Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 // this hack is needed to make this file compiles with -pedantic (gcc)
     12 #ifdef __GNUC__
     13 #define throw(X)
     14 #endif
     15 // discard stack allocation as that too bypasses malloc
     16 #define EIGEN_STACK_ALLOCATION_LIMIT 0
     17 // any heap allocation will raise an assert
     18 #define EIGEN_NO_MALLOC
     19 
     20 #include "main.h"
     21 #include <Eigen/Cholesky>
     22 #include <Eigen/Eigenvalues>
     23 #include <Eigen/LU>
     24 #include <Eigen/QR>
     25 #include <Eigen/SVD>
     26 
     27 template<typename MatrixType> void nomalloc(const MatrixType& m)
     28 {
     29   /* this test check no dynamic memory allocation are issued with fixed-size matrices
     30   */
     31   typedef typename MatrixType::Index Index;
     32   typedef typename MatrixType::Scalar Scalar;
     33   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     34 
     35   Index rows = m.rows();
     36   Index cols = m.cols();
     37 
     38   MatrixType m1 = MatrixType::Random(rows, cols),
     39              m2 = MatrixType::Random(rows, cols),
     40              m3(rows, cols);
     41 
     42   Scalar s1 = internal::random<Scalar>();
     43 
     44   Index r = internal::random<Index>(0, rows-1),
     45         c = internal::random<Index>(0, cols-1);
     46 
     47   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
     48   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
     49   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
     50   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
     51 
     52   m2.col(0).noalias() = m1 * m1.col(0);
     53   m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
     54   m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
     55   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
     56 
     57   m2.row(0).noalias() = m1.row(0) * m1;
     58   m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
     59   m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
     60   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
     61   VERIFY_IS_APPROX(m2,m2);
     62 
     63   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
     64   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
     65   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
     66   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
     67 
     68   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
     69   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
     70   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
     71   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
     72   VERIFY_IS_APPROX(m2,m2);
     73 
     74   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
     75   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
     76   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
     77   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
     78 
     79   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
     80   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
     81   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
     82   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
     83   VERIFY_IS_APPROX(m2,m2);
     84 
     85   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
     86   m2.template selfadjointView<Lower>().rankUpdate(m1.row(0),-1);
     87 
     88   // The following fancy matrix-matrix products are not safe yet regarding static allocation
     89 //   m1 += m1.template triangularView<Upper>() * m2.col(;
     90 //   m1.template selfadjointView<Lower>().rankUpdate(m2);
     91 //   m1 += m1.template triangularView<Upper>() * m2;
     92 //   m1 += m1.template selfadjointView<Lower>() * m2;
     93 //   VERIFY_IS_APPROX(m1,m1);
     94 }
     95 
     96 template<typename Scalar>
     97 void ctms_decompositions()
     98 {
     99   const int maxSize = 16;
    100   const int size    = 12;
    101 
    102   typedef Eigen::Matrix<Scalar,
    103                         Eigen::Dynamic, Eigen::Dynamic,
    104                         0,
    105                         maxSize, maxSize> Matrix;
    106 
    107   typedef Eigen::Matrix<Scalar,
    108                         Eigen::Dynamic, 1,
    109                         0,
    110                         maxSize, 1> Vector;
    111 
    112   typedef Eigen::Matrix<std::complex<Scalar>,
    113                         Eigen::Dynamic, Eigen::Dynamic,
    114                         0,
    115                         maxSize, maxSize> ComplexMatrix;
    116 
    117   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
    118   Matrix X(size,size);
    119   const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
    120   const Matrix saA = A.adjoint() * A;
    121   const Vector b(Vector::Random(size));
    122   Vector x(size);
    123 
    124   // Cholesky module
    125   Eigen::LLT<Matrix>  LLT;  LLT.compute(A);
    126   X = LLT.solve(B);
    127   x = LLT.solve(b);
    128   Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
    129   X = LDLT.solve(B);
    130   x = LDLT.solve(b);
    131 
    132   // Eigenvalues module
    133   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA);
    134   Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA);
    135   Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA);
    136   Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A);
    137   Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA);
    138   Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA);
    139 
    140   // LU module
    141   Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
    142   X = ppLU.solve(B);
    143   x = ppLU.solve(b);
    144   Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A);
    145   X = fpLU.solve(B);
    146   x = fpLU.solve(b);
    147 
    148   // QR module
    149   Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A);
    150   X = hQR.solve(B);
    151   x = hQR.solve(b);
    152   Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A);
    153   X = cpQR.solve(B);
    154   x = cpQR.solve(b);
    155   Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
    156   // FIXME X = fpQR.solve(B);
    157   x = fpQR.solve(b);
    158 
    159   // SVD module
    160   Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
    161 }
    162 
    163 void test_nomalloc()
    164 {
    165   // check that our operator new is indeed called:
    166   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
    167   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
    168   CALL_SUBTEST_2(nomalloc(Matrix4d()) );
    169   CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
    170 
    171   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
    172   CALL_SUBTEST_4(ctms_decompositions<float>());
    173 
    174 }
    175