330 {
    331   using std::max;
    332   using std::pow;
    333   using std::ceil;
    334 #if   LDBL_MANT_DIG == 53   // double precision
    335   computeUV(double());
    336 #elif LDBL_MANT_DIG <= 64   // extended precision
    337   if (m_l1norm < 4.1968497232266989671e-003L) {
    338     pade3(m_M);
    339   } else if (m_l1norm < 1.1848116734693823091e-001L) {
    340     pade5(m_M);
    341   } else if (m_l1norm < 5.5170388480686700274e-001L) {
    342     pade7(m_M);
    343   } else if (m_l1norm < 1.3759868875587845383e+000L) {
    344     pade9(m_M);
    345   } else {
    346     const long double maxnorm = 4.0246098906697353063L;
    347     m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    348     MatrixType A = m_M / pow(Scalar(2), m_squarings);
    349     pade13(A);
    350   }
    351 #elif LDBL_MANT_DIG <= 106  // double-double
    352   if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
    353     pade3(m_M);
    354   } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
    355     pade5(m_M);
    356   } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
    357     pade7(m_M);
    358   } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
    359     pade9(m_M);
    360   } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
    361     pade13(m_M);
    362   } else {
    363     const long double maxnorm = 3.2579440895405400856599663723517L;
    364     m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    365     MatrixType A = m_M / pow(Scalar(2), m_squarings);
    366     pade17(A);
    367   }
    368 #elif LDBL_MANT_DIG <= 112  // quadruple precison
    369   if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
    370     pade3(m_M);
    371   } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
    372     pade5(m_M);
    373   } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
    374     pade7(m_M);
    375   } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
    376     pade9(m_M);
    377   } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
    378     pade13(m_M);
    379   } else {
    380     const long double maxnorm = 2.884233277829519311757165057717815L;
    381     m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    382     MatrixType A = m_M / pow(Scalar(2), m_squarings);
    383     pade17(A);
    384   }
    385 #else
    386   // this case should be handled in compute()
    387   eigen_assert(false && "Bug in MatrixExponential");
    388 #endif  // LDBL_MANT_DIG
    389 }
    390 
    391 /** \ingroup MatrixFunctions_Module
    392   *
    393   * \brief Proxy for the matrix exponential of some matrix (expression).
    394   *
    395   * \tparam Derived  Type of the argument to the matrix exponential.
    396   *
    397   * This class holds the argument to the matrix exponential until it
    398   * is assigned or evaluated for some other reason (so the argument
    399   * should not be changed in the meantime). It is the return type of
    400   * MatrixBase::exp() and most of the time this is the only way it is
    401   * used.
    402   */
    403 template<typename Derived> struct MatrixExponentialReturnValue
    404 : public ReturnByValue<MatrixExponentialReturnValue<Derived> >
    405 {
    406     typedef typename Derived::Index Index;
    407   public:
    408     /** \brief Constructor.
    409       *
    410       * \param[in] src %Matrix (expression) forming the argument of the
    411       * matrix exponential.
    412       */
    413     MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
    414 
    415     /** \brief Compute the matrix exponential.
    416       *
    417       * \param[out] result the matrix exponential of \p src in the
    418       * constructor.
    419       */
    420     template <typename ResultType>
    421     inline void evalTo(ResultType& result) const
    422     {
    423       const typename Derived::PlainObject srcEvaluated = m_src.eval();
    424       MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
    425       me.compute(result);
    426     }
    427 
    428     Index rows() const { return m_src.rows(); }
    429     Index cols() const { return m_src.cols(); }
    430 
    431   protected:
    432     const Derived& m_src;
    433   private:
    434     MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
    435 };
    436 
    437 namespace internal {
    438 template<typename Derived>
    439 struct traits<MatrixExponentialReturnValue<Derived> >
    440 {
    441   typedef typename Derived::PlainObject ReturnType;
    442 };
    443 }
    444 
    445 template <typename Derived>
    446 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
    447 {
    448   eigen_assert(rows() == cols());
    449   return MatrixExponentialReturnValue<Derived>(derived());
    450 }
    451 
    452 } // end namespace Eigen
    453 
    454 #endif // EIGEN_MATRIX_EXPONENTIAL
    455